[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
[3350] | 10 | #include <vector>
|
---|
| 11 |
|
---|
[3115] | 12 | #include "constcosmo.h"
|
---|
| 13 | #include "cosmocalc.h"
|
---|
| 14 | #include "geneutils.h"
|
---|
| 15 | #include "schechter.h"
|
---|
[3350] | 16 | #include "pkspectrum.h"
|
---|
[3115] | 17 | #include "planckspectra.h"
|
---|
| 18 |
|
---|
[3336] | 19 | /* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
|
---|
[3288] | 20 | cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
|
---|
[3193] | 21 | --- */
|
---|
| 22 |
|
---|
[3365] | 23 | //-----------------------------------------------------------------------------------------------------------
|
---|
[3115] | 24 | inline double rad2deg(double trad) {return trad/M_PI*180.;}
|
---|
| 25 | inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
|
---|
| 26 | inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
|
---|
| 27 | inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
|
---|
| 28 | inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
|
---|
| 29 | inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
|
---|
| 30 |
|
---|
[3367] | 31 | inline double sr2deg2(double asr) {return asr*pow(rad2deg(1.),2.);}
|
---|
| 32 | inline double sr2min2(double asr) {return asr*pow(rad2min(1.),2.);}
|
---|
| 33 | inline double deg22sr(double adeg) {return adeg*pow(deg2rad(1.),2.);}
|
---|
| 34 | inline double min22sr(double amin) {return amin*pow(min2rad(1.),2.);}
|
---|
| 35 |
|
---|
[3365] | 36 | double LargeurDoppler(double v /* km/s */, double nu);
|
---|
| 37 | double DzFrV(double v /* km/s */, double zred);
|
---|
| 38 | double DNuFrDz(double dzred,double nu_at_0,double zred);
|
---|
| 39 | double DzFrDNu(double dnu_at_0,double nu_at_0,double zred);
|
---|
| 40 | double DzFrDNuApprox(double dnu_at_0,double nu_at_0,double zred);
|
---|
| 41 | double ZFrLos(double loscom /* Mpc com */,CosmoCalc& univ);
|
---|
| 42 | double AngsolEqTelescope(double nu /* GHz */,double telsurf /* m^2 */);
|
---|
[3115] | 43 | void usage(void);
|
---|
[3365] | 44 |
|
---|
[3115] | 45 | void usage(void) {
|
---|
[3365] | 46 | cout<<"cmvdefsurv [options] -x dx,txlarg[,unit_x] -y dy,tylarg[,unit_y] -z dz,tzlarg[,unit_z] redshift"<<endl
|
---|
[3287] | 47 | <<"----------------"<<endl
|
---|
[3365] | 48 | <<" -x dx,txlarg[,unit_x] : resolution et largeur dans le plan transverse selon X"<<endl
|
---|
| 49 | <<" -y dy,tylarg[,unit_y] : idem selon Y, si <=0 meme que X"<<endl
|
---|
| 50 | <<" -z dz,tzlarg[,unit_z] : resolution et largeur sur la ligne de visee"<<endl
|
---|
[3287] | 51 | <<"-- Unites pour X-Y:"<<endl
|
---|
[3365] | 52 | <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
|
---|
| 53 | <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
|
---|
| 54 | <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
|
---|
| 55 | <<" \'M\' : en longeur comobile (pour X-Y-Z) : resolution et largeur Mpc"<<endl
|
---|
[3287] | 56 | <<"----------------"<<endl
|
---|
[3351] | 57 | <<" -K k,dk,pk : k(Mpc^-1) dk(Mpc^-1) pk(a z=0 en Mpc^-3) pour estimer la variance cosmique"<<endl
|
---|
[3350] | 58 | <<"----------------"<<endl
|
---|
[3352] | 59 | <<" -O surf,tobs,eta : surface effective (m^2), temps d\'observation (s), efficacite d\'ouverture"<<endl
|
---|
[3196] | 60 | <<" -N Tsys : temperature du system (K)"<<endl
|
---|
[3367] | 61 | <<" -L lobearea,freqlob : angle solide du lobe d\'observation en arcmin^2 (def= celle du pixel)"<<endl
|
---|
| 62 | <<" pour la frequence freqlob en MHz"<<endl
|
---|
| 63 | <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie (def)"<<endl
|
---|
[3287] | 64 | <<" -2 : two polarisations measured"<<endl
|
---|
[3193] | 65 | <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
|
---|
[3115] | 66 | <<" -F : HI flux factor to be applied for our redshift"<<endl
|
---|
[3193] | 67 | <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
|
---|
[3287] | 68 | <<"----------------"<<endl
|
---|
| 69 | <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
|
---|
| 70 | <<" (indnu==0 no evolution with freq.)"<<endl
|
---|
| 71 | <<"----------------"<<endl
|
---|
[3193] | 72 | <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
|
---|
[3287] | 73 | <<"----------------"<<endl
|
---|
[3196] | 74 | <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
|
---|
[3115] | 75 | <<" redshift : redshift moyen du survey"<<endl
|
---|
| 76 | <<endl;
|
---|
| 77 | }
|
---|
| 78 |
|
---|
[3365] | 79 | //-------------------------------------------------------------------------------------------
|
---|
[3115] | 80 | int main(int narg,char *arg[])
|
---|
| 81 | {
|
---|
[3365] | 82 | // ---
|
---|
| 83 | // --- Valeurs fixes ou par defaut
|
---|
| 84 | // ---
|
---|
| 85 |
|
---|
| 86 | //-- WMAP
|
---|
[3115] | 87 | unsigned short flat = 0;
|
---|
[3193] | 88 | double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
|
---|
[3365] | 89 |
|
---|
| 90 | //-- Schechter HIMASS
|
---|
[3115] | 91 | double h75 = h100 / 0.75;
|
---|
| 92 | double nstar = 0.006*pow(h75,3.); //
|
---|
[3343] | 93 | double mstar = pow(10.,9.8); // MSol
|
---|
[3115] | 94 | double alpha = -1.37;
|
---|
| 95 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
| 96 |
|
---|
[3365] | 97 | double hifactor = 1.;
|
---|
| 98 | double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
|
---|
| 99 |
|
---|
| 100 | //-- CMB , Synchrotron et AGN
|
---|
| 101 | double tcmb = T_CMB_Par;
|
---|
[3115] | 102 | // a 408 MHz (Haslam) + evol index a -2.6
|
---|
| 103 | double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
|
---|
[3365] | 104 | double lflux_agn = -3.;
|
---|
| 105 |
|
---|
| 106 | //-- Appareillage
|
---|
[3339] | 107 | bool ya2polar = false;
|
---|
[3336] | 108 | double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
|
---|
[3365] | 109 | double Tsys=75.;
|
---|
| 110 | double tobs = 6000., surftot = 400000., eta_eff = 1.;
|
---|
| 111 | // taille du lobe d'observation en arcmin pour la frequence
|
---|
[3367] | 112 | double lobearea0 = -1., lobefreq0 = -1.;
|
---|
[3115] | 113 |
|
---|
[3365] | 114 | //-- Variance cosmique (default = standard SDSSII)
|
---|
| 115 | double kcosm = 0.05, dkcosm = -1., pkcosm = 40000.;
|
---|
| 116 |
|
---|
| 117 | // --- Pour taille du survey
|
---|
[3462] | 118 | double dx=1., dy=-1., dz=0.0007, txlarg=100., tylarg=-1., tzlarg=0.1;
