##################################################################################### #### Commands to run the different programs to produce foreground maps #### and compute radio-source subtracted P(k) ##################################################################################### ### Cube definition in file cubedef.h ### Step 1/ Produce an LSS data cube with appropriate size and redshift using SimLSS # 1.a/ Run SimLSS csh> ~/Objs/exe/cmvginit3df -a -1 -2 -C -G 0. -F 0 -x 360,3 -y 360,3 -z 256,1.5 -Z 0.56 -8 1. -n 10000 -O 0,2 -o lssz056 -T 2 # 1.b/ Change the X and Z axis of the cube to adapt it to RadioBeam package convention # SimLSS output : the radial (redshift) direction along X axis of the cube (TArray) # RadioBeam cubes : the radial (redshift) direction along Z axis of the cube (TArray) # Execucte the following script in spiapp : csh> cat > racube.pic set f lssz056 readfits ${f}_r.fits rename ${f}_r map print map c++exec \ TArray omap(map.SizeY(),map.SizeZ(),map.SizeX()-2 ); \ for(sa_size_t i=0;i spiapp -term -exec racube.pic ## Step 2/ Produce synchrotron and radio source sky cubes (cube unit is Temparature- Kelvin) # 2.a/ Synchrotron map from HASLAM 400 MHz map csh> ./Objs/syncube syncmap_eq.fits syncube.ppf # 2.b/ radio source cube from NVSS catalog csh> ./Objs/srcat2cube nvss.fits nvsscube.ppf # 2.c/ Add the two cubes using the following spiapp script csh> cat > sumcubes.pic openppf syncube.ppf openppf nvsscube.ppf # expmeansig syncube val # expmeansig nvsscube val c++exec TArray fgndcube = syncube+nvsscube; KeepObj(fgndcube); print fgndcube # expmeansig fgndcube val saveppf fgndcube fgndcube.ppf csh> spiapp -term -exec sumcubes.pic ## Step 3/ Apply lobe effect on foreground cube and LSS cube csh> ./Objs/applobe fgndcube.ppf fgndcube_lobe.ppf csh> ./Objs/applobe lsscube.ppf lsscube_lobe.ppf ## Step 3.b/ Correct for the lobe effect by bringing all to a beam of 30 arcmin csh> ./Objs/applobe lsscube_lobe.ppf lsscube_corlobe.ppf 1 30 csh> ./Objs/applobe fgndcube_lobe.ppf fgndcube_corlobe.ppf 1 30 ### Step 4/ Compute power spectra ## mass to temperature converion factor CT21 ~= 0.2 mK ## Foreground maps are in temperature ## Noise fluctuations Sigma^2 ~ T_sys^2 / t_obs * DeltaFreq ## Tsys ~ 50 K , DeltaFreq ~ 0.275 MHz , t_obs ~ 1 day ~ 80 000 s. ## sigma_noise ~ 0.35 mK # 4.a/ LSS power spectrum without noise csh> ./Objs/calcpk lsscube.ppf lsspk.ppf 0.2 # and with noise csh> ./Objs/calcpk lsscube.ppf lsspkwn.ppf 0.2 0.35 # with the lobe effect csh> ./Objs/calcpk lsscube_lobe.ppf lsspklobe.ppf 0.2 csh> ./Objs/calcpk lsscube_corlobe.ppf lsspkcorlobe.ppf 0.2 # 4.b/ Foreground power spectrum csh> ./Objs/calcpk fgndcube.ppf fgndpk.ppf 1000 csh> ./Objs/calcpk fgndcube_lobe.ppf fgndpklobe.ppf 1000 csh> ./Objs/calcpk fgndcube_corlobe.ppf fgndpkcorlobe.ppf 1000 # 4.c/ Extract LSS P(k) from Foreground+LSS+noise , after cleaning/subtraction without beam csh> ./Objs/calcpk2 lsscube.ppf 0.2 fgndcube.ppf 1000 subpk.ppf 0.35 0. 0. # 4.d / Extract LSS P(k) from Foreground+LSS+noise and beam effect - correcting for beam to 30 arcmin csh> ./Objs/calcpk2 lsscube_lobe.ppf 0.2 fgndcube_lobe.ppf 1000 subpklobe.ppf 0.35 30. 3. ### Step 5 / Check the results using spiapp openppf fgndpk.ppf openppf lsspk.ppf openppf lsspkwn.ppf openppf lsspklobe.ppf