[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "constcosmo.h"
|
---|
| 11 | #include "cosmocalc.h"
|
---|
| 12 | #include "geneutils.h"
|
---|
| 13 | #include "schechter.h"
|
---|
| 14 | #include "planckspectra.h"
|
---|
| 15 |
|
---|
[3336] | 16 | /* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
|
---|
[3288] | 17 | cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
|
---|
[3193] | 18 | --- */
|
---|
| 19 |
|
---|
[3115] | 20 | inline double rad2deg(double trad) {return trad/M_PI*180.;}
|
---|
| 21 | inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
|
---|
| 22 | inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
|
---|
| 23 | inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
|
---|
| 24 | inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
|
---|
| 25 | inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
|
---|
| 26 |
|
---|
| 27 | void usage(void);
|
---|
| 28 | void usage(void) {
|
---|
[3287] | 29 | cout<<"cmvdefsurv [-r] -x adtx,atxlarg[,unit_x] -y adty,atylarg[,unit_y] -z dred,redlarg[,unit_z] redshift"<<endl
|
---|
| 30 | <<"----------------"<<endl
|
---|
| 31 | <<" -x adtx,atxlarg : resolution et largeur dans le plan transverse selon X"<<endl
|
---|
| 32 | <<" -y adty,atylarg : idem selon Y, si <=0 meme que X"<<endl
|
---|
[3336] | 33 | <<" -z dred,redlarg : resolution et largeur sur la ligne de visee"<<endl
|
---|
[3287] | 34 | <<"-- Unites pour X-Y:"<<endl
|
---|
| 35 | <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
|
---|
| 36 | <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
|
---|
| 37 | <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
|
---|
| 38 | <<" \'M\' : en distance (pour X-Y-Z) : resolution et largeur Mpc"<<endl
|
---|
| 39 | <<"----------------"<<endl
|
---|
[3115] | 40 | <<" -O surf,tobs : surface effective (m^2) et temps d\'observation (s)"<<endl
|
---|
[3196] | 41 | <<" -N Tsys : temperature du system (K)"<<endl
|
---|
[3288] | 42 | <<" -L lobewidth,freqlob : taille du lobe d\'observation (FWHM) en arcmin (def= 1\')"<<endl
|
---|
| 43 | <<" pour la frequence freqlob en MHz"<<endl
|
---|
| 44 | <<" Si lobewidth<=0 : l'angle solide du lobe = celui du pixel"<<endl
|
---|
| 45 | <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie"<<endl
|
---|
[3336] | 46 | <<" Si freqlob absent : la frequence de reference 1.4 GHz"<<endl
|
---|
[3287] | 47 | <<" -2 : two polarisations measured"<<endl
|
---|
[3193] | 48 | <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
|
---|
[3115] | 49 | <<" -F : HI flux factor to be applied for our redshift"<<endl
|
---|
[3193] | 50 | <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
|
---|
[3287] | 51 | <<"----------------"<<endl
|
---|
| 52 | <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
|
---|
| 53 | <<" (indnu==0 no evolution with freq.)"<<endl
|
---|
| 54 | <<"----------------"<<endl
|
---|
[3193] | 55 | <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
|
---|
[3287] | 56 | <<"----------------"<<endl
|
---|
[3196] | 57 | <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
|
---|
[3115] | 58 | <<" redshift : redshift moyen du survey"<<endl
|
---|
| 59 | <<endl;
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | int main(int narg,char *arg[])
|
---|
| 63 | {
|
---|
| 64 | // --- Valeurs fixes
|
---|
| 65 | // WMAP
|
---|
| 66 | unsigned short flat = 0;
|
---|
[3193] | 67 | double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
|
---|
[3115] | 68 | // Schechter
|
---|
| 69 | double h75 = h100 / 0.75;
|
---|
| 70 | double nstar = 0.006*pow(h75,3.); //
|
---|
[3343] | 71 | double mstar = pow(10.,9.8); // MSol
|
---|
[3115] | 72 | double alpha = -1.37;
|
---|
| 73 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