|
---|
[3365] | 119 | int nx=0, ny=0, nz=0;
|
---|
| 120 | char unit_x = 'A', unit_y = 'A', unit_z = 'Z';
|
---|
| 121 | double redshift0 = 0.;
|
---|
| 122 | double mhiref = -1.; // reference Mass en HI (def integ schechter)
|
---|
| 123 |
|
---|
| 124 | // ---
|
---|
[3115] | 125 | // --- Decodage arguments
|
---|
[3365] | 126 | // ---
|
---|
[3115] | 127 | char c;
|
---|
[3350] | 128 | while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:K:")) != -1) {
|
---|
[3115] | 129 | switch (c) {
|
---|
| 130 | case 'x' :
|
---|
[3365] | 131 | sscanf(optarg,"%lf,%lf,%c",&dx,&txlarg,&unit_x);
|
---|
[3115] | 132 | break;
|
---|
| 133 | case 'y' :
|
---|
[3365] | 134 | sscanf(optarg,"%lf,%lf,%c",&dy,&tylarg,&unit_y);
|
---|
[3115] | 135 | break;
|
---|
| 136 | case 'z' :
|
---|
[3365] | 137 | sscanf(optarg,"%lf,%lf,%c",&dz,&tzlarg,&unit_z);
|
---|
[3115] | 138 | break;
|
---|
| 139 | case 'O' :
|
---|
[3352] | 140 | sscanf(optarg,"%lf,%lf,%lf",&surftot,&tobs,&eta_eff);
|
---|
[3115] | 141 | break;
|
---|
[3193] | 142 | case 'L' :
|
---|
[3367] | 143 | sscanf(optarg,"%lf,%lf",&lobearea0,&lobefreq0);
|
---|
[3193] | 144 | break;
|
---|
[3196] | 145 | case 'N' :
|
---|
[3193] | 146 | sscanf(optarg,"%lf",&Tsys);
|
---|
[3115] | 147 | break;
|
---|
| 148 | case 'S' :
|
---|
| 149 | sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
|
---|
| 150 | break;
|
---|
| 151 | case 'M' :
|
---|
| 152 | sscanf(optarg,"%lf",&mhiref);
|
---|
| 153 | break;
|
---|
| 154 | case 'F' :
|
---|
| 155 | sscanf(optarg,"%lf",&hifactor);
|
---|
| 156 | break;
|
---|
[3193] | 157 | case 'V' :
|
---|
| 158 | sscanf(optarg,"%lf",&vrot);
|
---|
[3115] | 159 | break;
|
---|
[3193] | 160 | case 'U' :
|
---|
[3248] | 161 | sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
|
---|
[3193] | 162 | break;
|
---|
| 163 | case '2' :
|
---|
[3339] | 164 | ya2polar = true;
|
---|
[3193] | 165 | facpolar = 1.0;
|
---|
| 166 | break;
|
---|
[3196] | 167 | case 'A' :
|
---|
| 168 | sscanf(optarg,"%lf",&lflux_agn);
|
---|
| 169 | break;
|
---|
[3350] | 170 | case 'K' :
|
---|
[3351] | 171 | sscanf(optarg,"%lf,%lf,%lf",&kcosm,&dkcosm,&pkcosm);
|
---|
[3350] | 172 | break;
|
---|
[3115] | 173 | case 'h' :
|
---|
| 174 | default :
|
---|
| 175 | usage(); return -1;
|
---|
| 176 | }
|
---|
[3193] | 177 | }
|
---|
[3365] | 178 | if(optind>=narg) {usage(); return -1;}
|
---|
| 179 | sscanf(arg[optind],"%lf",&redshift0);
|
---|
| 180 | if(redshift0<=0.) {cout<<"Redshift "<<redshift0<<" should be >0"<<endl; return -2;}
|
---|
[3115] | 181 |
|
---|
[3365] | 182 | // ---
|
---|
[3115] | 183 | // --- Initialisation de la Cosmologie
|
---|
[3365] | 184 | // ---
|
---|
| 185 | CosmoCalc univ(flat,true,2.*redshift0);
|
---|
| 186 | double perc=0.01,dzinc=redshift0/100.,dzmax=dzinc*10.; unsigned short glorder=4;
|
---|
[3115] | 187 | univ.SetInteg(perc,dzinc,dzmax,glorder);
|
---|
| 188 | univ.SetDynParam(h100,om0,or0,ol0,w0);
|
---|
[3365] | 189 |
|
---|
[3350] | 190 | GrowthFactor growth(om0,ol0);
|
---|
[3115] | 191 |
|
---|
[3365] | 192 | // ---
|
---|
[3115] | 193 | // --- Mise en forme dans les unites appropriees
|
---|
[3365] | 194 | // ---
|
---|
| 195 | // ATTENTION: le cube de simulation est en Mpc avec des pixels de taille comobile fixe
|
---|
[3287] | 196 | cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
|
---|
[3365] | 197 | if(dy<=0. || tylarg<=0.) {dy=dx; tylarg=txlarg; unit_y=unit_x;}
|
---|
| 198 | cout<<"X values: resolution="<<dx<<" largeur="<<txlarg<<" unite="<<unit_x<<endl;
|
---|
[3287] | 199 | if(unit_x == 'A') {
|
---|
[3365] | 200 | nx = int(txlarg*60./dx+0.5);
|
---|
| 201 | dx = min2rad(dx)*univ.Dtrcom(redshift0);
|
---|
| 202 | txlarg = dx*nx;
|
---|
[3287] | 203 | } else if(unit_x == 'M') {
|
---|
[3365] | 204 | nx = int(txlarg/dx+0.5);
|
---|
| 205 | txlarg = dx*nx;
|
---|
[3287] | 206 | } else {
|
---|
[3365] | 207 | cout<<"Unknown unit_x = "<<unit_x<<endl; return -2;
|
---|
[3287] | 208 | }
|
---|
[3365] | 209 | cout<<"Y values: resolution="<<dy<<" largeur="<<tylarg<<" unite="<<unit_y<<endl;
|
---|
[3287] | 210 | if(unit_y == 'A') {
|
---|
[3365] | 211 | ny = int(tylarg*60./dy+0.5);
|
---|
| 212 | dy = min2rad(dy)*univ.Dtrcom(redshift0);
|
---|
| 213 | tylarg = dy*ny;
|
---|
[3287] | 214 | } else if(unit_y == 'M') {
|
---|
[3365] | 215 | ny = int(tylarg/dy+0.5);
|
---|
| 216 | tylarg = dy*ny;
|
---|
[3115] | 217 | } else {
|
---|
[3365] | 218 | cout<<"Unknown unit_y = "<<unit_y<<endl; return -2;
|
---|
[3287] | 219 | }
|
---|
[3365] | 220 | cout<<"Z values: resolution="<<dz<<" largeur="<<tzlarg<<" unite="<<unit_z<<endl;
|
---|
[3287] | 221 | if(unit_z == 'Z') {
|
---|
[3365] | 222 | nz = int(tzlarg/dz+0.5);
|
---|
| 223 | dz = dz*univ.Dhubble()/univ.E(redshift0);
|
---|
| 224 | tzlarg = dz*nz;
|
---|
[3287] | 225 | } else if(unit_z == 'M') {
|
---|
[3365] | 226 | nz = int(tzlarg/dz+0.5);
|
---|
| 227 | tzlarg = dz*nz;
|
---|
| 228 | } else if(unit_z == 'F') { // unite en MHz
|
---|
| 229 | nz = int(tzlarg/dz+0.5);
|
---|
| 230 | dz = DzFrDNu(dz,Fr_HyperFin_Par*1.e3,redshift0); //dzred
|
---|
| 231 | dz = dz*univ.Dhubble()/univ.E(redshift0);
|
---|
| 232 | tzlarg = dz*nz;
|
---|
[3287] | 233 | } else {
|
---|
[3365] | 234 | cout<<"Unknown unit_z = "<<unit_z<<endl; return -2;
|
---|
[3115] | 235 | }
|
---|
[3287] | 236 |
|
---|
[3462] | 237 | // On estime la valeur du redshift le plus grand
|
---|
| 238 | double bigred = redshift0 + dz/univ.Dhubble()*univ.E(redshift0) * nz/2.;
|
---|
[3516] | 239 | cout<<"biggest redshift estimated to be "<<bigred<<endl;
|
---|
[3462] | 240 | dzinc=bigred/100.; dzmax=dzinc*10.;
|
---|
| 241 | univ.SetInteg(perc,dzinc,dzmax,glorder);
|
---|
| 242 |
|
---|
[3365] | 243 | // ---
|
---|
| 244 | // --- Calcul des valeurs au centre du cube et aux faces limites av/ar
|
---|
| 245 | // ---
|
---|
| 246 | cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
|
---|
| 247 | double adtx[3], adty[3], atxlarg[3], atylarg[3];
|
---|
| 248 | double loscom[3], redshift[3], unplusz[3], dred[3], growthfac[3], rhocz[3];
|
---|
| 249 | double dang[3], dtrcom[3], dlum[3], dloscom[3], dlosdz[3];
|
---|
| 250 | double nuhiz[3], lambdahiz[3], dnuhiz[3];
|
---|
| 251 | double angsol_pix[3], angsol_tot[3];
|
---|
[3115] | 252 |
|
---|
[3365] | 253 | redshift[0] = redshift0;
|
---|
