[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "constcosmo.h"
|
---|
| 11 | #include "cosmocalc.h"
|
---|
| 12 | #include "geneutils.h"
|
---|
| 13 | #include "schechter.h"
|
---|
| 14 | #include "planckspectra.h"
|
---|
| 15 |
|
---|
[3336] | 16 | /* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
|
---|
[3288] | 17 | cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
|
---|
[3193] | 18 | --- */
|
---|
| 19 |
|
---|
[3115] | 20 | inline double rad2deg(double trad) {return trad/M_PI*180.;}
|
---|
| 21 | inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
|
---|
| 22 | inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
|
---|
| 23 | inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
|
---|
| 24 | inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
|
---|
| 25 | inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
|
---|
| 26 |
|
---|
| 27 | void usage(void);
|
---|
| 28 | void usage(void) {
|
---|
[3287] | 29 | cout<<"cmvdefsurv [-r] -x adtx,atxlarg[,unit_x] -y adty,atylarg[,unit_y] -z dred,redlarg[,unit_z] redshift"<<endl
|
---|
| 30 | <<"----------------"<<endl
|
---|
| 31 | <<" -x adtx,atxlarg : resolution et largeur dans le plan transverse selon X"<<endl
|
---|
| 32 | <<" -y adty,atylarg : idem selon Y, si <=0 meme que X"<<endl
|
---|
[3336] | 33 | <<" -z dred,redlarg : resolution et largeur sur la ligne de visee"<<endl
|
---|
[3287] | 34 | <<"-- Unites pour X-Y:"<<endl
|
---|
| 35 | <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
|
---|
| 36 | <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
|
---|
| 37 | <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
|
---|
| 38 | <<" \'M\' : en distance (pour X-Y-Z) : resolution et largeur Mpc"<<endl
|
---|
| 39 | <<"----------------"<<endl
|
---|
[3115] | 40 | <<" -O surf,tobs : surface effective (m^2) et temps d\'observation (s)"<<endl
|
---|
[3196] | 41 | <<" -N Tsys : temperature du system (K)"<<endl
|
---|
[3288] | 42 | <<" -L lobewidth,freqlob : taille du lobe d\'observation (FWHM) en arcmin (def= 1\')"<<endl
|
---|
| 43 | <<" pour la frequence freqlob en MHz"<<endl
|
---|
| 44 | <<" Si lobewidth<=0 : l'angle solide du lobe = celui du pixel"<<endl
|
---|
| 45 | <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie"<<endl
|
---|
[3336] | 46 | <<" Si freqlob absent : la frequence de reference 1.4 GHz"<<endl
|
---|
[3287] | 47 | <<" -2 : two polarisations measured"<<endl
|
---|
[3193] | 48 | <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
|
---|
[3115] | 49 | <<" -F : HI flux factor to be applied for our redshift"<<endl
|
---|
[3193] | 50 | <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
|
---|
[3287] | 51 | <<"----------------"<<endl
|
---|
| 52 | <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
|
---|
| 53 | <<" (indnu==0 no evolution with freq.)"<<endl
|
---|
| 54 | <<"----------------"<<endl
|
---|
[3193] | 55 | <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
|
---|
[3287] | 56 | <<"----------------"<<endl
|
---|
[3196] | 57 | <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
|
---|
[3115] | 58 | <<" redshift : redshift moyen du survey"<<endl
|
---|
| 59 | <<endl;
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | int main(int narg,char *arg[])
|
---|
| 63 | {
|
---|
| 64 | // --- Valeurs fixes
|
---|
| 65 | // WMAP
|
---|
| 66 | unsigned short flat = 0;
|
---|
[3193] | 67 | double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
|
---|
[3115] | 68 | // Schechter
|
---|
| 69 | double h75 = h100 / 0.75;
|
---|
| 70 | double nstar = 0.006*pow(h75,3.); //
|
---|
| 71 | double mstar = pow(10.,9.8/(h75*h75)); // MSol
|
---|
| 72 | double alpha = -1.37;
|
---|