| 74 |
|
---|
| 75 | // --- Arguments
|
---|
[3287] | 76 | double adtx=0., atxlarg=0., dx=0.,txlarg=0.;
|
---|
| 77 | int nx=0; char unit_x = 'A';
|
---|
| 78 | double adty=-1., atylarg=-1., dy=0.,tylarg=0.;
|
---|
| 79 | int ny=0; char unit_y = 'A';
|
---|
| 80 | double dred=0., redlarg=0., dz=0.,tzlarg=0.;
|
---|
| 81 | int nz=0; char unit_z = 'Z';
|
---|
| 82 | double redshift = 0.;
|
---|
[3193] | 83 | double tobs = 6000., surfeff = 400000.;
|
---|
[3288] | 84 | // taille du lobe d'observation en arcmin pour la frequence
|
---|
| 85 | double lobewidth0 = -1., lobefreq0 = Fr_HyperFin_Par*1.e3;
|
---|
[3193] | 86 | double Tsys=75.;
|
---|
[3115] | 87 | // a 408 MHz (Haslam) + evol index a -2.6
|
---|
| 88 | double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
|
---|
| 89 | double mhiref = -1.; // reference Mass en HI (def integ schechter)
|
---|
| 90 | double hifactor = 1.;
|
---|
[3193] | 91 | double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
|
---|
[3339] | 92 | bool ya2polar = false;
|
---|
[3336] | 93 | double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
|
---|
[3196] | 94 | double lflux_agn = -3.;
|
---|
[3115] | 95 |
|
---|
| 96 | // --- Decodage arguments
|
---|
| 97 | char c;
|
---|
[3287] | 98 | while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:")) != -1) {
|
---|
[3115] | 99 | switch (c) {
|
---|
| 100 | case 'x' :
|
---|
[3287] | 101 | sscanf(optarg,"%lf,%lf,%c",&adtx,&atxlarg,&unit_x);
|
---|
[3115] | 102 | break;
|
---|
| 103 | case 'y' :
|
---|
[3287] | 104 | sscanf(optarg,"%lf,%lf,%c",&adty,&atylarg,&unit_y);
|
---|
[3115] | 105 | break;
|
---|
| 106 | case 'z' :
|
---|
[3287] | 107 | sscanf(optarg,"%lf,%lf,%c",&dred,&redlarg,&unit_z);
|
---|
[3115] | 108 | break;
|
---|
| 109 | case 'O' :
|
---|
| 110 | sscanf(optarg,"%lf,%lf",&surfeff,&tobs);
|
---|
| 111 | break;
|
---|
[3193] | 112 | case 'L' :
|
---|
[3288] | 113 | sscanf(optarg,"%lf,%lf",&lobewidth0,&lobefreq0);
|
---|
[3193] | 114 | break;
|
---|
[3196] | 115 | case 'N' :
|
---|
[3193] | 116 | sscanf(optarg,"%lf",&Tsys);
|
---|
[3115] | 117 | break;
|
---|
| 118 | case 'S' :
|
---|
| 119 | sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
|
---|
| 120 | break;
|
---|
| 121 | case 'M' :
|
---|
| 122 | sscanf(optarg,"%lf",&mhiref);
|
---|
| 123 | break;
|
---|
| 124 | case 'F' :
|
---|
| 125 | sscanf(optarg,"%lf",&hifactor);
|
---|
| 126 | break;
|
---|
[3193] | 127 | case 'V' :
|
---|
| 128 | sscanf(optarg,"%lf",&vrot);
|
---|
[3115] | 129 | break;
|
---|
[3193] | 130 | case 'U' :
|
---|
[3248] | 131 | sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
|
---|
[3193] | 132 | break;
|
---|
| 133 | case '2' :
|
---|
[3339] | 134 | ya2polar = true;
|
---|
[3193] | 135 | facpolar = 1.0;
|
---|
| 136 | break;
|
---|
[3196] | 137 | case 'A' :
|
---|
| 138 | sscanf(optarg,"%lf",&lflux_agn);
|
---|
| 139 | break;
|
---|
[3115] | 140 | case 'h' :
|
---|
| 141 | default :
|
---|
| 142 | usage(); return -1;
|
---|
| 143 | }
|
---|
[3193] | 144 | }
|
---|
[3115] | 145 | if(optind>=narg) {usage(); return-1;}
|
---|
| 146 | sscanf(arg[optind],"%lf",&redshift);
|
---|
| 147 | if(redshift<=0.) {cout<<"Redshift "<<redshift<<" should be >0"<<endl; return -2;}
|
---|
| 148 |
|
---|
| 149 | // --- Initialisation de la Cosmologie
|
---|
[3287] | 150 | cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
|
---|
| 151 | cout<<"h100="<<h100<<" Om0="<<om0<<" Or0="<<or0<<" Or0="
|
---|
[3193] | 152 | <<or0<<" Ol0="<<ol0<<" w0="<<w0<<" flat="<<flat<<endl;
|
---|
[3287] | 153 | cout<<"--- Cosmology for z = "<<redshift<<endl;
|
---|
[3115] | 154 | CosmoCalc univ(flat,true,2.*redshift);
|
---|
