[3615] | 1 | #include "sopnamsp.h"
|
---|
[3196] | 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <vector>
|
---|
| 9 |
|
---|
| 10 | #include "pexceptions.h"
|
---|
| 11 |
|
---|
| 12 | #include "histos.h"
|
---|
| 13 | #include "srandgen.h"
|
---|
| 14 |
|
---|
| 15 | #include "geneutils.h"
|
---|
| 16 | #include "agnjackson.h"
|
---|
| 17 |
|
---|
[3325] | 18 | namespace SOPHYA {
|
---|
[3196] | 19 |
|
---|
| 20 | AGNJackson::AGNJackson(void)
|
---|
| 21 | : nobjang_(0.) , fluxang_(0.) , dndls_(NULL), tirls_(NULL)
|
---|
| 22 | {
|
---|
| 23 |
|
---|
| 24 | //--- Les valeurs lues sur la courbe de Jackson (from JIM)
|
---|
| 25 | const int nval = 10;
|
---|
| 26 | // log10(S en Jy)
|
---|
| 27 | double x[nval] = {-7.,-6.,-5.,-4.,-3.,-2.,-1.,0.,1.,2.};
|
---|
| 28 | // S^2.5*dN/dS (en Jy^1.5 /sr)
|
---|
| 29 | double y[nval] = {0.0035,0.14,0.95,2.5,7.,50.,260.,300.,150.,100.};
|
---|
| 30 |
|
---|
| 31 | if(sizeof(x)!=sizeof(y) || sizeof(y)!=8*nval) {
|
---|
| 32 | cout<<"AGNJackson::AGNJackson_Error: incompatible x,y,nval sizes"<<endl;
|
---|
| 33 | throw SzMismatchError("AGNJackson::AGNJackson_Error: incompatible x,y,nval sizes");
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | xjack_.resize(0); yjack_.resize(0);
|
---|
| 37 | for(int i=0;i<nval;i++)
|
---|
| 38 | {xjack_.push_back(x[i]); yjack_.push_back(y[i]);}
|
---|
| 39 |
|
---|
| 40 | // On cree l'histo: dndls = dN/dlog10(S) en fct de log10(S en Jy)
|
---|
| 41 | int nbin = nval*20;
|
---|
| 42 | double xmin = x[0], xmax=x[nval-1];
|
---|
| 43 | dndls_ = new Histo(xmin,xmax,nbin);
|
---|
| 44 | dndls_->Zero();
|
---|
| 45 |
|
---|
| 46 | // On remplit les histos
|
---|
[3260] | 47 | // yjack_ = S^2.5 * dN/dS (en Jy^1.5 /sr) en fct de xjack_ = log10(S en Jy)
|
---|
| 48 | // dndls: dN/dlog10(S) (en 1/log10(Jy)/sr) en fct de log10(S en Jy)
|
---|
[3196] | 49 | // avec dN/dlog10(S) = dN/dS * dS/dlog10(S)
|
---|
| 50 | // = (S^2.5*dN/dS)*S^(-2.5) * (ln(10)*S)
|
---|
| 51 | // On va interpoler en log(dN/dlog10(S)) versus log10(S)
|
---|
| 52 | vector<double> Y;
|
---|
| 53 | for(int i=0;i<nval;i++) {
|
---|
| 54 | double v = yjack_[i]*pow(10.,-1.5*xjack_[i])*M_LN10;
|
---|
| 55 | Y.push_back(log(v));
|
---|
| 56 | }
|
---|
| 57 | for(int i=0;i<nbin;i++) {
|
---|
| 58 | double lf = dndls_->BinCenter(i);
|
---|
| 59 | // Interpolation lineaire (parabolic not OK!)
|
---|
| 60 | double v = InterpTab(lf,xjack_,Y,1);
|
---|
| 61 | (*dndls_)(i) = exp(v);
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | // On remplit la fonction de tirage
|
---|
| 65 | tirls_ = new FunRan(*dndls_,true);
|
---|
| 66 |
|
---|
| 67 | // On calcul le nombre moyen d'AGN et le flux moyen par sr
|
---|
| 68 | // ATTENTION: dn/dlog10(S) en fct de log10(s)
|
---|
| 69 | nobjang_ = fluxang_ = 0.;
|
---|
| 70 | for(int i=0;i<nbin;i++) {
|
---|
| 71 | double lf = dndls_->BinCenter(i);
|
---|
| 72 | nobjang_ += (*dndls_)(i);
|
---|
| 73 | fluxang_ += (*dndls_)(i)*pow(10.,lf);
|
---|
| 74 | }
|
---|
| 75 | nobjang_ *= dndls_->BinWidth();
|
---|
| 76 | fluxang_ *= dndls_->BinWidth();
|
---|
| 77 |
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | AGNJackson::~AGNJackson(void)
|
---|
| 81 | {
|
---|
| 82 | if(dndls_!=NULL) delete dndls_;
|
---|
| 83 | if(tirls_!=NULL) delete tirls_;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | void AGNJackson::Print(void)
|
---|
| 87 | {
|
---|
| 88 | cout<<"AGNJackson::Print: nobj="<<nobjang_
|
---|
| 89 | <<" /sr, flux="<<fluxang_<<" Jy/sr"<<endl;
|
---|
| 90 | dndls_->Show();
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | void AGNJackson::OrigJack(vector<double>& xjack,vector<double>& yjack)
|
---|
| 94 | {
|
---|
| 95 | xjack = xjack_;
|
---|
| 96 | yjack = yjack_;
|
---|
| 97 | }
|
---|
[3325] | 98 |
|
---|
| 99 | } // Fin namespace SOPHYA
|
---|