| 73 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
| 74 |
|
---|
| 75 | // --- Arguments
|
---|
[3287] | 76 | double adtx=0., atxlarg=0., dx=0.,txlarg=0.;
|
---|
| 77 | int nx=0; char unit_x = 'A';
|
---|
| 78 | double adty=-1., atylarg=-1., dy=0.,tylarg=0.;
|
---|
| 79 | int ny=0; char unit_y = 'A';
|
---|
| 80 | double dred=0., redlarg=0., dz=0.,tzlarg=0.;
|
---|
| 81 | int nz=0; char unit_z = 'Z';
|
---|
| 82 | double redshift = 0.;
|
---|
[3193] | 83 | double tobs = 6000., surfeff = 400000.;
|
---|
[3288] | 84 | // taille du lobe d'observation en arcmin pour la frequence
|
---|
| 85 | double lobewidth0 = -1., lobefreq0 = Fr_HyperFin_Par*1.e3;
|
---|
[3193] | 86 | double Tsys=75.;
|
---|
[3115] | 87 | // a 408 MHz (Haslam) + evol index a -2.6
|
---|
| 88 | double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
|
---|
| 89 | double mhiref = -1.; // reference Mass en HI (def integ schechter)
|
---|
| 90 | double hifactor = 1.;
|
---|
[3193] | 91 | double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
|
---|
[3336] | 92 | double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
|
---|
[3196] | 93 | double lflux_agn = -3.;
|
---|
[3115] | 94 |
|
---|
| 95 | // --- Decodage arguments
|
---|
| 96 | char c;
|
---|
[3287] | 97 | while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:")) != -1) {
|
---|
[3115] | 98 | switch (c) {
|
---|
| 99 | case 'x' :
|
---|
[3287] | 100 | sscanf(optarg,"%lf,%lf,%c",&adtx,&atxlarg,&unit_x);
|
---|
[3115] | 101 | break;
|
---|
| 102 | case 'y' :
|
---|
[3287] | 103 | sscanf(optarg,"%lf,%lf,%c",&adty,&atylarg,&unit_y);
|
---|
[3115] | 104 | break;
|
---|
| 105 | case 'z' :
|
---|
[3287] | 106 | sscanf(optarg,"%lf,%lf,%c",&dred,&redlarg,&unit_z);
|
---|
[3115] | 107 | break;
|
---|
| 108 | case 'O' :
|
---|
| 109 | sscanf(optarg,"%lf,%lf",&surfeff,&tobs);
|
---|
| 110 | break;
|
---|
[3193] | 111 | case 'L' :
|
---|
[3288] | 112 | sscanf(optarg,"%lf,%lf",&lobewidth0,&lobefreq0);
|
---|
[3193] | 113 | break;
|
---|
[3196] | 114 | case 'N' :
|
---|
[3193] | 115 | sscanf(optarg,"%lf",&Tsys);
|
---|
[3115] | 116 | break;
|
---|
| 117 | case 'S' :
|
---|
| 118 | sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
|
---|
| 119 | break;
|
---|
| 120 | case 'M' :
|
---|
| 121 | sscanf(optarg,"%lf",&mhiref);
|
---|
| 122 | break;
|
---|
| 123 | case 'F' :
|
---|
| 124 | sscanf(optarg,"%lf",&hifactor);
|
---|
| 125 | break;
|
---|
[3193] | 126 | case 'V' :
|
---|
| 127 | sscanf(optarg,"%lf",&vrot);
|
---|
[3115] | 128 | break;
|
---|
[3193] | 129 | case 'U' :
|
---|
[3248] | 130 | sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
|
---|
[3193] | 131 | break;
|
---|
| 132 | case '2' :
|
---|
| 133 | facpolar = 1.0;
|
---|
| 134 | break;
|
---|
[3196] | 135 | case 'A' :
|
---|
| 136 | sscanf(optarg,"%lf",&lflux_agn);
|
---|
| 137 | break;
|
---|
[3115] | 138 | case 'h' :
|
---|
| 139 | default :
|
---|
| 140 | usage(); return -1;
|
---|
| 141 | }
|
---|
[3193] | 142 | }
|
---|
[3115] | 143 | if(optind>=narg) {usage(); return-1;}
|
---|
| 144 | sscanf(arg[optind],"%lf",&redshift);
|
---|
| 145 | if(redshift<=0.) {cout<<"Redshift "<<redshift<<" should be >0"<<endl; return -2;}
|
---|
| 146 |
|
---|
| 147 | // --- Initialisation de la Cosmologie
|
---|
[3287] | 148 | cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
|
---|
| 149 | cout<<"h100="<<h100<<" Om0="<<om0<<" Or0="<<or0<<" Or0="
|
---|
[3193] | 150 | <<or0<<" Ol0="<<ol0<<" w0="<<w0<<" flat="<<flat<<endl;
|
---|
[3287] | 151 | cout<<"--- Cosmology for z = "<<redshift<<endl;
|
---|
[3115] | 152 | CosmoCalc univ(flat,true,2.*redshift);
|
---|
| 153 | double perc=0.01,dzinc=redshift/100.,dzmax=dzinc*10.; unsigned short glorder=4;
