source: Sophya/trunk/Cosmo/SimLSS/cmvdefsurv.cc@ 3345

Last change on this file since 3345 was 3344, checked in by cmv, 18 years ago

set schechter mmin=1e8 -> 1e7 cmv 09/10/2007

File size: 23.5 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9
10#include "constcosmo.h"
11#include "cosmocalc.h"
12#include "geneutils.h"
13#include "schechter.h"
14#include "planckspectra.h"
15
16/* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
17cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
18 --- */
19
20inline double rad2deg(double trad) {return trad/M_PI*180.;}
21inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
22inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
23inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
24inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
25inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
26
27void usage(void);
28void usage(void) {
29 cout<<"cmvdefsurv [-r] -x adtx,atxlarg[,unit_x] -y adty,atylarg[,unit_y] -z dred,redlarg[,unit_z] redshift"<<endl
30 <<"----------------"<<endl
31 <<" -x adtx,atxlarg : resolution et largeur dans le plan transverse selon X"<<endl
32 <<" -y adty,atylarg : idem selon Y, si <=0 meme que X"<<endl
33 <<" -z dred,redlarg : resolution et largeur sur la ligne de visee"<<endl
34 <<"-- Unites pour X-Y:"<<endl
35 <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
36 <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
37 <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
38 <<" \'M\' : en distance (pour X-Y-Z) : resolution et largeur Mpc"<<endl
39 <<"----------------"<<endl
40 <<" -O surf,tobs : surface effective (m^2) et temps d\'observation (s)"<<endl
41 <<" -N Tsys : temperature du system (K)"<<endl
42 <<" -L lobewidth,freqlob : taille du lobe d\'observation (FWHM) en arcmin (def= 1\')"<<endl
43 <<" pour la frequence freqlob en MHz"<<endl
44 <<" Si lobewidth<=0 : l'angle solide du lobe = celui du pixel"<<endl
45 <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie"<<endl
46 <<" Si freqlob absent : la frequence de reference 1.4 GHz"<<endl
47 <<" -2 : two polarisations measured"<<endl
48 <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
49 <<" -F : HI flux factor to be applied for our redshift"<<endl
50 <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
51 <<"----------------"<<endl
52 <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
53 <<" (indnu==0 no evolution with freq.)"<<endl
54 <<"----------------"<<endl
55 <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
56 <<"----------------"<<endl
57 <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
58 <<" redshift : redshift moyen du survey"<<endl
59 <<endl;
60}
61
62int main(int narg,char *arg[])
63{
64 // --- Valeurs fixes
65 // WMAP
66 unsigned short flat = 0;
67 double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
68 // Schechter
69 double h75 = h100 / 0.75;
70 double nstar = 0.006*pow(h75,3.); //
71 double mstar = pow(10.,9.8); // MSol
72 double alpha = -1.37;
73 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
74
75 // --- Arguments
76 double adtx=0., atxlarg=0., dx=0.,txlarg=0.;
77 int nx=0; char unit_x = 'A';
