[3756] | 1 | // Class examples to generate mass distribution
|
---|
| 2 | // R.A. for A. Abate , Nov. 2008
|
---|
| 3 |
|
---|
| 4 | #ifndef SPECPK_SEEN
|
---|
| 5 | #define SPECPK_SEEN
|
---|
| 6 |
|
---|
| 7 | #include "machdefs.h"
|
---|
| 8 | #include "sopnamsp.h"
|
---|
| 9 | #include <math.h>
|
---|
| 10 | #include <iostream>
|
---|
| 11 | #include <vector>
|
---|
| 12 | #include <string>
|
---|
| 13 |
|
---|
| 14 | #include "genericfunc.h"
|
---|
| 15 | #include "array.h"
|
---|
| 16 | #include "histats.h"
|
---|
| 17 | #include "fftwserver.h"
|
---|
| 18 | #include "randinterf.h"
|
---|
| 19 |
|
---|
| 20 | #include "mdish.h"
|
---|
| 21 |
|
---|
| 22 | #define DeuxPI 2.*M_PI
|
---|
| 23 |
|
---|
| 24 | // -- SpectralShape class : test P(k) class
|
---|
| 25 | class SpectralShape : public GenericFunc {
|
---|
| 26 | public:
|
---|
| 27 | SpectralShape(int typ);
|
---|
| 28 | // Return the value of power spectrum for wave number wk
|
---|
| 29 | virtual double operator() (double wk);
|
---|
| 30 | inline double Value(double wk) { return((*this)(wk)); }
|
---|
| 31 | // Return a vector representing the power spectrum (for checking)
|
---|
[3825] | 32 | Histo GetPk(int n=256);
|
---|
| 33 | double Sommek2Pk(double kmax=1000., int n=5000);
|
---|
| 34 | inline void SetRenormFac(double f=1.) { renorm_fac=f; }
|
---|
[3756] | 35 | int typ_;
|
---|
[3825] | 36 | double renorm_fac;
|
---|
[3756] | 37 | };
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 | #define TF r_4
|
---|
| 41 |
|
---|
| 42 | // -- Four3DPk class : 3D fourier amplitudes and power spectrum
|
---|
| 43 | class Four3DPk {
|
---|
| 44 | public:
|
---|
| 45 | // Constructor
|
---|
| 46 | Four3DPk(TArray< complex<TF> > & fourcoedd, RandomGeneratorInterface& rg);
|
---|
| 47 | Four3DPk(RandomGeneratorInterface& rg, sa_size_t szx=128, sa_size_t szy=256, sa_size_t szz=128);
|
---|
[4027] | 48 | virtual ~Four3DPk();
|
---|
| 49 |
|
---|
[3756] | 50 | inline void SetCellSize(double dkx=DeuxPI, double dky=DeuxPI, double dkz=DeuxPI)
|
---|
| 51 | { dkx_=dkx; dky_=dky; dkz_=dkz; }
|
---|
[3930] | 52 | inline int SetPrtLevel(int lev=0, int prtmod=10)
|
---|
| 53 | { int olev=prtlev_; prtlev_=lev; prtmodulo_=prtmod; return olev; }
|
---|
[3756] | 54 | void ComputeFourierAmp(SpectralShape& pk);
|
---|
[4026] | 55 | // angscale is a multiplicative factor converting transverse k (wave number) values to angular wave numbers
|
---|
| 56 | // typically = ComovRadialDistance
|
---|
| 57 | void ComputeNoiseFourierAmp(Four2DResponse& resp, double angscale=1., bool crmask=false);
|
---|
[4030] | 58 | void ComputeNoiseFourierAmp(Four2DResponse& resp, double f0, double df, Vector& angscales, Vector& noisp);
|
---|
[4026] | 59 |
|
---|
[3756] | 60 | // Return the array size
|
---|
| 61 | inline sa_size_t NCells() { return fourAmp.Size(); }
|
---|
[4027] | 62 | inline sa_size_t SizeX() { return fourAmp.SizeX(); }
|
---|
| 63 | inline sa_size_t SizeY() { return fourAmp.SizeY(); }
|
---|
| 64 | inline sa_size_t SizeZ() { return fourAmp.SizeZ(); }
|
---|
| 65 |
|
---|
[3756] | 66 | // Set the cell size/step in Fourier Space
|
---|
| 67 | // Return the fourier amplitude matrix
|
---|
| 68 | TArray< complex<TF> > GetFourierAmp()
|
---|
| 69 | { return fourAmp; }
|
---|
| 70 | // Return the mass density matrix
|
---|
| 71 | TArray<TF> ComputeMassDens();
|
---|
| 72 |
|
---|
| 73 | // Return the reconstructed power spectrum as a profile histogram
|
---|
[4027] | 74 | HProf ComputePk(double s2cut=0., int nbin=256, double kmin=0., double kmax=-1., bool fgmodcnt=false);
|
---|
| 75 | void ComputePkCumul();
|
---|
[3756] | 76 |
|
---|
[4026] | 77 | // angscale is a multiplicative factor converting transverse k (wave number) values to angular wave numbers
|
---|
| 78 | // typically = ComovRadialDistance
|
---|
[4027] | 79 | HProf ComputeNoisePk(Four2DResponse& resp, double angscale=1., double s2cut=0.,
|
---|
| 80 | int nbin=256, double kmin=0., double kmax=-1.);
|
---|
[3947] | 81 |
|
---|
[4027] | 82 | // Fills a data table from the computed P(k) profile histogram and mode count