| 155 | double perc=0.01,dzinc=redshift/100.,dzmax=dzinc*10.; unsigned short glorder=4;
|
---|
| 156 | univ.SetInteg(perc,dzinc,dzmax,glorder);
|
---|
| 157 | univ.SetDynParam(h100,om0,or0,ol0,w0);
|
---|
[3193] | 158 | univ.Print(0.);
|
---|
[3115] | 159 | univ.Print(redshift);
|
---|
| 160 |
|
---|
| 161 | double dang = univ.Dang(redshift);
|
---|
| 162 | double dtrcom = univ.Dtrcom(redshift);
|
---|
| 163 | double dlum = univ.Dlum(redshift);
|
---|
| 164 | double dloscom = univ.Dloscom(redshift);
|
---|
| 165 | double dlosdz = univ.Dhubble()/univ.E(redshift);
|
---|
| 166 | cout<<"dang="<<dang<<" dlum="<<dlum<<" dtrcom="<<dtrcom
|
---|
| 167 | <<" dloscom="<<dloscom<<" dlosdz="<<dlosdz<<" Mpc"<<endl;
|
---|
| 168 |
|
---|
| 169 | cout<<"\n1\" -> "<<dang*sec2rad(1.)<<" Mpc = "<<dtrcom*sec2rad(1.)<<" Mpc com"<<endl;
|
---|
| 170 | cout<<"1\' -> "<<dang*min2rad(1.)<<" Mpc = "<<dtrcom*min2rad(1.)<<" Mpc com"<<endl;
|
---|
| 171 | cout<<"1d -> "<<dang*deg2rad(1.)<<" Mpc = "<<dtrcom*deg2rad(1.)<<" Mpc com"<<endl;
|
---|
| 172 |
|
---|
| 173 | cout<<"dz=1 -> "<<dlosdz<<" Mpc com"<<endl;
|
---|
| 174 |
|
---|
| 175 | cout<<"1 Mpc los com -> dz = "<<1./dlosdz<<endl;
|
---|
| 176 | cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom)<<"\" = "
|
---|
| 177 | <<rad2min(1./dtrcom)<<" \' = "<<rad2deg(1./dtrcom)<<" d"<<endl;
|
---|
| 178 |
|
---|
| 179 | // --- Mise en forme dans les unites appropriees
|
---|
[3287] | 180 | cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
|
---|
| 181 | if(adty<=0. || atylarg<=0.) {adty=adtx; atylarg=atxlarg; unit_y=unit_x;}
|
---|
| 182 | cout<<"X values: resolution="<<adtx<<" largeur="<<atxlarg<<" unite="<<unit_x<<endl;
|
---|
| 183 | if(unit_x == 'A') {
|
---|
| 184 | nx = int(atxlarg*60./adtx+0.5);
|
---|
| 185 | adtx = min2rad(adtx); atxlarg = deg2rad(atxlarg);
|
---|
| 186 | dx = adtx*dtrcom; txlarg = dx*nx;
|
---|
| 187 | } else if(unit_x == 'M') {
|
---|
| 188 | nx = int(atxlarg/adtx+0.5);
|
---|
| 189 | dx = adtx; txlarg = atxlarg;
|
---|
[3115] | 190 | adtx = dx/dtrcom; atxlarg = adtx*nx;
|
---|
[3287] | 191 | } else {
|
---|
| 192 | cout<<"Unknown unit_x = "<<unit_x<<endl;
|
---|
| 193 | }
|
---|
| 194 | cout<<"Y values: resolution="<<adty<<" largeur="<<atylarg<<" unite="<<unit_y<<endl;
|
---|
| 195 | if(unit_y == 'A') {
|
---|
| 196 | ny = int(atylarg*60./adty+0.5);
|
---|
| 197 | adty = min2rad(adty); atylarg = deg2rad(atylarg);
|
---|
| 198 | dy = adty*dtrcom; tylarg = dy*ny;
|
---|
| 199 | } else if(unit_y == 'M') {
|
---|
| 200 | ny = int(atylarg/adty+0.5);
|
---|
| 201 | dy = adty; tylarg = atylarg;
|
---|
[3115] | 202 | adty = dy/dtrcom; atylarg = adty*ny;
|
---|
| 203 | } else {
|
---|
[3287] | 204 | cout<<"Unknown unit_y = "<<unit_y<<endl;
|
---|
| 205 | }
|
---|
| 206 | cout<<"Z values: resolution="<<dred<<" largeur="<<redlarg<<" unite="<<unit_z<<endl;
|
---|
| 207 | if(unit_z == 'Z') {
|
---|
[3115] | 208 | nz = int(redlarg/dred+0.5);
|
---|
| 209 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
[3287] | 210 | } else if(unit_z == 'M') {
|
---|
| 211 | nz = int(redlarg/dred+0.5);
|
---|
| 212 | dz = dred; tzlarg = redlarg;
|
---|
| 213 | dred = dz/dlosdz; redlarg = dred*nz;
|
---|
| 214 | } else if(unit_z == 'F') {
|
---|
| 215 | nz = int(redlarg/dred+0.5);
|
---|
| 216 | dred = dred/(Fr_HyperFin_Par*1.e3)*pow(1.+redshift,2.); redlarg = dred*nz;
|
---|
| 217 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
| 218 | } else {
|
---|
| 219 | cout<<"Unknown unit_z = "<<unit_z<<endl;
|
---|
[3115] | 220 | }
|
---|
[3287] | 221 |
|
---|
[3115] | 222 | double Npix = (double)nx*(double)ny*(double)nz;
|
---|
| 223 | double redlim[2] = {redshift-redlarg/2.,redshift+redlarg/2.};
|
---|
| 224 | if(redlim[0]<=0.)