78 double adty=-1., atylarg=-1., dy=0.,tylarg=0.;
79 int ny=0; char unit_y = 'A';
80 double dred=0., redlarg=0., dz=0.,tzlarg=0.;
81 int nz=0; char unit_z = 'Z';
82 double redshift = 0.;
83 double tobs = 6000., surfeff = 400000.;
84 // taille du lobe d'observation en arcmin pour la frequence
85 double lobewidth0 = -1., lobefreq0 = Fr_HyperFin_Par*1.e3;
86 double Tsys=75.;
87 // a 408 MHz (Haslam) + evol index a -2.6
88 double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
89 double mhiref = -1.; // reference Mass en HI (def integ schechter)
90 double hifactor = 1.;
91 double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
92 bool ya2polar = false;
93 double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
94 double lflux_agn = -3.;
95
96 // --- Decodage arguments
97 char c;
98 while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:")) != -1) {
99 switch (c) {
100 case 'x' :
101 sscanf(optarg,"%lf,%lf,%c",&adtx,&atxlarg,&unit_x);
102 break;
103 case 'y' :
104 sscanf(optarg,"%lf,%lf,%c",&adty,&atylarg,&unit_y);
105 break;
106 case 'z' :
107 sscanf(optarg,"%lf,%lf,%c",&dred,&redlarg,&unit_z);
108 break;
109 case 'O' :
110 sscanf(optarg,"%lf,%lf",&surfeff,&tobs);
111 break;
112 case 'L' :
113 sscanf(optarg,"%lf,%lf",&lobewidth0,&lobefreq0);
114 break;
115 case 'N' :
116 sscanf(optarg,"%lf",&Tsys);
117 break;
118 case 'S' :
119 sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
120 break;
121 case 'M' :
122 sscanf(optarg,"%lf",&mhiref);
123 break;
124 case 'F' :
125 sscanf(optarg,"%lf",&hifactor);
126 break;
127 case 'V' :
128 sscanf(optarg,"%lf",&vrot);
129 break;
130 case 'U' :
131 sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
132 break;
133 case '2' :
134 ya2polar = true;
135 facpolar = 1.0;
136 break;
137 case 'A' :
138 sscanf(optarg,"%lf",&lflux_agn);
139 break;
140 case 'h' :
141 default :
142 usage(); return -1;
143 }
144 }
145 if(optind>=narg) {usage(); return-1;}
146 sscanf(arg[optind],"%lf",&redshift);
147 if(redshift<=0.) {cout<<"Redshift "<<redshift<<" should be >0"<<endl; return -2;}
148
149 // --- Initialisation de la Cosmologie
150 cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
151 cout<<"h100="<<h100<<" Om0="<<om0<<" Or0="<<or0<<" Or0="
152 <<or0<<" Ol0="<<ol0<<" w0="<<w0<<" flat="<<flat<<endl;
153 cout<<"--- Cosmology for z = "<<redshift<<endl;
154 CosmoCalc univ(flat,true,2.*redshift);
155 double perc=0.01,dzinc=redshift/100.,dzmax=dzinc*10.; unsigned short glorder=4;
156 univ.SetInteg(perc,dzinc,dzmax,glorder);
157 univ.SetDynParam(h100,om0,or0,ol0,w0);
158 univ.Print(0.);
159 univ.Print(redshift);
160
161 double dang = univ.Dang(redshift);
162 double dtrcom = univ.Dtrcom(redshift);
163 double dlum = univ.Dlum(redshift);
164 double dloscom = univ.Dloscom(redshift);
165 double dlosdz = univ.Dhubble()/univ.E(redshift);
166 cout<<"dang="<<dang<<" dlum="<<dlum<<" dtrcom="<<dtrcom
167 <<" dloscom="<<dloscom<<" dlosdz="<<dlosdz<<" Mpc"<<endl;
168
169 cout<<"\n1\" -> "<<dang*sec2rad(1.)<<" Mpc = "<<dtrcom*sec2rad(1.)<<" Mpc com"<<endl;
170 cout<<"1\' -> "<<dang*min2rad(1.)<<" Mpc = "<<dtrcom*min2rad(1.)<<" Mpc com"<<endl;