|
---|
| 154 | univ.SetInteg(perc,dzinc,dzmax,glorder);
|
---|
| 155 | univ.SetDynParam(h100,om0,or0,ol0,w0);
|
---|
[3193] | 156 | univ.Print(0.);
|
---|
[3115] | 157 | univ.Print(redshift);
|
---|
| 158 |
|
---|
| 159 | double dang = univ.Dang(redshift);
|
---|
| 160 | double dtrcom = univ.Dtrcom(redshift);
|
---|
| 161 | double dlum = univ.Dlum(redshift);
|
---|
| 162 | double dloscom = univ.Dloscom(redshift);
|
---|
| 163 | double dlosdz = univ.Dhubble()/univ.E(redshift);
|
---|
| 164 | cout<<"dang="<<dang<<" dlum="<<dlum<<" dtrcom="<<dtrcom
|
---|
| 165 | <<" dloscom="<<dloscom<<" dlosdz="<<dlosdz<<" Mpc"<<endl;
|
---|
| 166 |
|
---|
| 167 | cout<<"\n1\" -> "<<dang*sec2rad(1.)<<" Mpc = "<<dtrcom*sec2rad(1.)<<" Mpc com"<<endl;
|
---|
| 168 | cout<<"1\' -> "<<dang*min2rad(1.)<<" Mpc = "<<dtrcom*min2rad(1.)<<" Mpc com"<<endl;
|
---|
| 169 | cout<<"1d -> "<<dang*deg2rad(1.)<<" Mpc = "<<dtrcom*deg2rad(1.)<<" Mpc com"<<endl;
|
---|
| 170 |
|
---|
| 171 | cout<<"dz=1 -> "<<dlosdz<<" Mpc com"<<endl;
|
---|
| 172 |
|
---|
| 173 | cout<<"1 Mpc los com -> dz = "<<1./dlosdz<<endl;
|
---|
| 174 | cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom)<<"\" = "
|
---|
| 175 | <<rad2min(1./dtrcom)<<" \' = "<<rad2deg(1./dtrcom)<<" d"<<endl;
|
---|
| 176 |
|
---|
| 177 | // --- Mise en forme dans les unites appropriees
|
---|
[3287] | 178 | cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
|
---|
| 179 | if(adty<=0. || atylarg<=0.) {adty=adtx; atylarg=atxlarg; unit_y=unit_x;}
|
---|
| 180 | cout<<"X values: resolution="<<adtx<<" largeur="<<atxlarg<<" unite="<<unit_x<<endl;
|
---|
| 181 | if(unit_x == 'A') {
|
---|
| 182 | nx = int(atxlarg*60./adtx+0.5);
|
---|
| 183 | adtx = min2rad(adtx); atxlarg = deg2rad(atxlarg);
|
---|
| 184 | dx = adtx*dtrcom; txlarg = dx*nx;
|
---|
| 185 | } else if(unit_x == 'M') {
|
---|
| 186 | nx = int(atxlarg/adtx+0.5);
|
---|
| 187 | dx = adtx; txlarg = atxlarg;
|
---|
[3115] | 188 | adtx = dx/dtrcom; atxlarg = adtx*nx;
|
---|
[3287] | 189 | } else {
|
---|
| 190 | cout<<"Unknown unit_x = "<<unit_x<<endl;
|
---|
| 191 | }
|
---|
| 192 | cout<<"Y values: resolution="<<adty<<" largeur="<<atylarg<<" unite="<<unit_y<<endl;
|
---|
| 193 | if(unit_y == 'A') {
|
---|
| 194 | ny = int(atylarg*60./adty+0.5);
|
---|
| 195 | adty = min2rad(adty); atylarg = deg2rad(atylarg);
|
---|
| 196 | dy = adty*dtrcom; tylarg = dy*ny;
|
---|
| 197 | } else if(unit_y == 'M') {
|
---|
| 198 | ny = int(atylarg/adty+0.5);
|
---|
| 199 | dy = adty; tylarg = atylarg;
|
---|
[3115] | 200 | adty = dy/dtrcom; atylarg = adty*ny;
|
---|
| 201 | } else {
|
---|
[3287] | 202 | cout<<"Unknown unit_y = "<<unit_y<<endl;
|
---|
| 203 | }
|
---|
| 204 | cout<<"Z values: resolution="<<dred<<" largeur="<<redlarg<<" unite="<<unit_z<<endl;
|
---|
| 205 | if(unit_z == 'Z') {
|
---|
[3115] | 206 | nz = int(redlarg/dred+0.5);
|
---|
| 207 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
[3287] | 208 | } else if(unit_z == 'M') {
|
---|
| 209 | nz = int(redlarg/dred+0.5);
|
---|
| 210 | dz = dred; tzlarg = redlarg;
|
---|
| 211 | dred = dz/dlosdz; redlarg = dred*nz;
|
---|
| 212 | } else if(unit_z == 'F') {
|
---|
| 213 | nz = int(redlarg/dred+0.5);
|
---|
| 214 | dred = dred/(Fr_HyperFin_Par*1.e3)*pow(1.+redshift,2.); redlarg = dred*nz;
|
---|
| 215 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
| 216 | } else {
|
---|
| 217 | cout<<"Unknown unit_z = "<<unit_z<<endl;
|
---|
[3115] | 218 | }
|
---|
[3287] | 219 |
|
---|
[3115] | 220 | double Npix = (double)nx*(double)ny*(double)nz;
|
---|
| 221 | double redlim[2] = {redshift-redlarg/2.,redshift+redlarg/2.};
|
---|
| 222 | if(redlim[0]<=0.)