|
---|
| 225 | {cout<<"Lower redshift limit "<<redlim[0]<<" should be >0"<<endl; return -3;}
|
---|
[3271] | 226 | double dtrlim[2] = {univ.Dtrcom(redlim[0]),univ.Dtrcom(redlim[1])};
|
---|
| 227 | double loslim[2] = {univ.Dloscom(redlim[0]), univ.Dloscom(redlim[1])};
|
---|
[3115] | 228 | double dlumlim[2] = {univ.Dlum(redlim[0]),univ.Dlum(redlim[1])};
|
---|
| 229 |
|
---|
| 230 | cout<<"---- Line of Sight: Redshift = "<<redshift<<endl
|
---|
| 231 | <<"dred = "<<dred<<" redlarg = "<<redlarg<<endl
|
---|
[3271] | 232 | <<" dz = "<<dz<<" Mpc redlarg = "<<tzlarg<<" Mpc com, nz = "<<nz<<" pix"<<endl;
|
---|
[3115] | 233 | cout<<"---- Transverse X:"<<endl
|
---|
| 234 | <<"adtx = "<<rad2min(adtx)<<"\', atxlarg = "<<rad2deg(atxlarg)<<" d"<<endl
|
---|
[3271] | 235 | <<" dx = "<<dx<<" Mpc, txlarg = "<<txlarg<<" Mpc com, nx = "<<nx<<" pix"<<endl;
|
---|
[3115] | 236 | cout<<"---- Transverse Y:"<<endl
|
---|
| 237 | <<"adty = "<<rad2min(adty)<<"\', atylarg = "<<rad2deg(atylarg)<<" d"<<endl
|
---|
[3271] | 238 | <<" dy = "<<dy<<" Mpc, tylarg = "<<tylarg<<" Mpc com, ny = "<<ny<<" pix"<<endl;
|
---|
[3115] | 239 | cout<<"---- Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
|
---|
| 240 |
|
---|
| 241 | // --- Cosmolographie Transverse
|
---|
[3287] | 242 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
|
---|
[3115] | 243 | cout<<"dang comoving = "<<dtrcom<<" Mpc (com) var_in_z ["
|
---|
| 244 | <<dtrlim[0]<<","<<dtrlim[1]<<"]"<<endl;
|
---|
| 245 |
|
---|
| 246 | cout<<"... dx = "<<dx<<" Mpc (com), with angle "<<adtx*dtrcom<<endl
|
---|
| 247 | <<" with angle var_in_z ["<<adtx*dtrlim[0]<<","<<adtx*dtrlim[1]<<"]"<<endl;
|
---|
| 248 | cout<<"... largx = "<<txlarg<<" Mpc (com), with angle "<<atxlarg*dtrcom<<endl
|
---|
| 249 | <<" with angle var_in_z ["<<atxlarg*dtrlim[0]<<","<<atxlarg*dtrlim[1]<<"]"<<endl;
|
---|
| 250 |
|
---|
| 251 | cout<<"... dy = "<<dy<<" Mpc (com), with angle "<<adty*dtrcom<<endl
|
---|
| 252 | <<" with angle var_in_z ["<<adty*dtrlim[0]<<","<<adty*dtrlim[1]<<"]"<<endl;
|
---|
| 253 | cout<<"... largy = "<<tylarg<<" Mpc (com), with angle "<<atylarg*dtrcom<<endl
|
---|
| 254 | <<" with angle var_in_z ["<<atylarg*dtrlim[0]<<","<<atylarg*dtrlim[1]<<"]"<<endl;
|
---|
| 255 |
|
---|
| 256 | // --- Cosmolographie Line of sight
|
---|
[3287] | 257 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
|
---|
[3115] | 258 | cout<<"los comoving distance = "<<dloscom<<" Mpc (com) in ["
|
---|
| 259 | <<loslim[0]<<","<<loslim[1]<<"]"<<endl
|
---|
| 260 | <<" diff = "
|
---|
| 261 | <<loslim[1]-loslim[0]<<" Mpc"<<endl;
|
---|
| 262 |
|
---|
| 263 | cout<<"...dz = "<<dz<<" Mpc (com), with redshift approx "<<dred*dlosdz<<endl;
|
---|
| 264 | cout<<"...tzlarg = "<<tzlarg<<" Mpc (com), with redshift approx "<<redlarg*dlosdz<<endl;
|
---|
| 265 |
|
---|
| 266 | // --- Solid Angle & Volume
|
---|
[3287] | 267 | cout<<"\n>>>>\n>>>> Angles solides et Volumes\n>>>>"<<endl;
|
---|
| 268 | cout<<"--- Solid angle"<<endl;
|
---|
[3115] | 269 | double angsol = AngSol(adtx/2.,adty/2.,M_PI/2.);
|
---|
| 270 | cout<<"Elementary solid angle = "<<angsol<<" sr = "<<angsol/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
| 271 | double angsoltot = AngSol(atxlarg/2.,atylarg/2.,M_PI/2.);
|
---|
| 272 | cout<<"Total solid angle = "<<angsoltot<<" sr = "<<angsoltot/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
| 273 |
|
---|
| 274 | cout<<"\n--- Volume"<<endl;
|
---|
| 275 | double dvol = dx*dy*dz;
|
---|
| 276 | cout<<"Pixel volume comoving = "<<dvol<<" Mpc^3"<<endl;
|
---|
| 277 | double vol = univ.Vol4Pi(redlim[0],redlim[1])/(4.*M_PI)*angsoltot;
|
---|
| 278 | cout<<"Volume comoving = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
|
---|
| 279 | <<"Pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
|
---|
| 280 |
|
---|
| 281 | // --- Fourier space: k = omega = 2*Pi*Nu
|
---|
[3287] | 282 | cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
|
---|