171 cout<<"1d -> "<<dang*deg2rad(1.)<<" Mpc = "<<dtrcom*deg2rad(1.)<<" Mpc com"<<endl;
172
173 cout<<"dz=1 -> "<<dlosdz<<" Mpc com"<<endl;
174
175 cout<<"1 Mpc los com -> dz = "<<1./dlosdz<<endl;
176 cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom)<<"\" = "
177 <<rad2min(1./dtrcom)<<" \' = "<<rad2deg(1./dtrcom)<<" d"<<endl;
178
179 // --- Mise en forme dans les unites appropriees
180 cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
181 if(adty<=0. || atylarg<=0.) {adty=adtx; atylarg=atxlarg; unit_y=unit_x;}
182 cout<<"X values: resolution="<<adtx<<" largeur="<<atxlarg<<" unite="<<unit_x<<endl;
183 if(unit_x == 'A') {
184 nx = int(atxlarg*60./adtx+0.5);
185 adtx = min2rad(adtx); atxlarg = deg2rad(atxlarg);
186 dx = adtx*dtrcom; txlarg = dx*nx;
187 } else if(unit_x == 'M') {
188 nx = int(atxlarg/adtx+0.5);
189 dx = adtx; txlarg = atxlarg;
190 adtx = dx/dtrcom; atxlarg = adtx*nx;
191 } else {
192 cout<<"Unknown unit_x = "<<unit_x<<endl;
193 }
194 cout<<"Y values: resolution="<<adty<<" largeur="<<atylarg<<" unite="<<unit_y<<endl;
195 if(unit_y == 'A') {
196 ny = int(atylarg*60./adty+0.5);
197 adty = min2rad(adty); atylarg = deg2rad(atylarg);
198 dy = adty*dtrcom; tylarg = dy*ny;
199 } else if(unit_y == 'M') {
200 ny = int(atylarg/adty+0.5);
201 dy = adty; tylarg = atylarg;
202 adty = dy/dtrcom; atylarg = adty*ny;
203 } else {
204 cout<<"Unknown unit_y = "<<unit_y<<endl;
205 }
206 cout<<"Z values: resolution="<<dred<<" largeur="<<redlarg<<" unite="<<unit_z<<endl;
207 if(unit_z == 'Z') {
208 nz = int(redlarg/dred+0.5);
209 dz = dred*dlosdz; tzlarg = dz*nz;
210 } else if(unit_z == 'M') {
211 nz = int(redlarg/dred+0.5);
212 dz = dred; tzlarg = redlarg;
213 dred = dz/dlosdz; redlarg = dred*nz;
214 } else if(unit_z == 'F') {
215 nz = int(redlarg/dred+0.5);
216 dred = dred/(Fr_HyperFin_Par*1.e3)*pow(1.+redshift,2.); redlarg = dred*nz;
217 dz = dred*dlosdz; tzlarg = dz*nz;
218 } else {
219 cout<<"Unknown unit_z = "<<unit_z<<endl;
220 }
221
222 double Npix = (double)nx*(double)ny*(double)nz;
223 double redlim[2] = {redshift-redlarg/2.,redshift+redlarg/2.};
224 if(redlim[0]<=0.)
225 {cout<<"Lower redshift limit "<<redlim[0]<<" should be >0"<<endl; return -3;}
226 double dtrlim[2] = {univ.Dtrcom(redlim[0]),univ.Dtrcom(redlim[1])};
227 double loslim[2] = {univ.Dloscom(redlim[0]), univ.Dloscom(redlim[1])};
228 double dlumlim[2] = {univ.Dlum(redlim[0]),univ.Dlum(redlim[1])};
229
230 cout<<"---- Line of Sight: Redshift = "<<redshift<<endl
231 <<"dred = "<<dred<<" redlarg = "<<redlarg<<endl
232 <<" dz = "<<dz<<" Mpc redlarg = "<<tzlarg<<" Mpc com, nz = "<<nz<<" pix"<<endl;
233 cout<<"---- Transverse X:"<<endl
234 <<"adtx = "<<rad2min(adtx)<<"\', atxlarg = "<<rad2deg(atxlarg)<<" d"<<endl
235 <<" dx = "<<dx<<" Mpc, txlarg = "<<txlarg<<" Mpc com, nx = "<<nx<<" pix"<<endl;
236 cout<<"---- Transverse Y:"<<endl
237 <<"adty = "<<rad2min(adty)<<"\', atylarg = "<<rad2deg(atylarg)<<" d"<<endl
238 <<" dy = "<<dy<<" Mpc, tylarg = "<<tylarg<<" Mpc com, ny = "<<ny<<" pix"<<endl;
239 cout<<"---- Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
240
241 // --- Cosmolographie Transverse
242 cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