| 254 | loscom[0] = univ.Dloscom(redshift0);
|
---|
| 255 | loscom[1] = loscom[0]-tzlarg/2.;
|
---|
| 256 | loscom[2] = loscom[0]+tzlarg/2.;
|
---|
| 257 | //if(loscom[1]<=0.) {cout<<"Lower distance limit "<<loscom[1]<<" should be >0"<<endl; return -3;}
|
---|
| 258 | for(int i=0;i<3;i++) {
|
---|
| 259 | double l = loscom[i]; if(l<=0.) l = dz/2.;
|
---|
| 260 | redshift[i] = ZFrLos(l,univ);
|
---|
| 261 | unplusz[i] = 1. + redshift[i];
|
---|
| 262 | growthfac[i] = growth(redshift[i]);
|
---|
| 263 | rhocz[i] = univ.Rhoc(redshift[i])*GCm3toMsolMpc3_Cst;;
|
---|
| 264 | dang[i] = univ.Dang(redshift[i]);
|
---|
| 265 | dtrcom[i] = univ.Dtrcom(redshift[i]);
|
---|
| 266 | dlum[i] = univ.Dlum(redshift[i]);
|
---|
| 267 | dloscom[i] = univ.Dloscom(redshift[i]);
|
---|
| 268 | dlosdz[i] = univ.Dhubble()/univ.E(redshift[i]);
|
---|
| 269 | dred[i] = dz/dlosdz[i];
|
---|
| 270 | adtx[i] = dx/dtrcom[i];
|
---|
| 271 | atxlarg[i] = adtx[i]*nx;
|
---|
| 272 | adty[i] = dy/dtrcom[i];
|
---|
| 273 | atylarg[i] = adty[i]*ny;
|
---|
| 274 | nuhiz[i] = Fr_HyperFin_Par / unplusz[i]; // GHz
|
---|
| 275 | lambdahiz[i] = SpeedOfLight_Cst*1000./(nuhiz[i]*1.e9); // m
|
---|
| 276 | dnuhiz[i] = DNuFrDz(dred[i],Fr_HyperFin_Par,redshift[i]); // GHz
|
---|
| 277 | angsol_pix[i] = AngSol(adtx[i]/2.,adty[i]/2.,M_PI/2.);
|
---|
| 278 | angsol_tot[i] = AngSol(atxlarg[i]/2.,atylarg[i]/2.,M_PI/2.);
|
---|
| 279 | }
|
---|
| 280 |
|
---|
[3115] | 281 |
|
---|
[3365] | 282 | cout<<"--- Cosmology for z = "<<0.<<endl;
|
---|
| 283 | univ.Print(0.);
|
---|
| 284 | double rhoc0 = univ.Rhoc(0.)*GCm3toMsolMpc3_Cst;
|
---|
| 285 |
|
---|
| 286 | for(int i=0;i<3;i++) {
|
---|
| 287 | cout<<"\n--- Cosmology for z = "<<redshift[i]<<endl;
|
---|
| 288 | univ.Print(redshift[i]);
|
---|
[3516] | 289 | cout<<"Nu(HI) = "<<Fr_HyperFin_Par*1000./(1.+redshift[i])<<" MHz"<<endl;
|
---|
[3365] | 290 | }
|
---|
| 291 |
|
---|
| 292 | cout<<endl;
|
---|
[3483] | 293 | cout<<"--- Resume"<<endl;
|
---|
[3365] | 294 | cout<<"Facteur de croissance lineaire = "<<growthfac[0]
|
---|
| 295 | <<" in ["<<growthfac[1]<<","<<growthfac[2]<<"]"<<endl;
|
---|
| 296 | cout<<" 1/(1+z) = "<<1./(1.+redshift[0])
|
---|
| 297 | <<" in ["<<1./(1.+redshift[1])<<","<<1./(1.+redshift[2])<<"]"<<endl;
|
---|
| 298 | cout<<"Facteur de croissance lineaire^2 = "<<growthfac[0]*growthfac[0]
|
---|
| 299 | <<" in ["<<growthfac[1]*growthfac[1]<<","<<growthfac[2]*growthfac[2]<<"]"<<endl;
|
---|
| 300 |
|
---|
| 301 | cout<<"Rho_c (z=0) = "<<rhoc0<<", a z="<<0<<": "<<rhoc0<<" Msol/Mpc^3"<<endl;
|
---|
| 302 | cout<<"Rho_c a z = "<<rhocz[0]
|
---|
| 303 | <<" Msol/Mpc^3 in ["<<rhocz[1]<<","<<rhocz[2]<<"]"<<endl;
|
---|
| 304 |
|
---|
| 305 | cout<<endl;
|
---|
| 306 | cout<<"dang= "<<dang[0]<<" Mpc in ["<<dang[1]<<","<<dang[2]<<"]"<<endl;
|
---|
| 307 | cout<<"dtrcom= "<<dtrcom[0]<<" Mpc com in ["<<dtrcom[1]<<","<<dtrcom[2]<<"]"<<endl;
|
---|
| 308 | cout<<"dlum= "<<dlum[0]<<" Mpc in ["<<dlum[1]<<","<<dlum[2]<<"]"<<endl;
|
---|
| 309 | cout<<"dloscom= "<<dloscom[0]<<" Mpc com in ["<<dloscom[1]<<","<<dloscom[2]<<"]"<<endl;
|
---|
| 310 | cout<<"dz=1 -> dlosdz= "<<dlosdz[0]<<" Mpc com in ["<<dlosdz[1]<<","<<dlosdz[2]<<"]"<<endl;
|
---|
| 311 | cout<<"1 Mpc los com -> dz = "<<1./dlosdz[0]<<" in ["<<1./dlosdz[1]<<","<<1./dlosdz[2]<<"]"<<endl;
|
---|
| 312 |
|
---|
| 313 | cout<<endl;
|
---|
| 314 | for(int i=0;i<3;i++) {
|
---|
| 315 | cout<<"...Redshift="<<redshift[i]<<endl;
|
---|
| 316 | cout<<"1\" -> "<<dang[i]*sec2rad(1.)<<" Mpc = "<<dtrcom[i]*sec2rad(1.)<<" Mpc com"<<endl;
|
---|
| 317 | cout<<"1\' -> "<<dang[i]*min2rad(1.)<<" Mpc = "<<dtrcom[i]*min2rad(1.)<<" Mpc com"<<endl;
|
---|
| 318 | cout<<"1d -> "<<dang[i]*deg2rad(1.)<<" Mpc = "<<dtrcom[i]*deg2rad(1.)<<" Mpc com"<<endl;
|
---|
| 319 | cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom[i])<<"\" = "
|
---|
| 320 | <<rad2min(1./dtrcom[i])<<" \' = "<<rad2deg(1./dtrcom[i])<<" d"<<endl;
|
---|
| 321 | cout<<"dz=1 -> dlosdz= "<<dlosdz[i]<<" Mpc com"<<endl;
|
---|
| 322 | cout<<"1 Mpc los com -> dz = "<<1./dlosdz[0]<<endl;
|
---|
| 323 | }
|
---|
| 324 |
|
---|
| 325 | // ---
|
---|
[3115] | 326 | // --- Cosmolographie Transverse
|
---|
[3365] | 327 | // ---
|
---|
[3287] | 328 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
|
---|
[3115] | 329 |
|
---|
[3365] | 330 | cout<<"dx = "<<dx<<", txlarg = "<<txlarg<<" Mpc (com), nx="<<nx<<endl;
|
---|
| 331 | cout<<"adtx = "<<adtx[0]<<" rd in ["<<adtx[1]<<","<<adtx[2]<<"]"<<endl;
|
---|
| 332 | cout<<" = "<<rad2min(adtx[0])<<"\' in ["<<rad2min(adtx[1])<<","<<rad2min(adtx[2])<<"]"<<endl;
|
---|
| 333 | cout<<"atxlarg = "<<atxlarg[0]<<" rd in ["<<atxlarg[1]<<","<<atxlarg[2]<<"]"<<endl;
|
---|
| 334 | cout<<" "<<rad2deg(atxlarg[0])<<" d in ["<<rad2deg(atxlarg[1])<<","<<rad2deg(atxlarg[2])<<"]"<<endl;
|
---|
[3115] | 335 |
|
---|
[3365] | 336 | if(fabs(dx-dy)>1.e-20 && fabs(txlarg-tylarg)>1.e-20) {
|
---|
| 337 | cout<<"\ndy = "<<dy<<", tylarg = "<<tylarg<<" Mpc (com), ny="<<ny<<endl;
|
---|
| 338 | cout<<"adty = "<<adty[0]<<" rd in ["<<adty[1]<<","<<adty[2]<<"]"<<endl;
|
---|
| 339 | cout<<" = "<<rad2min(adty[0])<<"\' in ["<<rad2min(adty[1])<<","<<rad2min(adty[2])<<"]"<<endl;
|
---|
| 340 | cout<<"atylarg = "<<atylarg[0]<<" rd in ["<<atylarg[1]<<","<<atylarg[2]<<"]"<<endl;
|
---|
| 341 | cout<<" "<<rad2deg(atylarg[0])<<" d in ["<<rad2deg(atylarg[1])<<","<<rad2deg(atylarg[2])<<"]"<<endl;
|
---|
| 342 | }
|
---|
[3115] | 343 |
|
---|
[3365] | 344 | // ---
|
---|
[3115] | 345 | // --- Cosmolographie Line of sight
|
---|
[3365] | 346 | // ---
|
---|
[3287] | 347 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
|
---|
[3365] | 348 | cout<<"dz = "<<dz<<", tzlarg = "<<tzlarg<<" Mpc (com), nz="<<nz<<endl;
|
---|
| 349 | cout<<"Redshift = "<<redshift[0]<<" in ["<<redshift[1]<<","<<redshift[2]<<"]"<<endl;
|
---|
| 350 | cout<<"dred = "<<dred[0]<<" in ["<<dred[1]<<","<<dred[2]<<"]"<<endl;
|
---|
| 351 | cout<<"nu HI = "<<nuhiz[0]<<" GHz in ["<<nuhiz[1]<<","<<nuhiz[2]<<"]"<<endl;
|
---|
| 352 | cout<<"lambda HI = "<<lambdahiz[0]<<" m in ["<<lambdahiz[1]<<","<<lambdahiz[2]<<"]"<<endl;
|
---|
| 353 | cout<<"dnu HI= "<<dnuhiz[0]*1e3<<" MHz in ["<<dnuhiz[1]*1e3<<","<<dnuhiz[2]*1e3<<"]"<<endl;
|
---|
[3115] | 354 |
|
---|
[3365] | 355 | // ---
|
---|
| 356 | // --- Volume
|
---|
| 357 | // ---
|
---|