[3115] | 283 | cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
|
---|
| 284 | double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
|
---|
| 285 | double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
|
---|
| 286 | double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
|
---|
| 287 | cout<<"Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
|
---|
| 288 | <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl;
|
---|
| 289 | cout<<"Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
|
---|
| 290 | <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
|
---|
| 291 | cout<<"Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl;
|
---|
| 292 | cout<<"Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
|
---|
| 293 |
|
---|
| 294 | // --- Masse de HI
|
---|
[3287] | 295 | cout<<"\n>>>>\n>>>> Mass HI\n>>>>"<<endl;
|
---|
[3115] | 296 | Schechter sch(nstar,mstar,alpha);
|
---|
| 297 | sch.SetOutValue(1);
|
---|
| 298 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
| 299 | cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
|
---|
| 300 | int npt = 10000;
|
---|
[3344] | 301 | double lnx1=log10(1.e+6), lnx2=log10(1.e+13), dlnx=(lnx2-lnx1)/npt;
|
---|
[3115] | 302 | double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
| 303 | cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
|
---|
| 304 |
|
---|
| 305 | double masshipix = masshimpc3*dvol;
|
---|
| 306 | double masshitot = masshimpc3*vol;
|
---|
| 307 | cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
|
---|
| 308 | <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
|
---|
| 309 | if(mhiref<=0.) mhiref = masshipix;
|
---|
| 310 |
|
---|
[3343] | 311 | sch.SetOutValue(0);
|
---|
| 312 | cout<<"\nsch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
|
---|
| 313 | cout<<"Galaxy number density:"<<endl;
|
---|
[3344] | 314 | for(double x=lnx1; x<lnx2-0.5; x+=1.) {
|
---|
[3343] | 315 | double n = IntegrateFuncLog(sch,x,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
| 316 | cout<<" m>"<<x<<" Msol: "<<n<<" /Mpc^3, "<<n*dvol<<" /pixel, "
|
---|
| 317 | <<n*vol<<" in survey"<<endl;
|
---|
| 318 | }
|
---|
| 319 | sch.SetOutValue(1);
|
---|
| 320 |
|
---|
| 321 |
|
---|
[3115] | 322 | // --- Survey values
|
---|
[3287] | 323 | cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
|
---|
[3115] | 324 | double unplusz = 1.+redshift;
|
---|
| 325 | double nuhiz = Fr_HyperFin_Par / unplusz; // GHz
|
---|
| 326 | // dnu = NuHi/(1.+z0-dz/2) - NuHi/(1.+z0+dz/2)
|
---|
| 327 | // = NuHi*dz/(1.+z0)^2 * 1/[1-(dz/(2*(1+z0)))^2]
|
---|
[3271] | 328 | // ~= NuHi*dz/(1.+z0)^2
|
---|
[3115] | 329 | double dnuhiz = Fr_HyperFin_Par *dred/(unplusz*unplusz)
|
---|
[3252] | 330 | / (1.- pow(dred/.2/unplusz,2.));
|
---|
[3287] | 331 | cout<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl
|
---|
[3115] | 332 | <<" nu="<<nuhiz<<" GHz, dnu="<<dnuhiz*1.e3<<" Mhz"<<endl;
|
---|
| 333 | cout<<"dang lumi = "<<dlum<<" in ["<<dlumlim[0]<<","<<dlumlim[1]<<"] Mpc"<<endl;
|
---|
| 334 |
|
---|
[3336] | 335 | double nlobes = 1.;
|
---|
| 336 | if(lobewidth0>0.) {
|
---|
| 337 | double lobewidth = lobewidth0; // ArcMin
|
---|
| 338 | if(lobefreq0<=0.) lobefreq0 = nuhiz*1.e3; // MHz
|
---|
| 339 | // La taille angulaire du lobe change avec la frequence donc avec le redshift
|
---|
| 340 | lobewidth *= lobefreq0/(nuhiz*1.e3);
|
---|
| 341 | cout<<"\n--- Lobe: width="<<lobewidth0<<" pour "<<lobefreq0<<" MHz"<<endl
|
---|
| 342 | <<" changed to "<<lobewidth<<" pour "<<nuhiz*1.e3<<" MHz"<<endl;
|
---|
| 343 | double slobe = lobewidth/2.35482; // sigma du lobe en arcmin
|
---|
| 344 | double lobecyl = sqrt(8.)*slobe; // diametre du lobe cylindrique equiv en arcmin
|
---|
| 345 | double lobearea = M_PI*lobecyl*lobecyl/4.; // en arcmin^2 (hypothese lobe gaussien)
|
---|
| 346 | nlobes = rad2min(adtx)*rad2min(adty)/lobearea;
|
---|
| 347 | cout<<"Beam FWHM = "<<lobewidth<<"\' -> sigma = "<<slobe<<"\' -> "
|
---|
| 348 | <<" Dcyl = "<<lobecyl<<"\' -> area = "<<lobearea<<" arcmin^2"<<endl;