|
---|
| 223 | {cout<<"Lower redshift limit "<<redlim[0]<<" should be >0"<<endl; return -3;}
|
---|
[3271] | 224 | double dtrlim[2] = {univ.Dtrcom(redlim[0]),univ.Dtrcom(redlim[1])};
|
---|
| 225 | double loslim[2] = {univ.Dloscom(redlim[0]), univ.Dloscom(redlim[1])};
|
---|
[3115] | 226 | double dlumlim[2] = {univ.Dlum(redlim[0]),univ.Dlum(redlim[1])};
|
---|
| 227 |
|
---|
| 228 | cout<<"---- Line of Sight: Redshift = "<<redshift<<endl
|
---|
| 229 | <<"dred = "<<dred<<" redlarg = "<<redlarg<<endl
|
---|
[3271] | 230 | <<" dz = "<<dz<<" Mpc redlarg = "<<tzlarg<<" Mpc com, nz = "<<nz<<" pix"<<endl;
|
---|
[3115] | 231 | cout<<"---- Transverse X:"<<endl
|
---|
| 232 | <<"adtx = "<<rad2min(adtx)<<"\', atxlarg = "<<rad2deg(atxlarg)<<" d"<<endl
|
---|
[3271] | 233 | <<" dx = "<<dx<<" Mpc, txlarg = "<<txlarg<<" Mpc com, nx = "<<nx<<" pix"<<endl;
|
---|
[3115] | 234 | cout<<"---- Transverse Y:"<<endl
|
---|
| 235 | <<"adty = "<<rad2min(adty)<<"\', atylarg = "<<rad2deg(atylarg)<<" d"<<endl
|
---|
[3271] | 236 | <<" dy = "<<dy<<" Mpc, tylarg = "<<tylarg<<" Mpc com, ny = "<<ny<<" pix"<<endl;
|
---|
[3115] | 237 | cout<<"---- Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
|
---|
| 238 |
|
---|
| 239 | // --- Cosmolographie Transverse
|
---|
[3287] | 240 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
|
---|
[3115] | 241 | cout<<"dang comoving = "<<dtrcom<<" Mpc (com) var_in_z ["
|
---|
| 242 | <<dtrlim[0]<<","<<dtrlim[1]<<"]"<<endl;
|
---|
| 243 |
|
---|
| 244 | cout<<"... dx = "<<dx<<" Mpc (com), with angle "<<adtx*dtrcom<<endl
|
---|
| 245 | <<" with angle var_in_z ["<<adtx*dtrlim[0]<<","<<adtx*dtrlim[1]<<"]"<<endl;
|
---|
| 246 | cout<<"... largx = "<<txlarg<<" Mpc (com), with angle "<<atxlarg*dtrcom<<endl
|
---|
| 247 | <<" with angle var_in_z ["<<atxlarg*dtrlim[0]<<","<<atxlarg*dtrlim[1]<<"]"<<endl;
|
---|
| 248 |
|
---|
| 249 | cout<<"... dy = "<<dy<<" Mpc (com), with angle "<<adty*dtrcom<<endl
|
---|
| 250 | <<" with angle var_in_z ["<<adty*dtrlim[0]<<","<<adty*dtrlim[1]<<"]"<<endl;
|
---|
| 251 | cout<<"... largy = "<<tylarg<<" Mpc (com), with angle "<<atylarg*dtrcom<<endl
|
---|
| 252 | <<" with angle var_in_z ["<<atylarg*dtrlim[0]<<","<<atylarg*dtrlim[1]<<"]"<<endl;
|
---|
| 253 |
|
---|
| 254 | // --- Cosmolographie Line of sight
|
---|
[3287] | 255 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
|
---|
[3115] | 256 | cout<<"los comoving distance = "<<dloscom<<" Mpc (com) in ["
|
---|
| 257 | <<loslim[0]<<","<<loslim[1]<<"]"<<endl
|
---|
| 258 | <<" diff = "
|
---|
| 259 | <<loslim[1]-loslim[0]<<" Mpc"<<endl;
|
---|
| 260 |
|
---|
| 261 | cout<<"...dz = "<<dz<<" Mpc (com), with redshift approx "<<dred*dlosdz<<endl;
|
---|
| 262 | cout<<"...tzlarg = "<<tzlarg<<" Mpc (com), with redshift approx "<<redlarg*dlosdz<<endl;
|
---|
| 263 |
|
---|
| 264 | // --- Solid Angle & Volume
|
---|
[3287] | 265 | cout<<"\n>>>>\n>>>> Angles solides et Volumes\n>>>>"<<endl;