| 358 | cout<<"\n>>>>\n>>>> Volumes\n>>>>"<<endl;
|
---|
| 359 | double Npix = (double)nx*(double)ny*(double)nz;
|
---|
| 360 | double vol_pixel = dx*dy*dz;
|
---|
| 361 | double vol_survey = vol_pixel*Npix;
|
---|
| 362 | cout<<"Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
|
---|
| 363 | cout<<"Volume pixel = "<<vol_pixel<<" Mpc^3 com"<<endl;
|
---|
| 364 | cout<<"Volume total = "<<vol_survey<<" Mpc^3 com = "<<vol_survey/1.e9<<" Gpc^3"<<endl;
|
---|
[3115] | 365 |
|
---|
[3365] | 366 | double vol = univ.Vol4Pi(redshift[1],redshift[2])/(4.*M_PI)*angsol_tot[0];
|
---|
| 367 | cout<<"Calcul avec angsol et redshift: vol = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
|
---|
| 368 | <<" -> pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
|
---|
[3115] | 369 |
|
---|
[3365] | 370 | // ---
|
---|
| 371 | // --- Angles solides
|
---|
| 372 | // ---
|
---|
| 373 | cout<<"\n>>>>\n>>>> Angles solides\n>>>>"<<endl;
|
---|
| 374 | cout<<"Pixel solid angle = "<<angsol_pix[0]<<" sr ("<<angsol_pix[0]/(4.*M_PI)<<" *4Pi)"
|
---|
| 375 | <<" in ["<<angsol_pix[1]<<","<<angsol_pix[2]<<"]"<<endl;
|
---|
[3367] | 376 | cout<<" = "<<sr2min2(angsol_pix[0])<<"\'^2"
|
---|
| 377 | <<" in ["<<sr2min2(angsol_pix[1])<<","<<sr2min2(angsol_pix[2])<<"]"<<endl;
|
---|
[3365] | 378 | cout<<"Total solid angle = "<<angsol_tot[0]<<" sr ("<<angsol_tot[0]/(4.*M_PI)<<" *4Pi)"
|
---|
| 379 | <<" in ["<<angsol_tot[1]<<","<<angsol_tot[2]<<"]"<<endl;
|
---|
[3115] | 380 |
|
---|
[3365] | 381 | // ---
|
---|
| 382 | // --- Fourier space: k = omega = 2*Pi*Nu = 2*Pi*C/Lambda
|
---|
| 383 | // ---
|
---|
[3287] | 384 | cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
|
---|
[3115] | 385 | cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
|
---|
| 386 | double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
|
---|
| 387 | double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
|
---|
| 388 | double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
|
---|
[3365] | 389 | cout<<"Transverse:"<<endl
|
---|
| 390 | <<" Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
|
---|
| 391 | <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl
|
---|
| 392 | <<" Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
|
---|
| 393 | <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
|
---|
| 394 | cout<<"Line of sight:"<<endl
|
---|
| 395 | <<" Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl
|
---|
| 396 | <<" Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
|
---|
[3115] | 397 |
|
---|
[3365] | 398 | // ---
|
---|
[3350] | 399 | // --- Variance cosmique
|
---|
[3365] | 400 | // ---
|
---|
[3350] | 401 | // cosmique poisson
|
---|
[3351] | 402 | // (sigma/P)^2 = 2*(2Pi)^3 / (4Pi k^2 dk Vsurvey) * [(1+n*P)/(n*P)]^2
|
---|
[3350] | 403 | // nombre de mode = 1/2 * Vsurvey/(2Pi)^3 * 4Pi*k^2*dk
|
---|
| 404 | if(kcosm>0. && pkcosm>0.) {
|
---|
[3365] | 405 | double pk = pkcosm*pow(growthfac[0],2.);
|
---|
[3350] | 406 | cout<<"\n>>>>\n>>>> variance cosmique pour k="<<kcosm<<" Mpc^-1, pk(z=0)="
|
---|
[3365] | 407 | <<pkcosm<<", pk(z="<<redshift[0]<<")="<<pk<<"\n>>>>"<<endl;
|
---|
[3350] | 408 | for(int i=0;i<3;i++) { // la correction de variance du au bruit de poisson
|
---|
| 409 | double v = 1.1; if(i==1) v=1.5; if(i==2) v=2.0;
|
---|
| 410 | double ngal = 1./(v-1.)/pk;
|
---|
| 411 | cout<<" pour "<<ngal<<" gal/Mpc^3 on multiplie par "<<v<<" sigma/P"<<endl;
|
---|
| 412 | }
|
---|
[3365] | 413 |
|
---|
| 414 | cout<<endl;
|
---|
[3350] | 415 | vector<double> dk; if(dkcosm>0.) dk.push_back(dkcosm);
|
---|
| 416 | dk.push_back(dk_x); dk.push_back(dk_y); dk.push_back(dk_z);
|
---|
| 417 | for(int i=0;i<(int)dk.size();i++) { // la variance cosmique pure
|
---|
[3365] | 418 | double vcosm = sqrt( 2.*pow(2.*M_PI,3.)/(4.*M_PI*pow(kcosm,2.)*dk[i]*vol_survey) );
|
---|
| 419 | double nmode = 0.5*vol_survey/pow(2.*M_PI,3.) * 4.*M_PI*pow(kcosm,2.)*dk[i];
|
---|
[3350] | 420 | cout<<" pour dk = "<<dk[i]<<" Mpc^-1: sigma/P = "<<vcosm
|
---|
| 421 | <<" , Nmode = "<<nmode<<endl;
|
---|
| 422 | }
|
---|
| 423 | }
|
---|
| 424 |
|
---|
[3365] | 425 | // ---
|
---|
[3115] | 426 | // --- Masse de HI
|
---|
[3365] | 427 | // ---
|
---|
[3287] | 428 | cout<<"\n>>>>\n>>>> Mass HI\n>>>>"<<endl;
|
---|
[3115] | 429 | Schechter sch(nstar,mstar,alpha);
|
---|
| 430 | sch.SetOutValue(1);
|
---|
| 431 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
| 432 | cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
|
---|
| 433 | int npt = 10000;
|
---|
[3344] | 434 | double lnx1=log10(1.e+6), lnx2=log10(1.e+13), dlnx=(lnx2-lnx1)/npt;
|
---|
[3115] | 435 | double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
| 436 | cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
|
---|
| 437 |
|
---|
[3365] | 438 | double masshipix = masshimpc3*vol_pixel;
|
---|
| 439 | double masshitot = masshimpc3*vol_survey;
|
---|
[3115] | 440 | cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
|
---|
| 441 | <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
|
---|
[3365] | 442 | cout<<"OmegaHI a z=0: "<<masshimpc3/rhoc0<<endl;
|
---|
| 443 | for(int i=0;i<3;i++)
|
---|
| 444 | cout<<" a z="<<redshift[i]<<": "<<masshimpc3/rhocz[i]<<endl;
|
---|
[3115] | 445 | if(mhiref<=0.) mhiref = masshipix;
|
---|
| 446 |
|
---|
[3343] | 447 | sch.SetOutValue(0);
|
---|
| 448 | cout<<"\nsch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
|
---|
| 449 | cout<<"Galaxy number density:"<<endl;
|
---|
[3344] | 450 | for(double x=lnx1; x<lnx2-0.5; x+=1.) {
|
---|
[3343] | 451 | double n = IntegrateFuncLog(sch,x,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
[3483] | 452 | cout<<" m>10^"<<x<<" Msol: "<<n<<" /Mpc^3, "<<n*vol_pixel<<" /pixel, "
|
---|
[3365] | 453 | <<n*vol_survey<<" in survey"<<endl;
|
---|
[3343] | 454 | }
|
---|
| 455 | sch.SetOutValue(1);
|
---|
| 456 |
|
---|
[3365] | 457 | // ---
|
---|
[3115] | 458 | // --- Survey values
|
---|
[3365] | 459 | // ---
|
---|
[3287] | 460 | cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
|
---|
[3352] | 461 | double surfeff = surftot * eta_eff;
|
---|
[3365] | 462 | cout<<"surf_tot="<<surftot<<" m^2, eta="<<eta_eff<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl;
|
---|
[3115] | 463 |
|
---|
[3365] | 464 | // Angles solides pour un telescope plein
|
---|
| 465 | double angSEq[4], angEq[4];
|