|
---|
| 349 | cout<<"Number of beams in one transversal pixel = "<<nlobes<<endl;
|
---|
| 350 | }
|
---|
[3193] | 351 |
|
---|
[3115] | 352 | // --- Power emitted by HI
|
---|
| 353 | cout<<"\n--- Power from HI for M = "<<mhiref<<" Msol at "<<nuhiz<<" GHz"<<endl;
|
---|
| 354 | cout<<"flux factor = "<<hifactor<<" at redshift = "<<redshift<<endl;
|
---|
| 355 |
|
---|
[3196] | 356 | double fhi = hifactor*Msol2FluxHI(mhiref,dlum);
|
---|
[3115] | 357 | cout<<"FluxHI("<<dlum<<" Mpc) all polar:"<<endl
|
---|
| 358 | <<" Flux= "<<fhi<<" W/m^2 = "<<fhi/Jansky2Watt_cst<<" Jy.Hz"<<endl
|
---|
[3196] | 359 | <<" in ["<<hifactor*Msol2FluxHI(mhiref,dlumlim[0])
|
---|
| 360 | <<","<<hifactor*Msol2FluxHI(mhiref,dlumlim[1])<<"] W/m^2"<<endl;
|
---|
[3193] | 361 | double sfhi = fhi / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
[3261] | 362 | cout<<"If spread over pixel depth ("<<dnuhiz<<" GHz), flux density = "<<sfhi<<" Jy"<<endl;
|
---|
[3115] | 363 |
|
---|
| 364 | // --- Signal analysis
|
---|
| 365 | cout<<"\n--- Signal analysis"<<endl;
|
---|
[3193] | 366 | cout<<"Facteur polar = "<<facpolar<<endl;
|
---|
| 367 |
|
---|
[3115] | 368 | PlanckSpectra planck(T_CMB_Par);
|
---|
[3347] | 369 | planck.SetSpectraApprox(PlanckSpectra::RAYLEIGH); // Rayleigh spectra
|
---|
| 370 | planck.SetSpectraVar(PlanckSpectra::NU); // frequency
|
---|
| 371 | planck.SetSpectraPower(PlanckSpectra::POWER); // output en W/....
|
---|
| 372 | planck.SetSpectraUnit(PlanckSpectra::ANGSFLUX); // radiance W/m^2/Sr/Hz
|
---|
[3115] | 373 |
|
---|
[3193] | 374 | // Signal
|
---|
[3339] | 375 | double psig_2polar = fhi * surfeff;
|
---|
| 376 | double tsig_2polar = psig_2polar / k_Boltzman_Cst / (dnuhiz*1e9);
|
---|
| 377 | double ssig_2polar = psig_2polar / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
| 378 | double psig = facpolar * psig_2polar;
|
---|
| 379 | double tsig = facpolar * tsig_2polar;
|
---|
| 380 | double ssig = facpolar * ssig_2polar;
|
---|
[3343] | 381 | cout<<"\nSignal("<<mhiref<<" Msol):"<<endl
|
---|
| 382 | <<" P="<<psig<<" W"<<endl
|
---|
| 383 | <<" flux density = "<<ssig*1.e6<<" mu_Jy (for Dnu="<<dnuhiz<<" GHz)"<<endl
|
---|
| 384 | <<" Antenna temperature: tsig="<<tsig<<" K"<<endl;
|
---|
[3115] | 385 |
|
---|
[3193] | 386 | // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
|
---|
| 387 | double doplarge = vrot / SpeedOfLight_Cst * nuhiz;
|
---|
[3252] | 388 | double dzvrot = vrot / SpeedOfLight_Cst * unplusz;
|
---|
| 389 | cout<<" Doppler width="<<doplarge*1.e3<<" MHz for rotation width of "<<vrot<<" km/s"<<endl
|
---|
| 390 | <<" dx= "<<dzvrot<<" a z="<<redshift<<endl;
|
---|
| 391 | if(doplarge>dnuhiz)
|
---|
[3193] | 392 | cout<<"Warning: doppler width "<<doplarge<<" GHz > "<<dnuhiz<<" GHz redshift bin width"<<endl;
|
---|
[3115] | 393 |
|
---|
[3287] | 394 | // Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
|
---|
[3115] | 395 | double tsynch = Tsynch408;
|
---|
| 396 | if(fabs(indnu)>1.e-50) tsynch *= pow(nuhiz/nuhaslam,indnu);
|
---|
| 397 | planck.SetTemperature(tsynch);
|
---|
[3339] | 398 | double psynch_2polar = planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
| 399 | double ssynch_2polar = psynch_2polar / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
| 400 | double psynch = facpolar * psynch_2polar;
|
---|
| 401 | double ssynch = facpolar * ssynch_2polar;
|
---|
[3336] | 402 | cout<<"\nSynchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "
|
---|
[3115] | 403 | <<tsynch<<" K ("<<nuhiz<<" GHz)"<<endl
|
---|
[3343] | 404 | <<" P="<<psynch<<" W for pixel"<<endl
|
---|
| 405 | <<" flux density = "<<ssynch<<" Jy for pixel solid angle"<<endl;
|
---|
[3115] | 406 |
|
---|
[3193] | 407 | // CMB
|
---|
[3115] | 408 | double tcmb = T_CMB_Par;
|
---|
| 409 | planck.SetTemperature(tcmb);
|
---|
[3339] | 410 | double pcmb_2polar = planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