|
---|
| 266 | cout<<"--- Solid angle"<<endl;
|
---|
[3115] | 267 | double angsol = AngSol(adtx/2.,adty/2.,M_PI/2.);
|
---|
| 268 | cout<<"Elementary solid angle = "<<angsol<<" sr = "<<angsol/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
| 269 | double angsoltot = AngSol(atxlarg/2.,atylarg/2.,M_PI/2.);
|
---|
| 270 | cout<<"Total solid angle = "<<angsoltot<<" sr = "<<angsoltot/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
| 271 |
|
---|
| 272 | cout<<"\n--- Volume"<<endl;
|
---|
| 273 | double dvol = dx*dy*dz;
|
---|
| 274 | cout<<"Pixel volume comoving = "<<dvol<<" Mpc^3"<<endl;
|
---|
| 275 | double vol = univ.Vol4Pi(redlim[0],redlim[1])/(4.*M_PI)*angsoltot;
|
---|
| 276 | cout<<"Volume comoving = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
|
---|
| 277 | <<"Pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
|
---|
| 278 |
|
---|
| 279 | // --- Fourier space: k = omega = 2*Pi*Nu
|
---|
[3287] | 280 | cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
|
---|
[3115] | 281 | cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
|
---|
| 282 | double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
|
---|
| 283 | double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
|
---|
| 284 | double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
|
---|
| 285 | cout<<"Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
|
---|
| 286 | <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl;
|
---|
| 287 | cout<<"Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
|
---|
| 288 | <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
|
---|
| 289 | cout<<"Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl;
|
---|
| 290 | cout<<"Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
|
---|
| 291 |
|
---|
| 292 | // --- Masse de HI
|
---|
[3287] | 293 | cout<<"\n>>>>\n>>>> Mass HI\n>>>>"<<endl;
|
---|
[3115] | 294 | Schechter sch(nstar,mstar,alpha);
|
---|
| 295 | sch.SetOutValue(1);
|
---|
| 296 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
| 297 | cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
|
---|
| 298 | int npt = 10000;
|
---|
| 299 | double lnx1=log10(1e-6), lnx2=log10(1e+14), dlnx=(lnx2-lnx1)/npt;
|
---|
| 300 | double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
| 301 | cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
|
---|
| 302 |
|
---|
| 303 | double masshipix = masshimpc3*dvol;
|
---|
| 304 | double masshitot = masshimpc3*vol;
|
---|
| 305 | cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
|
---|
| 306 | <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
|
---|
| 307 | if(mhiref<=0.) mhiref = masshipix;
|
---|
| 308 |
|
---|
| 309 | // --- Survey values
|
---|
[3287] | 310 | cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
|
---|
[3115] | 311 | double unplusz = 1.+redshift;
|
---|
| 312 | double nuhiz = Fr_HyperFin_Par / unplusz; // GHz
|
---|