243 cout<<"dang comoving = "<<dtrcom<<" Mpc (com) var_in_z ["
244 <<dtrlim[0]<<","<<dtrlim[1]<<"]"<<endl;
245
246 cout<<"... dx = "<<dx<<" Mpc (com), with angle "<<adtx*dtrcom<<endl
247 <<" with angle var_in_z ["<<adtx*dtrlim[0]<<","<<adtx*dtrlim[1]<<"]"<<endl;
248 cout<<"... largx = "<<txlarg<<" Mpc (com), with angle "<<atxlarg*dtrcom<<endl
249 <<" with angle var_in_z ["<<atxlarg*dtrlim[0]<<","<<atxlarg*dtrlim[1]<<"]"<<endl;
250
251 cout<<"... dy = "<<dy<<" Mpc (com), with angle "<<adty*dtrcom<<endl
252 <<" with angle var_in_z ["<<adty*dtrlim[0]<<","<<adty*dtrlim[1]<<"]"<<endl;
253 cout<<"... largy = "<<tylarg<<" Mpc (com), with angle "<<atylarg*dtrcom<<endl
254 <<" with angle var_in_z ["<<atylarg*dtrlim[0]<<","<<atylarg*dtrlim[1]<<"]"<<endl;
255
256 // --- Cosmolographie Line of sight
257 cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
258 cout<<"los comoving distance = "<<dloscom<<" Mpc (com) in ["
259 <<loslim[0]<<","<<loslim[1]<<"]"<<endl
260 <<" diff = "
261 <<loslim[1]-loslim[0]<<" Mpc"<<endl;
262
263 cout<<"...dz = "<<dz<<" Mpc (com), with redshift approx "<<dred*dlosdz<<endl;
264 cout<<"...tzlarg = "<<tzlarg<<" Mpc (com), with redshift approx "<<redlarg*dlosdz<<endl;
265
266 // --- Solid Angle & Volume
267 cout<<"\n>>>>\n>>>> Angles solides et Volumes\n>>>>"<<endl;
268 cout<<"--- Solid angle"<<endl;
269 double angsol = AngSol(adtx/2.,adty/2.,M_PI/2.);
270 cout<<"Elementary solid angle = "<<angsol<<" sr = "<<angsol/(4.*M_PI)<<" *4Pi sr"<<endl;
271 double angsoltot = AngSol(atxlarg/2.,atylarg/2.,M_PI/2.);
272 cout<<"Total solid angle = "<<angsoltot<<" sr = "<<angsoltot/(4.*M_PI)<<" *4Pi sr"<<endl;
273
274 cout<<"\n--- Volume"<<endl;
275 double dvol = dx*dy*dz;
276 cout<<"Pixel volume comoving = "<<dvol<<" Mpc^3"<<endl;
277 double vol = univ.Vol4Pi(redlim[0],redlim[1])/(4.*M_PI)*angsoltot;
278 cout<<"Volume comoving = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
279 <<"Pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
280
281 // --- Fourier space: k = omega = 2*Pi*Nu
282 cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
283 cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
284 double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
285 double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
286 double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
287 cout<<"Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
288 <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl;
289 cout<<"Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
290 <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
291 cout<<"Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl;
292 cout<<"Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
293
294 // --- Masse de HI
295 cout<<"\n>>>>\n>>>> Mass HI\n>>>>"<<endl;
296 Schechter sch(nstar,mstar,alpha);
297 sch.SetOutValue(1);
298 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
299 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
300 int npt = 10000;
301 double lnx1=log10(1.e+6), lnx2=log10(1.e+13), dlnx=(lnx2-lnx1)/npt;
302 double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