---|
| 466 | for(int i=0;i<4;i++) {
|
---|
[3367] | 467 | double nu = Fr_HyperFin_Par;
|
---|
[3365] | 468 | if(i<3) nu = nuhiz[i];
|
---|
| 469 | angSEq[i] = AngsolEqTelescope(nu,surftot);
|
---|
| 470 | angEq[i] = 2.*FrAngSol(angSEq[i]);
|
---|
| 471 | }
|
---|
| 472 | cout<<"\nFor a "<<surftot<<" m^2 telescope:"<<endl
|
---|
| 473 | <<" equivalent Omega = "<<angSEq[0]<<" sr in ["<<angSEq[1]<<","<<angSEq[2]<<"]"<<endl
|
---|
| 474 | <<" angular diameter = "<<angEq[0]<<" rd = "<<rad2min(angEq[0])
|
---|
| 475 | <<"\' in ["<<angEq[2]<<","<<angEq[2]<<"]"<<endl;
|
---|
| 476 | cout<<"At z=0: equivalent Omega = "<<angSEq[3]<<" sr"<<endl
|
---|
| 477 | <<" angular diameter = "<<angEq[3]<<" rd = "<<rad2min(angEq[3])<<"\'"<<endl;
|
---|
| 478 |
|
---|
[3367] | 479 | // Pour une observation ou le lobe est + petit ou grand que le pixel de simulation
|
---|
[3365] | 480 | // La taille angulaire du lobe change avec la frequence donc avec le redshift
|
---|
[3367] | 481 | // La taille du lobe "lobearea0" est donnee pour une frequence de reference "lobefreq0" en MHz
|
---|
[3365] | 482 | double nlobes[3] = {1.,1.,1.};
|
---|
[3367] | 483 | // Si "lobefreq0" negatif c'est la frequence du centre du cube
|
---|
| 484 | if(lobefreq0<=0.) lobefreq0 = nuhiz[0]*1.e3;
|
---|
| 485 | // Si "lobearea0" negatif c'est la taille du pixel ramenee a lobefreq0
|
---|
| 486 | if(lobearea0<=0.) lobearea0 = sr2min2(angsol_pix[0])*pow(nuhiz[0]*1.e3/lobefreq0,2.);
|
---|
| 487 | cout<<"\n--- Lobe: angsol="<<lobearea0<<"\'^2 pour "<<lobefreq0<<" MHz"<<endl;
|
---|
| 488 | double lobearea[3];
|
---|
| 489 | for(int i=0;i<3;i++) {
|
---|
| 490 | lobearea[i] = lobearea0*pow(lobefreq0/(nuhiz[0]*1.e3),2.);
|
---|
| 491 | nlobes[i] = sr2min2(angsol_pix[i])/lobearea[i];
|
---|
[3336] | 492 | }
|
---|
[3367] | 493 | cout<<"Lobe cylindrique area "<<lobearea[0]<<"\'^2 in ["<<lobearea[1]<<","<<lobearea[2]<<"]"<<endl;
|
---|
| 494 | cout<<"Number of beams in one transversal pixel "<<nlobes[0]<<" in ["<<nlobes[1]<<","<<nlobes[2]<<"]"<<endl;
|
---|
[3193] | 495 |
|
---|
[3365] | 496 | // ---
|
---|
| 497 | // --- Signal analysis
|
---|
| 498 | // ---
|
---|
| 499 | // --- Temperature d'antenne Ta et temperature de brillance Tb
|
---|
| 500 | // La puissance d'une source de brillance I non polarisee est:
|
---|
| 501 | // P = I * S * Omega * dNu
|
---|
| 502 | // La puissance recue pour une seule polarisation est:
|
---|
| 503 | // P = 1/2 * I * S * Omega * dNu
|
---|
| 504 | // La puissance recue pour un telescope (plein) est
|
---|
| 505 | // en remplacant Omega = lambda^2/S
|
---|
| 506 | // P = 1/2 * I * lambda^2 * dNu
|
---|
| 507 | // En appliquant la loi de Rayleigh: I = 2*k*Tb/lambda^2
|
---|
| 508 | // on obtient
|
---|
| 509 | // P = 1/2 * 2*k*Tb * dNu = k * Tb * dNu
|
---|
| 510 | // La temperature d'antenne est definie comme
|
---|
| 511 | // P = k * Ta * dNu
|
---|
| 512 | // Donc pour un ciel de temperature de brillance Tb
|
---|
| 513 | // et pour une antenne qui mesure une seule polarisation
|
---|
| 514 | // on a: Ta = Tb
|
---|
[3115] | 515 |
|
---|
[3365] | 516 | cout<<"\n>>>>\n>>>> Signal Analysis\n>>>>"<<endl;
|
---|
[3193] | 517 | cout<<"Facteur polar = "<<facpolar<<endl;
|
---|
| 518 |
|
---|
[3115] | 519 | PlanckSpectra planck(T_CMB_Par);
|
---|
[3347] | 520 | planck.SetSpectraApprox(PlanckSpectra::RAYLEIGH); // Rayleigh spectra
|
---|
| 521 | planck.SetSpectraVar(PlanckSpectra::NU); // frequency
|
---|
| 522 | planck.SetSpectraPower(PlanckSpectra::POWER); // output en W/....
|
---|
| 523 | planck.SetSpectraUnit(PlanckSpectra::ANGSFLUX); // radiance W/m^2/Sr/Hz
|
---|
[3115] | 524 |
|
---|
[3365] | 525 | // ---
|
---|
| 526 | // --- Signal HI
|
---|
| 527 | // ---
|
---|
| 528 | // Power emitted by HI
|
---|
| 529 | cout<<"--- Power from HI for M = "<<mhiref<<" Msol"<<endl;
|
---|
| 530 | cout<<"Flux factor = "<<hifactor<<" at redshift = "<<redshift[0]<<endl;
|
---|
| 531 | cout<<"Luminosite = "<<hifactor*Msol2LumiHI(mhiref)<<" W"<<endl;
|
---|
[3115] | 532 |
|
---|
[3365] | 533 | double fhi_ref[3], sfhi_ref[3];
|
---|
| 534 | for(int i=0;i<3;i++) {
|
---|
| 535 | fhi_ref[i] = hifactor*Msol2FluxHI(mhiref,dlum[i]);
|
---|
| 536 | sfhi_ref[i] = fhi_ref[i] / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
|
---|
| 537 | }
|
---|
| 538 | cout<<"FluxHI("<<dlum[0]<<" Mpc) all polar: "<<fhi_ref[0]<<" W/m^2 = "
|
---|
| 539 | <<fhi_ref[0]/Jansky2Watt_cst<<" Jy.Hz"
|
---|
| 540 | <<" in ["<<fhi_ref[1]/Jansky2Watt_cst<<","<<fhi_ref[2]/Jansky2Watt_cst<<"]"<<endl;
|
---|
| 541 | cout<<"If spread over pixel depth ("<<dnuhiz[0]<<" GHz):"<<endl
|
---|
| 542 | <<" flux density = "<<sfhi_ref[0]*1.e6<<" mu_Jy"
|
---|
| 543 | <<" in ["<<sfhi_ref[1]<<","<<sfhi_ref[2]<<"]"<<endl;
|
---|
| 544 |
|
---|
| 545 | // Signal HI
|
---|
| 546 | double psig_2polar[3], tasig_2polar[3], ssig_2polar[3], isig_2polar[3], tsig_2polar[3];
|
---|
| 547 | double psig[3], tasig[3], ssig[3], isig[3], tsig[3];
|
---|
| 548 | double doplarge[3], dzvrot[3];
|
---|
| 549 |
|
---|
| 550 | for(int i=0;i<3;i++) {
|
---|
| 551 | psig_2polar[i] = fhi_ref[i] * surfeff;
|
---|
| 552 | tasig_2polar[i] = psig_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
|
---|
| 553 | ssig_2polar[i] = psig_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
|
---|
| 554 | isig_2polar[i] = ssig_2polar[i] / angsol_pix[i];
|
---|
| 555 | tsig_2polar[i] = isig_2polar[i]*Jansky2Watt_cst
|
---|
| 556 | / (2.*pow(nuhiz[i]*1e9/(SpeedOfLight_Cst*1000.),2.)*k_Boltzman_Cst);
|
---|
| 557 | psig[i] = facpolar * psig_2polar[i];
|
---|
| 558 | tasig[i] = facpolar * tasig_2polar[i];
|
---|
| 559 | ssig[i] = facpolar * ssig_2polar[i];
|
---|
| 560 | isig[i] = facpolar * isig_2polar[i];
|
---|
| 561 | tsig[i] = facpolar * tsig_2polar[i];
|
---|
| 562 | doplarge[i] = LargeurDoppler(vrot,nuhiz[i]);
|
---|
| 563 | dzvrot[i] = DzFrV(vrot,redshift[i]);
|
---|
| 564 | }
|
---|
| 565 | cout<<"\n--- Signal HI("<<mhiref<<" Msol) for Dnu="<<dnuhiz[0]<<" GHz :"<<endl
|
---|
| 566 | <<" Observation:"<<endl
|
---|
| 567 | <<" Power="<<psig[0]<<" W in ["<<psig[1]<<","<<psig[2]<<"]"<<endl
|
---|
| 568 | <<" Flux density = "<<ssig[0]*1.e6<<" mu_Jy in ["<<ssig[1]*1.e6<<","<<ssig[2]*1.e6<<"]"<<endl
|
---|
| 569 | <<" Intensity = "<<isig[0]<<" Jy/sr in ["<<isig[1]<<","<<isig[2]<<"]"<<endl
|
---|