| 313 | // dnu = NuHi/(1.+z0-dz/2) - NuHi/(1.+z0+dz/2)
|
---|
| 314 | // = NuHi*dz/(1.+z0)^2 * 1/[1-(dz/(2*(1+z0)))^2]
|
---|
[3271] | 315 | // ~= NuHi*dz/(1.+z0)^2
|
---|
[3115] | 316 | double dnuhiz = Fr_HyperFin_Par *dred/(unplusz*unplusz)
|
---|
[3252] | 317 | / (1.- pow(dred/.2/unplusz,2.));
|
---|
[3287] | 318 | cout<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl
|
---|
[3115] | 319 | <<" nu="<<nuhiz<<" GHz, dnu="<<dnuhiz*1.e3<<" Mhz"<<endl;
|
---|
| 320 | cout<<"dang lumi = "<<dlum<<" in ["<<dlumlim[0]<<","<<dlumlim[1]<<"] Mpc"<<endl;
|
---|
| 321 |
|
---|
[3336] | 322 | double nlobes = 1.;
|
---|
| 323 | if(lobewidth0>0.) {
|
---|
| 324 | double lobewidth = lobewidth0; // ArcMin
|
---|
| 325 | if(lobefreq0<=0.) lobefreq0 = nuhiz*1.e3; // MHz
|
---|
| 326 | // La taille angulaire du lobe change avec la frequence donc avec le redshift
|
---|
| 327 | lobewidth *= lobefreq0/(nuhiz*1.e3);
|
---|
| 328 | cout<<"\n--- Lobe: width="<<lobewidth0<<" pour "<<lobefreq0<<" MHz"<<endl
|
---|
| 329 | <<" changed to "<<lobewidth<<" pour "<<nuhiz*1.e3<<" MHz"<<endl;
|
---|
| 330 | double slobe = lobewidth/2.35482; // sigma du lobe en arcmin
|
---|
| 331 | double lobecyl = sqrt(8.)*slobe; // diametre du lobe cylindrique equiv en arcmin
|
---|
| 332 | double lobearea = M_PI*lobecyl*lobecyl/4.; // en arcmin^2 (hypothese lobe gaussien)
|
---|
| 333 | nlobes = rad2min(adtx)*rad2min(adty)/lobearea;
|
---|
| 334 | cout<<"Beam FWHM = "<<lobewidth<<"\' -> sigma = "<<slobe<<"\' -> "
|
---|
| 335 | <<" Dcyl = "<<lobecyl<<"\' -> area = "<<lobearea<<" arcmin^2"<<endl;
|
---|
| 336 | cout<<"Number of beams in one transversal pixel = "<<nlobes<<endl;
|
---|
| 337 | }
|
---|
[3193] | 338 |
|
---|
[3115] | 339 | // --- Power emitted by HI
|
---|
| 340 | cout<<"\n--- Power from HI for M = "<<mhiref<<" Msol at "<<nuhiz<<" GHz"<<endl;
|
---|
| 341 | cout<<"flux factor = "<<hifactor<<" at redshift = "<<redshift<<endl;
|
---|
| 342 |
|
---|
[3196] | 343 | double fhi = hifactor*Msol2FluxHI(mhiref,dlum);
|
---|
[3115] | 344 | cout<<"FluxHI("<<dlum<<" Mpc) all polar:"<<endl
|
---|
| 345 | <<" Flux= "<<fhi<<" W/m^2 = "<<fhi/Jansky2Watt_cst<<" Jy.Hz"<<endl
|
---|
[3196] | 346 | <<" in ["<<hifactor*Msol2FluxHI(mhiref,dlumlim[0])
|
---|
| 347 | <<","<<hifactor*Msol2FluxHI(mhiref,dlumlim[1])<<"] W/m^2"<<endl;
|
---|
[3193] | 348 | double sfhi = fhi / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
[3261] | 349 | cout<<"If spread over pixel depth ("<<dnuhiz<<" GHz), flux density = "<<sfhi<<" Jy"<<endl;
|
---|
[3115] | 350 |
|
---|
| 351 | // --- Signal analysis
|
---|
| 352 | cout<<"\n--- Signal analysis"<<endl;
|
---|
[3193] | 353 | cout<<"Facteur polar = "<<facpolar<<endl;
|
---|
| 354 |
|
---|
[3115] | 355 | PlanckSpectra planck(T_CMB_Par);
|
---|
| 356 | planck.SetApprox(1); // Rayleigh spectra
|
---|
| 357 | planck.SetVar(0); // frequency
|
---|
| 358 | planck.SetUnitOut(0); // output en W/....