303 cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
304
305 double masshipix = masshimpc3*dvol;
306 double masshitot = masshimpc3*vol;
307 cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
308 <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
309 if(mhiref<=0.) mhiref = masshipix;
310
311 sch.SetOutValue(0);
312 cout<<"\nsch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
313 cout<<"Galaxy number density:"<<endl;
314 for(double x=lnx1; x<lnx2-0.5; x+=1.) {
315 double n = IntegrateFuncLog(sch,x,lnx2,0.001,dlnx,10.*dlnx,6);
316 cout<<" m>"<<x<<" Msol: "<<n<<" /Mpc^3, "<<n*dvol<<" /pixel, "
317 <<n*vol<<" in survey"<<endl;
318 }
319 sch.SetOutValue(1);
320
321
322 // --- Survey values
323 cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
324 double unplusz = 1.+redshift;
325 double nuhiz = Fr_HyperFin_Par / unplusz; // GHz
326 // dnu = NuHi/(1.+z0-dz/2) - NuHi/(1.+z0+dz/2)
327 // = NuHi*dz/(1.+z0)^2 * 1/[1-(dz/(2*(1+z0)))^2]
328 // ~= NuHi*dz/(1.+z0)^2
329 double dnuhiz = Fr_HyperFin_Par *dred/(unplusz*unplusz)
330 / (1.- pow(dred/.2/unplusz,2.));
331 cout<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl
332 <<" nu="<<nuhiz<<" GHz, dnu="<<dnuhiz*1.e3<<" Mhz"<<endl;
333 cout<<"dang lumi = "<<dlum<<" in ["<<dlumlim[0]<<","<<dlumlim[1]<<"] Mpc"<<endl;
334
335 double nlobes = 1.;
336 if(lobewidth0>0.) {
337 double lobewidth = lobewidth0; // ArcMin
338 if(lobefreq0<=0.) lobefreq0 = nuhiz*1.e3; // MHz
339 // La taille angulaire du lobe change avec la frequence donc avec le redshift
340 lobewidth *= lobefreq0/(nuhiz*1.e3);
341 cout<<"\n--- Lobe: width="<<lobewidth0<<" pour "<<lobefreq0<<" MHz"<<endl
342 <<" changed to "<<lobewidth<<" pour "<<nuhiz*1.e3<<" MHz"<<endl;
343 double slobe = lobewidth/2.35482; // sigma du lobe en arcmin
344 double lobecyl = sqrt(8.)*slobe; // diametre du lobe cylindrique equiv en arcmin
345 double lobearea = M_PI*lobecyl*lobecyl/4.; // en arcmin^2 (hypothese lobe gaussien)
346 nlobes = rad2min(adtx)*rad2min(adty)/lobearea;
347 cout<<"Beam FWHM = "<<lobewidth<<"\' -> sigma = "<<slobe<<"\' -> "
348 <<" Dcyl = "<<lobecyl<<"\' -> area = "<<lobearea<<" arcmin^2"<<endl;
349 cout<<"Number of beams in one transversal pixel = "<<nlobes<<endl;
350 }
351
352 // --- Power emitted by HI
353 cout<<"\n--- Power from HI for M = "<<mhiref<<" Msol at "<<nuhiz<<" GHz"<<endl;
354 cout<<"flux factor = "<<hifactor<<" at redshift = "<<redshift<<endl;
355
356 double fhi = hifactor*Msol2FluxHI(mhiref,dlum);
357 cout<<"FluxHI("<<dlum<<" Mpc) all polar:"<<endl
358 <<" Flux= "<<fhi<<" W/m^2 = "<<fhi/Jansky2Watt_cst<<" Jy.Hz"<<endl
359 <<" in ["<<hifactor*Msol2FluxHI(mhiref,dlumlim[0])
360 <<","<<hifactor*Msol2FluxHI(mhiref,dlumlim[1])<<"] W/m^2"<<endl;
361 double sfhi = fhi / (dnuhiz*1e9) / Jansky2Watt_cst;
362 cout<<"If spread over pixel depth ("<<dnuhiz<<" GHz), flux density = "<<sfhi<<" Jy"<<endl;
363
364 // --- Signal analysis
365 cout<<"\n--- Signal analysis"<<endl;
366 cout<<"Facteur polar = "<<facpolar<<endl;
367
368 PlanckSpectra planck(T_CMB_Par);
369 planck.SetApprox(1); // Rayleigh spectra
370 planck.SetVar(0); // frequency
371 planck.SetUnitOut(0); // output en W/....