| 570 | <<" Antenna temperature = "<<tasig[0]<<" K in ["<<tasig[1]<<","<<tasig[2]<<"]"<<endl
|
---|
| 571 | <<" Brightness temperature = "<<tsig[0]<<" K in ["<<tsig[1]<<","<<tsig[2]<<"]"<<endl
|
---|
| 572 | <<" 2 polars:"<<endl
|
---|
| 573 | <<" Power="<<psig_2polar[0]<<" W in ["<<psig_2polar[1]<<","<<psig_2polar[2]<<"]"<<endl
|
---|
| 574 | <<" Flux density = "<<ssig_2polar[0]*1.e6<<" mu_Jy in ["<<ssig_2polar[1]*1.e6<<","<<ssig_2polar[2]*1.e6<<"]"<<endl
|
---|
| 575 | <<" Intensity = "<<isig_2polar[0]<<" Jy/sr in ["<<isig_2polar[1]<<","<<isig_2polar[2]<<"]"<<endl
|
---|
| 576 | <<" Antenna temperature = "<<tasig_2polar[0]<<" K in ["<<tasig_2polar[1]<<","<<tasig_2polar[2]<<"]"<<endl
|
---|
| 577 | <<" Brightness temperature = "<<tsig_2polar[0]<<" K in ["<<tsig_2polar[1]<<","<<tsig_2polar[2]<<"]"<<endl;
|
---|
| 578 |
|
---|
[3193] | 579 | // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
|
---|
[3365] | 580 | cout<<" Doppler for rotation width of "<<vrot<<" km/s"<<endl
|
---|
| 581 | <<" width="<<doplarge[0]*1.e3<<" MHz in ["<<doplarge[1]*1.e3<<","<<doplarge[2]*1.e3<<"]"<<endl
|
---|
| 582 | <<" dzvrot= "<<dzvrot[0]<<" in ["<<dzvrot[1]<<","<<dzvrot[2]<<"]"<<endl;
|
---|
| 583 | if(doplarge[0]>dnuhiz[0])
|
---|
| 584 | cout<<"Warning: doppler width "<<doplarge[0]<<" GHz > "<<dnuhiz[0]<<" GHz redshift bin width"<<endl;
|
---|
[3115] | 585 |
|
---|
[3365] | 586 | // ---
|
---|
| 587 | // --- Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
|
---|
| 588 | // ---
|
---|
| 589 | double tsynch[3];
|
---|
| 590 | double psynch_2polar[3], tasynch_2polar[3], ssynch_2polar[3], isynch_2polar[3];
|
---|
| 591 | double psynch[3], tasynch[3], ssynch[3], isynch[3];
|
---|
[3115] | 592 |
|
---|
[3365] | 593 | for(int i=0;i<3;i++) {
|
---|
| 594 | tsynch[i] = Tsynch408;
|
---|
| 595 | if(fabs(indnu)>1.e-50) tsynch[i] *= pow(nuhiz[i]/nuhaslam,indnu);
|
---|
| 596 | planck.SetTemperature(tsynch[i]);
|
---|
| 597 | psynch_2polar[i] = planck(nuhiz[i]*1.e+9) * surfeff * angsol_pix[i] * (dnuhiz[i]*1e9);
|
---|
| 598 | tasynch_2polar[i] = psynch_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
|
---|
| 599 | ssynch_2polar[i] = psynch_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
|
---|
| 600 | isynch_2polar[i] = ssynch_2polar[i] / angsol_pix[i];
|
---|
| 601 | psynch[i] = facpolar * psynch_2polar[i];
|
---|
| 602 | tasynch[i] = facpolar * tasynch_2polar[i];
|
---|
| 603 | ssynch[i] = facpolar * ssynch_2polar[i];
|
---|
| 604 | isynch[i] = ssynch[i] / angsol_pix[i];
|
---|
| 605 | }
|
---|
| 606 | cout<<"\n--- Synchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "<<endl
|
---|
| 607 | <<" tsynch="<<tsynch[0]<<" K ("<<nuhiz[0]<<" GHz) in ["<<tsynch[1]<<","<<tsynch[2]<<"]"<<endl
|
---|
| 608 | <<" Observation:"<<endl
|
---|
| 609 | <<" Power="<<psynch[0]<<" W for pixel in ["<<psynch[1]<<","<<psynch[2]<<"]"<<endl
|
---|
| 610 | <<" Flux density = "<<ssynch[0]<<" Jy for pixel solid angle in ["<<ssynch[1]<<","<<ssynch[2]<<"]"<<endl
|
---|
| 611 | <<" Intensity = "<<isynch[0]<<" Jy/sr in ["<<isynch[1]<<","<<isynch[2]<<"]"<<endl
|
---|
| 612 | <<" Antenna temperature = "<<tasynch[0]<<" K in ["<<tasynch[1]<<","<<tasynch[2]<<"]"<<endl
|
---|
| 613 | <<" 2 polars:"<<endl
|
---|
| 614 | <<" Power="<<psynch_2polar[0]<<" W for pixel in ["<<psynch_2polar[1]<<","<<psynch_2polar[2]<<"]"<<endl
|
---|
| 615 | <<" Flux density = "<<ssynch_2polar[0]<<" Jy for pixel solid angle in ["<<ssynch_2polar[1]<<","<<ssynch_2polar[2]<<"]"<<endl
|
---|
| 616 | <<" Intensity = "<<isynch_2polar[0]<<" Jy/sr in ["<<isynch_2polar[1]<<","<<isynch_2polar[2]<<"]"<<endl
|
---|
| 617 | <<" Antenna temperature = "<<tasynch_2polar[0]<<" K in ["<<tasynch_2polar[1]<<","<<tasynch_2polar[2]<<"]"<<endl;
|
---|
| 618 |
|
---|
| 619 | // ---
|
---|
| 620 | // --- CMB
|
---|
| 621 | // ---
|
---|
[3115] | 622 | planck.SetTemperature(tcmb);
|
---|
[3365] | 623 | double pcmb_2polar[3], tacmb_2polar[3], scmb_2polar[3], icmb_2polar[3];
|
---|
| 624 | double pcmb[3], tacmb[3], scmb[3], icmb[3];
|
---|
[3115] | 625 |
|
---|
[3365] | 626 | for(int i=0;i<3;i++) {
|
---|
| 627 | pcmb_2polar[i] = planck(nuhiz[i]*1.e+9) * surfeff * angsol_pix[i] * (dnuhiz[i]*1e9);
|
---|
| 628 | tacmb_2polar[i] = pcmb_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
|
---|
| 629 | scmb_2polar[i] = pcmb_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
|
---|
| 630 | icmb_2polar[i] = scmb_2polar[i] / angsol_pix[i];
|
---|
| 631 | pcmb[i] = facpolar * pcmb_2polar[i];
|
---|
| 632 | tacmb[i] = facpolar * tacmb_2polar[i];
|
---|
| 633 | scmb[i] = facpolar * scmb_2polar[i];
|
---|
| 634 | icmb[i] = scmb[i] / angsol_pix[i];
|
---|
| 635 | }
|
---|
| 636 | cout<<"\n--- CMB: T="<<tcmb<<" K"<<endl
|
---|
| 637 | <<" Observation:"<<endl
|
---|
| 638 | <<" Power="<<pcmb[0]<<" W for pixel in ["<<pcmb[1]<<","<<pcmb[2]<<"]"<<endl
|
---|
| 639 | <<" Flux density = "<<scmb[0]<<" Jy for pixel solid angle in ["<<scmb[1]<<","<<scmb[2]<<"]"<<endl
|
---|
| 640 | <<" Intensity = "<<icmb[0]<<" Jy/sr in ["<<icmb[1]<<","<<icmb[2]<<"]"<<endl
|
---|
| 641 | <<" Antenna temperature = "<<tacmb[0]<<" K in ["<<tacmb[1]<<","<<tacmb[2]<<"]"<<endl
|
---|
| 642 | <<" 2 polars:"<<endl
|
---|
| 643 | <<" Power="<<pcmb_2polar[0]<<" W for pixel in ["<<pcmb_2polar[1]<<","<<pcmb_2polar[2]<<"]"<<endl
|
---|
| 644 | <<" Flux density = "<<scmb_2polar[0]<<" Jy for pixel solid angle in ["<<scmb_2polar[1]<<","<<scmb_2polar[2]<<"]"<<endl
|
---|
| 645 | <<" Intensity = "<<icmb_2polar[0]<<" Jy/sr in ["<<icmb_2polar[1]<<","<<icmb_2polar[2]<<"]"<<endl
|
---|
| 646 | <<" Antenna temperature = "<<tacmb_2polar[0]<<" K in ["<<tacmb_2polar[1]<<","<<tacmb_2polar[2]<<"]"<<endl;
|
---|
| 647 |
|
---|
| 648 | // ---
|
---|
| 649 | // --- AGN
|
---|
| 650 | // ---
|
---|
[3196] | 651 | double flux_agn = pow(10.,lflux_agn);
|
---|
[3365] | 652 | double mass_agn[3], flux_agn_pix[3], mass_agn_pix[3], lmass_agn_pix[3];
|
---|
| 653 | for(int i=0;i<3;i++) {
|
---|
| 654 | mass_agn[i] = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum[i]);
|
---|
| 655 | flux_agn_pix[i] = flux_agn*(dnuhiz[i]*1e9);
|
---|
| 656 | mass_agn_pix[i] = FluxHI2Msol(flux_agn_pix[i]*Jansky2Watt_cst,dlum[i]);
|
---|
| 657 | lmass_agn_pix[i] = log10(mass_agn_pix[i]);
|
---|
| 658 | }
|
---|
| 659 | cout<<"\n--- AGN: log10(S_agn)="<<lflux_agn<<" S_agn="<<flux_agn<<" Jy :"<<endl
|
---|