| 411 | double scmb_2polar = pcmb_2polar / surfeff / (dnuhiz*1.e+9) / Jansky2Watt_cst;
|
---|
| 412 | double pcmb = facpolar * pcmb_2polar;
|
---|
| 413 | double scmb = facpolar * scmb_2polar;
|
---|
[3343] | 414 | cout<<"\nCMB: T="<<tcmb<<" K"<<endl
|
---|
| 415 | <<" P="<<pcmb<<" W for pixel"<<endl
|
---|
| 416 | <<" flux density = "<<scmb<<" Jy for pixel solid angle"<<endl;
|
---|
[3115] | 417 |
|
---|
[3196] | 418 | // AGN
|
---|
| 419 | double flux_agn = pow(10.,lflux_agn);
|
---|
[3199] | 420 | double mass_agn = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum);
|
---|
[3336] | 421 | cout<<"\nAGN: log10(S_agn)="<<lflux_agn<<" -> S_agn="
|
---|
[3199] | 422 | <<flux_agn<<" Jy -> "<<mass_agn<<" equiv. Msol/Hz"<<endl;
|
---|
[3196] | 423 | double flux_agn_pix = flux_agn*(dnuhiz*1e9);
|
---|
| 424 | double mass_agn_pix = FluxHI2Msol(flux_agn_pix*Jansky2Watt_cst,dlum);
|
---|
| 425 | double lmass_agn_pix = log10(mass_agn_pix);
|
---|
| 426 | cout<<"...pixel: f="<<flux_agn_pix<<" 10^-26 W/m^2"
|
---|
| 427 | <<" -> "<<mass_agn_pix<<" Msol -> log10 = "<<lmass_agn_pix<<endl;
|
---|
| 428 |
|
---|
[3339] | 429 | // =====================================================================
|
---|
[3336] | 430 | // ---
|
---|
[3115] | 431 | // --- Noise analysis
|
---|
[3336] | 432 | // ---
|
---|
[3339] | 433 | // --- Puissance du bruit pour un telescope de surface Ae et de BW dNu
|
---|
| 434 | // Par definition la puissance du bruit est:
|
---|
| 435 | // Pb = k * Tsys * dNu (W)
|
---|
| 436 | // Pour une source (non-polarisee) de densite de flux (totale 2 polars)
|
---|
| 437 | // St (exprimee en Jy=W/m^2/Hz)
|
---|
| 438 | // Pt = St * Ae * dNu (puissance totale emise en W pour 2 polars)
|
---|
| 439 | // P1 = 1/2 * St * Ae * dNu (puissance emise en W pour une polar)
|
---|
| 440 | // la SEFD (system equivalent flux density en Jy) est definie comme
|
---|
| 441 | // la densite de flux total (2 polars) "St" d'une source (non-polarisee)
|
---|
| 442 | // dont la puissance P1 mesuree pour une seule polarisation
|
---|
| 443 | // serait egale a la puissance du bruit. De P1 = Pb on deduit:
|
---|
| 444 | // SEFD = 2 * k * Tsys / Ae (en Jy)
|
---|
| 445 | // la puissance du bruit est: Pb = 1/2 * SEFD * Ae * dNu (en W)
|
---|
| 446 | // la sensibilite Slim tient compte du temps d'integration et de la BW:
|
---|
| 447 | // le nombre de mesures independantes est "2*dNu*Tobs" donc
|
---|
| 448 | // Slim = SEFD / sqrt(2*dNu*Tobs) = 2*k*Tsys/[Ae*sqrt(2*dNu*Tobs) (en Jy)
|
---|
| 449 | // --- Puissance du bruit pour un interferometre
|
---|
[3336] | 450 | // Ae = surface d'un telescope elementaire
|
---|
| 451 | // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
|
---|
[3339] | 452 | // La sensibilite Slim en Jy est:
|
---|
[3336] | 453 | // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
|
---|
| 454 | // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
|
---|
| 455 | // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
|
---|
[3339] | 456 | // - Interferometre a deux antennes:
|
---|
[3336] | 457 | // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
|
---|
[3339] | 458 | // - Interferometre a N antennes (N grand):
|
---|
[3336] | 459 | // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
|
---|
[3341] | 460 | // C'est aussi la formule pour un telescope unique de surface Atot
|
---|
[3339] | 461 | // --- On ne mesure qu'une seule polarisation
|
---|
| 462 | // Ces formules sont valables si on mesure 1 polarisation:
|
---|
| 463 | // Slim est la densite de flux total "St" (2 polars) d'une source (non-polarisee)
|
---|
| 464 | // qui donne la meme puissance que le bruit dans un detecteur qui ne
|
---|
| 465 | // mesure qu'une seule polarisation:
|
---|
| 466 | // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
|
---|
| 467 | // S/N = St / Slim
|
---|
| 468 | // La puissance de bruit est, par definition:
|
---|
| 469 | // Pb = 1/2 *Slim*Atot*dNu
|
---|
| 470 | // = k*Tsys*sqrt(2*dNu/Tobs) pour N=2
|
---|