372 planck.SetTypSpectra(0); // radiance W/m^2/Sr/Hz
373
374 // Signal
375 double psig_2polar = fhi * surfeff;
376 double tsig_2polar = psig_2polar / k_Boltzman_Cst / (dnuhiz*1e9);
377 double ssig_2polar = psig_2polar / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
378 double psig = facpolar * psig_2polar;
379 double tsig = facpolar * tsig_2polar;
380 double ssig = facpolar * ssig_2polar;
381 cout<<"\nSignal("<<mhiref<<" Msol):"<<endl
382 <<" P="<<psig<<" W"<<endl
383 <<" flux density = "<<ssig*1.e6<<" mu_Jy (for Dnu="<<dnuhiz<<" GHz)"<<endl
384 <<" Antenna temperature: tsig="<<tsig<<" K"<<endl;
385
386 // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
387 double doplarge = vrot / SpeedOfLight_Cst * nuhiz;
388 double dzvrot = vrot / SpeedOfLight_Cst * unplusz;
389 cout<<" Doppler width="<<doplarge*1.e3<<" MHz for rotation width of "<<vrot<<" km/s"<<endl
390 <<" dx= "<<dzvrot<<" a z="<<redshift<<endl;
391 if(doplarge>dnuhiz)
392 cout<<"Warning: doppler width "<<doplarge<<" GHz > "<<dnuhiz<<" GHz redshift bin width"<<endl;
393
394 // Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
395 double tsynch = Tsynch408;
396 if(fabs(indnu)>1.e-50) tsynch *= pow(nuhiz/nuhaslam,indnu);
397 planck.SetTemperature(tsynch);
398 double psynch_2polar = planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
399 double ssynch_2polar = psynch_2polar / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
400 double psynch = facpolar * psynch_2polar;
401 double ssynch = facpolar * ssynch_2polar;
402 cout<<"\nSynchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "
403 <<tsynch<<" K ("<<nuhiz<<" GHz)"<<endl
404 <<" P="<<psynch<<" W for pixel"<<endl
405 <<" flux density = "<<ssynch<<" Jy for pixel solid angle"<<endl;
406
407 // CMB
408 double tcmb = T_CMB_Par;
409 planck.SetTemperature(tcmb);
410 double pcmb_2polar = planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
411 double scmb_2polar = pcmb_2polar / surfeff / (dnuhiz*1.e+9) / Jansky2Watt_cst;
412 double pcmb = facpolar * pcmb_2polar;
413 double scmb = facpolar * scmb_2polar;
414 cout<<"\nCMB: T="<<tcmb<<" K"<<endl
415 <<" P="<<pcmb<<" W for pixel"<<endl
416 <<" flux density = "<<scmb<<" Jy for pixel solid angle"<<endl;
417
418 // AGN
419 double flux_agn = pow(10.,lflux_agn);
420 double mass_agn = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum);
421 cout<<"\nAGN: log10(S_agn)="<<lflux_agn<<" -> S_agn="
422 <<flux_agn<<" Jy -> "<<mass_agn<<" equiv. Msol/Hz"<<endl;
423 double flux_agn_pix = flux_agn*(dnuhiz*1e9);
424 double mass_agn_pix = FluxHI2Msol(flux_agn_pix*Jansky2Watt_cst,dlum);
425 double lmass_agn_pix = log10(mass_agn_pix);
426 cout<<"...pixel: f="<<flux_agn_pix<<" 10^-26 W/m^2"
427 <<" -> "<<mass_agn_pix<<" Msol -> log10 = "<<lmass_agn_pix<<endl;
428
429 // =====================================================================
430 // ---
431 // --- Noise analysis
432 // ---
433 // --- Puissance du bruit pour un telescope de surface Ae et de BW dNu
434 // Par definition la puissance du bruit est:
435 // Pb = k * Tsys * dNu (W)
436 // Pour une source (non-polarisee) de densite de flux (totale 2 polars)
437 // St (exprimee en Jy=W/m^2/Hz)