|
---|
| 359 | planck.SetTypSpectra(0); // radiance W/m^2/Sr/Hz
|
---|
| 360 |
|
---|
[3193] | 361 | // Signal
|
---|
[3115] | 362 | double psig = facpolar * fhi * surfeff;
|
---|
[3193] | 363 | double tsig = psig / k_Boltzman_Cst / (dnuhiz*1e9);
|
---|
| 364 | double ssig = psig / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
[3336] | 365 | cout<<"\nSignal("<<mhiref<<" Msol): P="<<psig<<" W"<<endl;
|
---|
[3193] | 366 | cout<<" flux density = "<<ssig<<" Jy (for Dnu="<<dnuhiz<<" GHz)"<<endl;
|
---|
[3115] | 367 | cout<<" Antenna temperature: tsig="<<tsig<<" K"<<endl;
|
---|
| 368 |
|
---|
[3193] | 369 | // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
|
---|
| 370 | double doplarge = vrot / SpeedOfLight_Cst * nuhiz;
|
---|
[3252] | 371 | double dzvrot = vrot / SpeedOfLight_Cst * unplusz;
|
---|
| 372 | cout<<" Doppler width="<<doplarge*1.e3<<" MHz for rotation width of "<<vrot<<" km/s"<<endl
|
---|
| 373 | <<" dx= "<<dzvrot<<" a z="<<redshift<<endl;
|
---|
| 374 | if(doplarge>dnuhiz)
|
---|
[3193] | 375 | cout<<"Warning: doppler width "<<doplarge<<" GHz > "<<dnuhiz<<" GHz redshift bin width"<<endl;
|
---|
[3115] | 376 |
|
---|
[3287] | 377 | // Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
|
---|
[3115] | 378 | double tsynch = Tsynch408;
|
---|
| 379 | if(fabs(indnu)>1.e-50) tsynch *= pow(nuhiz/nuhaslam,indnu);
|
---|
| 380 | planck.SetTemperature(tsynch);
|
---|
[3193] | 381 | double psynch = facpolar * planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
| 382 | double ssynch = psynch / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
[3336] | 383 | cout<<"\nSynchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "
|
---|
[3115] | 384 | <<tsynch<<" K ("<<nuhiz<<" GHz)"<<endl
|
---|
[3261] | 385 | <<" P="<<psynch<<" W for pixel"<<endl;
|
---|
| 386 | cout<<" flux density = "<<ssynch<<" Jy for pixel solid angle"<<endl;
|
---|
[3115] | 387 |
|
---|
[3193] | 388 | // CMB
|
---|
[3115] | 389 | double tcmb = T_CMB_Par;
|
---|
| 390 | planck.SetTemperature(tcmb);
|
---|
[3193] | 391 | double pcmb = facpolar * planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
[3115] | 392 | double scmb = pcmb / surfeff / (dnuhiz*1.e+9) / Jansky2Watt_cst;
|
---|
[3336] | 393 | cout<<"\nCMB: T="<<tcmb<<" K -> P="<<pcmb<<" W for pixel"<<endl;
|
---|
[3261] | 394 | cout<<" flux density = "<<scmb<<" Jy for pixel solid angle"<<endl;
|
---|
[3115] | 395 |
|
---|
[3196] | 396 | // AGN
|
---|
| 397 | double flux_agn = pow(10.,lflux_agn);
|
---|
[3199] | 398 | double mass_agn = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum);
|
---|
[3336] | 399 | cout<<"\nAGN: log10(S_agn)="<<lflux_agn<<" -> S_agn="
|
---|
[3199] | 400 | <<flux_agn<<" Jy -> "<<mass_agn<<" equiv. Msol/Hz"<<endl;
|
---|
[3196] | 401 | double flux_agn_pix = flux_agn*(dnuhiz*1e9);
|
---|
| 402 | double mass_agn_pix = FluxHI2Msol(flux_agn_pix*Jansky2Watt_cst,dlum);
|
---|
| 403 | double lmass_agn_pix = log10(mass_agn_pix);
|
---|
| 404 | cout<<"...pixel: f="<<flux_agn_pix<<" 10^-26 W/m^2"
|
---|
| 405 | <<" -> "<<mass_agn_pix<<" Msol -> log10 = "<<lmass_agn_pix<<endl;
|
---|
| 406 |
|
---|
[3336] | 407 | // ---
|
---|
[3115] | 408 | // --- Noise analysis
|
---|
[3336] | 409 | // ---
|
---|
| 410 | // Ae = surface d'un telescope elementaire
|
---|
| 411 | // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
|
---|
| 412 | // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
|
---|
| 413 | // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
|
---|
| 414 | // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
|
---|
| 415 | // Interferometre a deux antennes:
|
---|
| 416 | // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
|
---|
| 417 | // Interferometre a N antennes (N grand):
|
---|
| 418 | // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
|
---|
| 419 | // C'est aussi la formule pour un telescope unique
|
---|
| 420 | // -
|
---|
| 421 | // Ces formules sont valables si on mesure 1 polarisation.