|
---|
| 83 | Histo FillPkDataTable(DataTable& dt);
|
---|
| 84 | inline HProf& GetPk() { return *hp_pk_p_; }
|
---|
| 85 |
|
---|
[3756] | 86 | protected:
|
---|
| 87 | // member attribute
|
---|
| 88 | RandomGeneratorInterface& rg_;
|
---|
| 89 | TArray< complex<TF> > fourAmp; // complex array of fourier coefficients
|
---|
| 90 | double dkx_, dky_, dkz_;
|
---|
| 91 | int prtlev_;
|
---|
[3930] | 92 | int prtmodulo_;
|
---|
[4027] | 93 | // Profile histograms for power spectrum and number of modes
|
---|
| 94 | HProf* hp_pk_p_;
|
---|
| 95 | Histo* hmcnt_p_;
|
---|
| 96 | Histo* hmcntok_p_;
|
---|
| 97 | double s2cut_;
|
---|
[3756] | 98 | };
|
---|
| 99 |
|
---|
[3930] | 100 | // --- PkNoiseCalculator :
|
---|
| 101 | // - Classe de calcul du spectre de bruit PNoise(k) determine par une reponse
|
---|
| 102 | // 2D de l'instrument
|
---|
| 103 | class PkNoiseCalculator
|
---|
| 104 | {
|
---|
| 105 | public:
|
---|
| 106 | PkNoiseCalculator(Four3DPk& pk3, Four2DResponse& rep, double s2cut=100., int ngen=1, const char* tit="PkNoise");
|
---|
| 107 |
|
---|
[4026] | 108 | inline void SetFreqRange(double freq0=835.,double dfreq=0.5)
|
---|
| 109 | { freq0_=freq0; dfreq_=dfreq; }
|
---|
| 110 | inline void SetAngScaleConversion(double angscale=1.)
|
---|
[4027] | 111 | { angscales_=angscale; }
|
---|
| 112 | inline void SetAngScaleConversion(Vector& angscs)
|
---|
| 113 | { angscales_=angscs; }
|
---|
[4030] | 114 | inline void SetPNoiseFactor(double pnoisef=1.)
|
---|
| 115 | { pnoisefac_=pnoisef; }
|
---|
| 116 | inline void SetPNoiseFactor(Vector& pnoisefac)
|
---|
| 117 | { pnoisefac_=pnoisefac; }
|
---|
[3930] | 118 | inline void SetS2Cut(double s2cut=100.)
|
---|
| 119 | { S2CUT=s2cut; }
|
---|
| 120 | inline double GetS2Cut() { return S2CUT; }
|
---|
[4027] | 121 | HProf Compute(int nbin=256, double kmin=0., double kmax=-1.);
|
---|
[3930] | 122 | inline int SetPrtLevel(int lev=0, int prtmod=10)
|
---|
| 123 | { int olev=prtlev_; prtlev_=lev; prtmodulo_=prtmod; return olev; }
|
---|
[3756] | 124 |
|
---|
[3930] | 125 | protected:
|
---|
| 126 | Four3DPk& pkn3d;
|
---|
| 127 | Four2DResponse& frep;
|
---|
[4026] | 128 | double freq0_,dfreq_;
|
---|
[4027] | 129 | Vector angscales_;
|
---|
[4030] | 130 | Vector pnoisefac_;
|
---|
[3930] | 131 | double S2CUT;
|
---|
| 132 | int NGEN;
|
---|
| 133 | string title;
|
---|
| 134 | int prtlev_;
|
---|
| 135 | int prtmodulo_;
|
---|
| 136 | };
|
---|
| 137 |
|
---|
| 138 |
|
---|
| 139 |
|
---|
[3756] | 140 | // -- MassDist2D class : 2D mass distribution
|
---|
| 141 | class MassDist2D {
|
---|
| 142 | public:
|
---|
| 143 | // Constructor
|
---|
| 144 | MassDist2D(GenericFunc& pk, int size=1024, double meandens=1.);
|
---|
| 145 | // Do the computation
|
---|
| 146 | void Compute();
|
---|
| 147 | // Return the array size
|
---|
| 148 | inline sa_size_t ArrSize() { return sizeA; }
|
---|
| 149 | // Return the fourier amplitude matrix
|
---|
| 150 | TMatrix< complex<r_8> > GetFourierAmp()
|
---|
| 151 | { if (!fg_fourAmp) ComputeFourierAmp(); return fourAmp; }
|
---|
| 152 | // Return the mass density matrix
|
---|
| 153 | Matrix GetMassDens()
|
---|
| 154 | { if (!fg_massDens) ComputeMassDens(); return massDens; }
|
---|
| 155 |
|
---|
| 156 | // Return the reconstructed power spectrum as a profile histogram
|
---|
| 157 | HProf ReconstructPk(int nbin=0);
|
---|
| 158 | protected:
|
---|
| 159 | void ComputeFourierAmp();
|
---|
| 160 | void ComputeMassDens();
|
---|
| 161 |
|
---|
| 162 | // member attribute
|
---|
| 163 | GenericFunc& pkSpec; // The spectralShape
|
---|
| 164 | sa_size_t sizeA; // 2D array size
|
---|
| 165 | double meanRho; // Mean Density
|
---|
| 166 | bool fg_fourAmp; // true -> fourAmp computed
|
---|
| 167 | TMatrix< complex<r_8> > fourAmp; // complex array of fourier coefficients
|
---|
| 168 | bool fg_massDens; // true -> MassDens computed
|
---|
| 169 | TMatrix< r_8 > massDens; // real array of d rho/rho
|
---|
| 170 | };
|
---|
| 171 |
|
---|
| 172 |
|
---|
| 173 | #endif
|
---|