| 660 | <<" mass_agn = "<<mass_agn[0]<<" equiv. Msol/Hz in ["<<mass_agn[1]<<","<<mass_agn[2]<<"]"<<endl
|
---|
| 661 | <<" flux_agn_pix = "<<flux_agn_pix[0]<<" 10^-26 W/m^2 in ["<<flux_agn_pix[1]<<","<<flux_agn_pix[2]<<"]"<<endl
|
---|
| 662 | <<" mass_agn_pix = "<<mass_agn_pix[0]<<" Msol in ["<<mass_agn_pix[1]<<","<<mass_agn_pix[2]<<"]"<<endl
|
---|
| 663 | <<" log10(mass_agn_pix) = "<<lmass_agn_pix[0]<<" in ["<<lmass_agn_pix[1]<<","<<lmass_agn_pix[2]<<"]"<<endl;
|
---|
[3196] | 664 |
|
---|
[3339] | 665 | // =====================================================================
|
---|
[3336] | 666 | // ---
|
---|
[3115] | 667 | // --- Noise analysis
|
---|
[3336] | 668 | // ---
|
---|
[3339] | 669 | // --- Puissance du bruit pour un telescope de surface Ae et de BW dNu
|
---|
| 670 | // Par definition la puissance du bruit est:
|
---|
| 671 | // Pb = k * Tsys * dNu (W)
|
---|
| 672 | // Pour une source (non-polarisee) de densite de flux (totale 2 polars)
|
---|
[3352] | 673 | // St (exprimee en Jy = 10^-26 W/m^2/Hz)
|
---|
[3339] | 674 | // Pt = St * Ae * dNu (puissance totale emise en W pour 2 polars)
|
---|
| 675 | // P1 = 1/2 * St * Ae * dNu (puissance emise en W pour une polar)
|
---|
| 676 | // la SEFD (system equivalent flux density en Jy) est definie comme
|
---|
| 677 | // la densite de flux total (2 polars) "St" d'une source (non-polarisee)
|
---|
| 678 | // dont la puissance P1 mesuree pour une seule polarisation
|
---|
| 679 | // serait egale a la puissance du bruit. De P1 = Pb on deduit:
|
---|
| 680 | // SEFD = 2 * k * Tsys / Ae (en Jy)
|
---|
| 681 | // la puissance du bruit est: Pb = 1/2 * SEFD * Ae * dNu (en W)
|
---|
| 682 | // la sensibilite Slim tient compte du temps d'integration et de la BW:
|
---|
| 683 | // le nombre de mesures independantes est "2*dNu*Tobs" donc
|
---|
| 684 | // Slim = SEFD / sqrt(2*dNu*Tobs) = 2*k*Tsys/[Ae*sqrt(2*dNu*Tobs) (en Jy)
|
---|
| 685 | // --- Puissance du bruit pour un interferometre
|
---|
[3336] | 686 | // Ae = surface d'un telescope elementaire
|
---|
| 687 | // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
|
---|
[3339] | 688 | // La sensibilite Slim en Jy est:
|
---|
[3336] | 689 | // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
|
---|
| 690 | // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
|
---|
| 691 | // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
|
---|
[3339] | 692 | // - Interferometre a deux antennes:
|
---|
[3336] | 693 | // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
|
---|
[3339] | 694 | // - Interferometre a N antennes (N grand):
|
---|
[3336] | 695 | // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
|
---|
[3341] | 696 | // C'est aussi la formule pour un telescope unique de surface Atot
|
---|
[3339] | 697 | // --- On ne mesure qu'une seule polarisation
|
---|
| 698 | // Ces formules sont valables si on mesure 1 polarisation:
|
---|
| 699 | // Slim est la densite de flux total "St" (2 polars) d'une source (non-polarisee)
|
---|
| 700 | // qui donne la meme puissance que le bruit dans un detecteur qui ne
|
---|
| 701 | // mesure qu'une seule polarisation:
|
---|
| 702 | // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
|
---|
| 703 | // S/N = St / Slim
|
---|
| 704 | // La puissance de bruit est, par definition:
|
---|
| 705 | // Pb = 1/2 *Slim*Atot*dNu
|
---|
| 706 | // = k*Tsys*sqrt(2*dNu/Tobs) pour N=2
|
---|
| 707 | // = k*Tsys*sqrt(dNu/Tobs) pour N>>grand
|
---|
| 708 | // La densite de flux d'une source a S/N=1 est:
|
---|
| 709 | // St = Slim
|
---|
| 710 | // La puissance d'une source a S/N=1 mesuree par un detecteur
|
---|
| 711 | // qui ne mesure qu'une polar est:
|
---|
| 712 | // P1_lim = 1/2 *Slim*Atot*dNu
|
---|
| 713 | // --- On mesure les 2 polarisations avec deux voies d'electronique distinctes
|
---|
| 714 | // la puissance du signal mesure est multipliee par 2
|
---|
| 715 | // la puissance du bruit est multipliee par sqrt(2)
|
---|
| 716 | // on a donc un gain d'un facteur sqrt(2) sur le rapport S/N
|
---|
| 717 | // (cela revient d'ailleur a doubler le temps de pose: Tobs -> 2*Tobs)
|
---|
| 718 | // En notant arbitrairement: Slim' = Slim / sqrt(2)
|
---|
| 719 | // ou Slim est defini par les formules ci-dessus
|
---|
| 720 | // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
|
---|
| 721 | // (S/N)_2 = (S/N)_1 * sqrt(2) = (St / Slim) * sqrt(2) = St / Slim'
|
---|
| 722 | // La densite de flux d'une source a S/N=1 est:
|
---|
| 723 | // St = Slim' = Slim / sqrt(2)
|
---|
| 724 | // La puissance d'une source a S/N=1 cumulee par les 2 detecteurs est:
|
---|
| 725 | // P_lim = St*Atot*dNu = Slim'*Atot*dNu = 1/sqrt(2) *Slim*Atot*dNu
|
---|
| 726 | // = P1_lim * sqrt(2)
|
---|
| 727 | // La puissance de bruit cumulee par les 2 detecteurs est, par definition:
|
---|
| 728 | // Pb = P_lim = Slim'*Atot*dNu = P1_lim * sqrt(2)
|
---|
| 729 | // = 2*k*Tsys*sqrt(dNu/Tobs) pour N=2
|
---|
| 730 | // = k*Tsys*sqrt(2*dNu/Tobs) pour N>>grand
|
---|
| 731 | // =====================================================================
|
---|
| 732 |
|
---|
[3365] | 733 | cout<<"\n>>>>\n>>>> Noise analysis\n>>>>"<<endl;
|
---|
| 734 | double psys[3];
|
---|
| 735 | for(int i=0;i<3;i++) psys[i] = k_Boltzman_Cst * Tsys * (dnuhiz[i]*1.e+9);
|
---|
| 736 | cout<<"Noise: T="<<Tsys<<" K"<<endl
|
---|
| 737 | <<" P="<<psys[0]<<" W in ["<<psys[1]<<","<<psys[2]<<"]"<<endl;
|
---|
[3115] | 738 |
|
---|
[3336] | 739 | cout<<"...Computation assume that noise dominate the signal."<<endl;
|
---|
[3339] | 740 | if(ya2polar)
|
---|
[3336] | 741 | cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
|
---|
[3115] | 742 |
|
---|
| 743 |
|
---|
[3336] | 744 | //---
|
---|
[3339] | 745 | for(unsigned short it=0;it<2;it++) {
|
---|
[3115] | 746 |
|
---|
[3339] | 747 | double fac = 1.;
|
---|
| 748 | if(it==0) { // Interferometre a 2 telescopes
|
---|
| 749 | fac = 0.5;
|
---|
| 750 | cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
|
---|
| 751 | <<" (sensitivity is given for real or complex correlator output)"<<endl;
|
---|
| 752 | } else if (it==1) { // Interferometre a N>> telescopes
|
---|
| 753 | fac = 1.;
|
---|
| 754 | cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
|
---|
[3341] | 755 | <<" (weak source limit sensitivity in a synthetised image)"<<endl
|
---|