|
---|
| 422 | // Si on mesure 2 polarisations:
|
---|
| 423 | // le signal (ssig) est multiplie par 2 (facpolar=1 au lieu de 0.5)
|
---|
| 424 | // mais on le lit avec 2 chaines electroniques differentes
|
---|
| 425 | // -> le gain n'est que de sqrt(2)
|
---|
| 426 | cout<<"\n---\n--- Noise analysis \n---"<<endl;
|
---|
[3193] | 427 | double psys = k_Boltzman_Cst * Tsys * (dnuhiz*1.e+9);
|
---|
| 428 | cout<<"Noise: T="<<Tsys<<" K, P="<<psys<<" W (for Dnu="<<dnuhiz<<" GHz)"<<endl;
|
---|
[3115] | 429 |
|
---|
[3336] | 430 | double slim,slim_nl,SsN,SsN_nl,smass,smass_nl;
|
---|
| 431 | cout<<"...Computation assume that noise dominate the signal."<<endl;
|
---|
| 432 |
|
---|
| 433 | double facpolarbruit = 1.;
|
---|
| 434 | if(fabs(facpolar-1.)<0.01) {
|
---|
| 435 | facpolarbruit = sqrt(2.);
|
---|
| 436 | cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
|
---|
| 437 | }
|
---|
[3115] | 438 |
|
---|
[3336] | 439 | //---
|
---|
| 440 | cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
|
---|
| 441 | <<" (sensitivity is given for real or complex correlator output)"<<endl;
|
---|
| 442 | slim = 2. * k_Boltzman_Cst * Tsys / surfeff
|
---|
| 443 | / sqrt(0.5*(dnuhiz*1.e+9)*tobs) /Jansky2Watt_cst;
|
---|
| 444 | slim *= facpolarbruit;
|
---|
| 445 | SsN = ssig/slim;
|
---|
| 446 | smass = mhiref/ssig*slim;
|
---|
| 447 | cout<<"for 1 lobe:"<<endl
|
---|
| 448 | <<" Flux = "<<slim<<" Jy"<<endl
|
---|
| 449 | <<" S/N = "<<SsN<<endl
|
---|
| 450 | <<" Mass HI = "<<smass<<" Msol"<<endl;
|
---|
| 451 | slim_nl = slim * sqrt(nlobes);
|
---|
| 452 | SsN_nl = ssig/slim_nl;
|
---|
| 453 | smass_nl = mhiref/ssig*slim_nl;
|
---|
| 454 | cout<<"for "<<nlobes<<" lobes:"<<endl
|
---|
| 455 | <<" Flux = "<<slim_nl<<" Jy"<<endl
|
---|
| 456 | <<" S/N = "<<SsN_nl<<endl
|
---|
| 457 | <<" Mass HI = "<<smass_nl<<" Msol"<<endl;
|
---|
[3115] | 458 |
|
---|
[3336] | 459 | //---
|
---|
| 460 | cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
|
---|
| 461 | <<" (weak source limit sensitivity in a synthetised image)"<<endl
|
---|
| 462 | <<" (Also valid for 1 single antenna telescope)"<<endl;
|
---|
| 463 | slim = 2. * k_Boltzman_Cst * Tsys / surfeff
|
---|
| 464 | / sqrt((dnuhiz*1.e+9)*tobs) /Jansky2Watt_cst;
|
---|
| 465 | slim *= facpolarbruit;
|
---|
| 466 | SsN = ssig/slim;
|
---|
| 467 | smass = mhiref/ssig*slim;
|
---|
| 468 | cout<<"for 1 lobe:"<<endl
|
---|
| 469 | <<" Flux = "<<slim<<" Jy"<<endl
|
---|
| 470 | <<" S/N = "<<SsN<<endl
|
---|
| 471 | <<" Mass HI = "<<smass<<" Msol"<<endl;
|
---|
| 472 | slim_nl = slim * sqrt(nlobes);
|
---|
| 473 | SsN_nl = ssig/slim_nl;
|
---|
| 474 | smass_nl = mhiref/ssig*slim_nl;
|
---|
| 475 | cout<<"for "<<nlobes<<" lobes:"<<endl
|
---|
| 476 | <<" Flux = "<<slim_nl<<" Jy"<<endl
|
---|
| 477 | <<" S/N = "<<SsN_nl<<endl
|
---|
| 478 | <<" Mass HI = "<<smass_nl<<" Msol"<<endl;
|
---|
[3115] | 479 |
|
---|
| 480 | return 0;
|
---|
| 481 | }
|
---|