| 471 | // = k*Tsys*sqrt(dNu/Tobs) pour N>>grand
|
---|
| 472 | // La densite de flux d'une source a S/N=1 est:
|
---|
| 473 | // St = Slim
|
---|
| 474 | // La puissance d'une source a S/N=1 mesuree par un detecteur
|
---|
| 475 | // qui ne mesure qu'une polar est:
|
---|
| 476 | // P1_lim = 1/2 *Slim*Atot*dNu
|
---|
| 477 | // --- On mesure les 2 polarisations avec deux voies d'electronique distinctes
|
---|
| 478 | // la puissance du signal mesure est multipliee par 2
|
---|
| 479 | // la puissance du bruit est multipliee par sqrt(2)
|
---|
| 480 | // on a donc un gain d'un facteur sqrt(2) sur le rapport S/N
|
---|
| 481 | // (cela revient d'ailleur a doubler le temps de pose: Tobs -> 2*Tobs)
|
---|
| 482 | // En notant arbitrairement: Slim' = Slim / sqrt(2)
|
---|
| 483 | // ou Slim est defini par les formules ci-dessus
|
---|
| 484 | // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
|
---|
| 485 | // (S/N)_2 = (S/N)_1 * sqrt(2) = (St / Slim) * sqrt(2) = St / Slim'
|
---|
| 486 | // La densite de flux d'une source a S/N=1 est:
|
---|
| 487 | // St = Slim' = Slim / sqrt(2)
|
---|
| 488 | // La puissance d'une source a S/N=1 cumulee par les 2 detecteurs est:
|
---|
| 489 | // P_lim = St*Atot*dNu = Slim'*Atot*dNu = 1/sqrt(2) *Slim*Atot*dNu
|
---|
| 490 | // = P1_lim * sqrt(2)
|
---|
| 491 | // La puissance de bruit cumulee par les 2 detecteurs est, par definition:
|
---|
| 492 | // Pb = P_lim = Slim'*Atot*dNu = P1_lim * sqrt(2)
|
---|
| 493 | // = 2*k*Tsys*sqrt(dNu/Tobs) pour N=2
|
---|
| 494 | // = k*Tsys*sqrt(2*dNu/Tobs) pour N>>grand
|
---|
| 495 | // =====================================================================
|
---|
| 496 |
|
---|
[3336] | 497 | cout<<"\n---\n--- Noise analysis \n---"<<endl;
|
---|
[3193] | 498 | double psys = k_Boltzman_Cst * Tsys * (dnuhiz*1.e+9);
|
---|
| 499 | cout<<"Noise: T="<<Tsys<<" K, P="<<psys<<" W (for Dnu="<<dnuhiz<<" GHz)"<<endl;
|
---|
[3115] | 500 |
|
---|
[3336] | 501 | cout<<"...Computation assume that noise dominate the signal."<<endl;
|
---|
[3339] | 502 | if(ya2polar)
|
---|
[3336] | 503 | cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
|
---|
[3115] | 504 |
|
---|
[3339] | 505 | double slim,slim_nl,SsN,SsN_nl,smass,smass_nl;
|
---|
[3115] | 506 |
|
---|
[3336] | 507 | //---
|
---|
[3339] | 508 | for(unsigned short it=0;it<2;it++) {
|
---|
[3115] | 509 |
|
---|
[3339] | 510 | double fac = 1.;
|
---|
| 511 | if(it==0) { // Interferometre a 2 telescopes
|
---|
| 512 | fac = 0.5;
|
---|
| 513 | cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
|
---|
| 514 | <<" (sensitivity is given for real or complex correlator output)"<<endl;
|
---|
| 515 | } else if (it==1) { // Interferometre a N>> telescopes
|
---|
| 516 | fac = 1.;
|
---|
| 517 | cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
|
---|
[3341] | 518 | <<" (weak source limit sensitivity in a synthetised image)"<<endl
|
---|
| 519 | <<" Also valid for a single dish telescope."<<endl;
|
---|
[3339] | 520 | } else continue;
|
---|
| 521 |
|
---|
| 522 | slim = 2. * k_Boltzman_Cst * Tsys / surfeff
|
---|
| 523 | / sqrt(fac*(dnuhiz*1.e+9)*tobs) /Jansky2Watt_cst;
|
---|
| 524 | if(ya2polar) slim /= sqrt(2.);
|
---|
[3341] | 525 | SsN = ssig_2polar / slim;
|
---|
[3339] | 526 | smass = mhiref / ssig_2polar * slim;
|
---|
| 527 | cout<<"for 1 lobe:"<<endl
|
---|
| 528 | <<" Slim = "<<slim<<" Jy"<<endl
|
---|
| 529 | <<" S/N = "<<SsN<<endl
|
---|
| 530 | <<" Mass HI = "<<smass<<" Msol"<<endl;
|
---|
[3341] | 531 |
|
---|
[3339] | 532 | slim_nl = slim * sqrt(nlobes);
|
---|
[3341] | 533 | SsN_nl = ssig_2polar / slim_nl;
|
---|
| 534 | smass_nl = mhiref / ssig_2polar * slim_nl;
|
---|
[3339] | 535 | cout<<"for "<<nlobes<<" lobes:"<<endl
|
---|
| 536 | <<" Flux = "<<slim_nl<<" Jy"<<endl
|
---|
| 537 | <<" S/N = "<<SsN_nl<<endl
|
---|
| 538 | <<" Mass HI = "<<smass_nl<<" Msol"<<endl;
|
---|
| 539 |
|
---|
| 540 | }
|
---|
| 541 |
|
---|
[3115] | 542 | return 0;
|
---|
| 543 | }
|
---|