[3462] | 756 | <<" Also valid for a single dish telescope"<<endl
|
---|
| 757 | <<" (add factor sqrt(2) if ON-OFF with T_ON=t_OFF)"<<endl;
|
---|
[3339] | 758 | } else continue;
|
---|
| 759 |
|
---|
[3365] | 760 | double slim[3], SsN[3], smass[3], pkbruit[3];
|
---|
| 761 | for(int i=0;i<3;i++) {
|
---|
| 762 | slim[i] = 2. * k_Boltzman_Cst * Tsys / surfeff
|
---|
| 763 | / sqrt(fac*(dnuhiz[i]*1.e+9)*tobs) /Jansky2Watt_cst;
|
---|
| 764 | if(ya2polar) slim[i] /= sqrt(2.);
|
---|
| 765 | SsN[i] = ssig_2polar[i] / slim[i]; // independant de angsol_pix*surfeff
|
---|
| 766 | smass[i] = mhiref / ssig_2polar[i] * slim[i];
|
---|
| 767 | pkbruit[i] = pow(smass[i]/mhiref,2.)*vol_pixel;
|
---|
| 768 | }
|
---|
[3339] | 769 | cout<<"for 1 lobe:"<<endl
|
---|
[3365] | 770 | <<" Slim = "<<slim[0]*1.e6<<" mu_Jy in ["<<slim[1]*1.e6<<","<<slim[2]*1.e6<<"]"<<endl
|
---|
| 771 | <<" S/N = "<<SsN[0]<<" in ["<<SsN[1]<<","<<SsN[2]<<"]"<<endl
|
---|
| 772 | <<" Mass HI = "<<smass[0]<<" Msol in ["<<smass[1]<<","<<smass[2]<<"]"<<endl
|
---|
| 773 | <<" Pk = "<<pkbruit[0]<<" Mpc^3 in ["<<pkbruit[1]<<","<<pkbruit[2]<<"]"<<endl;
|
---|
[3341] | 774 |
|
---|
[3367] | 775 | double slim_nl[3], SsN_nl[3], smass_nl[3], pkbruit_nl[3];
|
---|
| 776 | for(int i=0;i<3;i++) {
|
---|
| 777 | slim_nl[i] = slim[i] * sqrt(nlobes[i]);
|
---|
| 778 | SsN_nl[i] = ssig_2polar[i] / slim_nl[i];
|
---|
| 779 | smass_nl[i] = mhiref / ssig_2polar[i] * slim_nl[i];
|
---|
| 780 | pkbruit_nl[i] = pow(smass_nl[i]/mhiref,2.)*vol_pixel;
|
---|
| 781 | }
|
---|
| 782 | cout<<"for "<<nlobes[0]<<" lobes[i] in ["<<nlobes[1]<<","<<nlobes[2]<<"] :"<<endl
|
---|
[3365] | 783 | <<" Slim = "<<slim_nl[0]*1.e6<<" mu_Jy in ["<<slim_nl[1]*1.e6<<","<<slim_nl[2]*1.e6<<"]"<<endl
|
---|
| 784 | <<" S/N = "<<SsN_nl[0]<<" in ["<<SsN_nl[1]<<","<<SsN_nl[2]<<"]"<<endl
|
---|
| 785 | <<" Mass HI = "<<smass_nl[0]<<" Msol in ["<<smass_nl[1]<<","<<smass_nl[2]<<"]"<<endl
|
---|
| 786 | <<" Pk = "<<pkbruit_nl[0]<<" Mpc^3 in ["<<pkbruit_nl[1]<<","<<pkbruit_nl[2]<<"]"<<endl;
|
---|
[3339] | 787 |
|
---|
| 788 | }
|
---|
| 789 |
|
---|
[3115] | 790 | return 0;
|
---|
[3365] | 791 | }
|
---|
| 792 |
|
---|
| 793 |
|
---|
| 794 | //-------------------------------------------------------------------------------------------
|
---|
| 795 | double LargeurDoppler(double v, double nu)
|
---|
| 796 | // largeur doppler pour une vitesse v en km/s et une frequence nu
|
---|
| 797 | {
|
---|
| 798 | return v / SpeedOfLight_Cst * nu;
|
---|
[3115] | 799 | }
|
---|
[3365] | 800 |
|
---|
| 801 | double DzFrV(double v, double zred)
|
---|
| 802 | // largeur en redshift pour une vitesse v en km/s au redshift zred
|
---|
| 803 | {
|
---|
| 804 | return v / SpeedOfLight_Cst * (1. + zred);
|
---|
| 805 | }
|
---|
| 806 |
|
---|
| 807 | double DNuFrDz(double dzred,double nu_at_0,double zred)
|
---|
| 808 | // Largeur DNu pour une largeur en redshift "dzred" au redshift "zred"
|
---|
| 809 | // pour la frequence "nu_at_0" a z=0
|
---|
| 810 | // nu = NuHi(z=0)/(1.+z0)
|
---|
| 811 | // dnu = NuHi(z=0)/(1.+z0-dz/2) - NuHi/(1.+z0+dz/2)
|
---|
| 812 | // = NuHi(z=0)*dz/[ (1+z0)^2 - (dz/2)^2 ]
|
---|
| 813 | // = NuHi(z=0)*dz/(1.+z0)^2 / [ 1 - [dz/(1+z0)/2)]^2 ]
|
---|
| 814 | // = NuHi(z=0)*dz/(1.+z0)^2 / [1 - dz/(1+z0)/2] / [1 + dz/(1+z0)/2]
|
---|
| 815 | // ~= NuHi(z=0)*dz/(1.+z0)^2 (approx. pour dz<<z0 a l'ordre (dz/z0)^2)
|
---|
| 816 | {
|
---|
| 817 | double zp1 = 1.+zred;
|
---|
| 818 | return nu_at_0*dzred/(zp1*zp1)/(1.-dzred/zp1/2.)/(1.+dzred/zp1/2.);
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | double DzFrDNu(double dnu_at_0,double nu_at_0,double zred)
|
---|
| 822 | // Largeur en redshift au redshift "zred" pour une largeur
|
---|
| 823 | // en frequence "dnu_at_0" a la frequence "nu_at_0" a z=0
|
---|
| 824 | {
|
---|
| 825 | if(dnu_at_0<=0.) return 0.;
|
---|
| 826 | double zp1 = 1.+zred;
|
---|
| 827 | double dnusnu0 = dnu_at_0/nu_at_0;
|
---|
| 828 | return 2./dnusnu0 * (sqrt(1.+(dnusnu0*zp1)*(dnusnu0*zp1)) - 1.);
|
---|
| 829 | }
|
---|
| 830 | double DzFrDNuApprox(double dnu_at_0,double nu_at_0,double zred)
|
---|
| 831 | // idem DzFrDNu mais on utilise l'approximation: dnu=NuHi(z=0)*dz/(1.+z0)^2
|
---|
| 832 | {
|
---|
| 833 | double zp1 = 1.+zred;
|
---|
| 834 | return dnu_at_0/nu_at_0 *(zp1*zp1);
|
---|
| 835 | }
|
---|
| 836 |
|
---|
| 837 | double ZFrLos(double loscom,CosmoCalc& univ)
|
---|
| 838 | // Recherche du redshift correspondant a une distance comobile
|
---|
| 839 | // le long de la ligne de visee egale a "loscom" Mpc
|
---|
| 840 | // et pour un univers "univ"
|
---|
| 841 | {
|
---|
| 842 | double dz = univ.ZMax()/10.; if(dz<=0.) dz = 0.1;
|
---|
| 843 | double zmin=0., zmax=0.;
|
---|
| 844 | while(univ.Dloscom(zmax)<loscom) zmax += dz;
|
---|
| 845 | if(zmax==0.) return 0.;
|
---|
| 846 | for(int i=0; i<6; i++) {
|
---|
| 847 | zmin=zmax-dz; if(zmin<0.) zmin=0.;
|
---|
| 848 | dz /= 10.;
|
---|
| 849 | for(double z=zmin; z<zmax+dz; z+=dz) {
|
---|
| 850 | double d = univ.Dloscom(z);
|
---|
| 851 | if(d<loscom) continue;
|
---|
| 852 | zmax = z;
|
---|
| 853 | //cout<<"ZFrLos: z="<<zmax<<" d="<<d<<" / "<<loscom<<endl;
|
---|
| 854 | break;
|
---|
| 855 | }
|
---|
| 856 | }
|
---|
| 857 | return zmax;
|
---|
| 858 | }
|
---|
| 859 |
|
---|
| 860 | double AngsolEqTelescope(double nu /* GHz */,double telsurf /* m^2 */)
|
---|
| 861 | /*
|
---|
| 862 | Calcul de l'angle solide (sr) equivalent pour un telescope
|
---|
| 863 | de surface totale "telsurf" (m^2) a la frequence "nu" (GHz)
|
---|
| 864 | - Soit D(t) la figure de diffraction du telescope telle que D(t=0)=1
|
---|
| 865 | (t = angle depuis l'axe optique)
|
---|
| 866 | telescope circulaire de diametre D:
|
---|
| 867 | D(t) = [2J1(Pi*D*t/l)/(Pi*D*t/l)]
|
---|
| 868 | telescope rectangulaire axb:
|
---|
| 869 | D(t) = [sin(Pi*a*t/l)/(Pi*a*t/l)]*[sin(Pi*b*t/l)/(Pi*b*t/l)]
|
---|
| 870 | - On cherche l'angle solide equivalent (par ex d'un cylindre de hauteur 1)
|
---|
| 871 | Int[ D(t)^2 dOmega ] = Int[ D(t)^2 2Pi t dt ] = Lambda^2/S
|
---|
| 872 | - En conclusion, pour un ciel d'intensite uniforme I, on a:
|
---|
| 873 | P = I * S * Omega * dNu = I * S * (Lambda^2/S) * dNu
|
---|
| 874 | */
|
---|
| 875 | {
|
---|
| 876 | double lambda = SpeedOfLight_Cst*1000./(nu*1.e9);
|
---|
| 877 | return lambda*lambda / telsurf;
|
---|
| 878 | }
|
---|