438 // Pt = St * Ae * dNu (puissance totale emise en W pour 2 polars)
439 // P1 = 1/2 * St * Ae * dNu (puissance emise en W pour une polar)
440 // la SEFD (system equivalent flux density en Jy) est definie comme
441 // la densite de flux total (2 polars) "St" d'une source (non-polarisee)
442 // dont la puissance P1 mesuree pour une seule polarisation
443 // serait egale a la puissance du bruit. De P1 = Pb on deduit:
444 // SEFD = 2 * k * Tsys / Ae (en Jy)
445 // la puissance du bruit est: Pb = 1/2 * SEFD * Ae * dNu (en W)
446 // la sensibilite Slim tient compte du temps d'integration et de la BW:
447 // le nombre de mesures independantes est "2*dNu*Tobs" donc
448 // Slim = SEFD / sqrt(2*dNu*Tobs) = 2*k*Tsys/[Ae*sqrt(2*dNu*Tobs) (en Jy)
449 // --- Puissance du bruit pour un interferometre
450 // Ae = surface d'un telescope elementaire
451 // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
452 // La sensibilite Slim en Jy est:
453 // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
454 // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
455 // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
456 // - Interferometre a deux antennes:
457 // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
458 // - Interferometre a N antennes (N grand):
459 // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
460 // C'est aussi la formule pour un telescope unique de surface Atot
461 // --- On ne mesure qu'une seule polarisation
462 // Ces formules sont valables si on mesure 1 polarisation:
463 // Slim est la densite de flux total "St" (2 polars) d'une source (non-polarisee)
464 // qui donne la meme puissance que le bruit dans un detecteur qui ne
465 // mesure qu'une seule polarisation:
466 // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
467 // S/N = St / Slim
468 // La puissance de bruit est, par definition:
469 // Pb = 1/2 *Slim*Atot*dNu
470 // = k*Tsys*sqrt(2*dNu/Tobs) pour N=2
471 // = k*Tsys*sqrt(dNu/Tobs) pour N>>grand
472 // La densite de flux d'une source a S/N=1 est:
473 // St = Slim
474 // La puissance d'une source a S/N=1 mesuree par un detecteur
475 // qui ne mesure qu'une polar est:
476 // P1_lim = 1/2 *Slim*Atot*dNu
477 // --- On mesure les 2 polarisations avec deux voies d'electronique distinctes
478 // la puissance du signal mesure est multipliee par 2
479 // la puissance du bruit est multipliee par sqrt(2)
480 // on a donc un gain d'un facteur sqrt(2) sur le rapport S/N
481 // (cela revient d'ailleur a doubler le temps de pose: Tobs -> 2*Tobs)
482 // En notant arbitrairement: Slim' = Slim / sqrt(2)
483 // ou Slim est defini par les formules ci-dessus
484 // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
485 // (S/N)_2 = (S/N)_1 * sqrt(2) = (St / Slim) * sqrt(2) = St / Slim'
486 // La densite de flux d'une source a S/N=1 est:
487 // St = Slim' = Slim / sqrt(2)
488 // La puissance d'une source a S/N=1 cumulee par les 2 detecteurs est:
489 // P_lim = St*Atot*dNu = Slim'*Atot*dNu = 1/sqrt(2) *Slim*Atot*dNu
490 // = P1_lim * sqrt(2)
491 // La puissance de bruit cumulee par les 2 detecteurs est, par definition:
492 // Pb = P_lim = Slim'*Atot*dNu = P1_lim * sqrt(2)
493 // = 2*k*Tsys*sqrt(dNu/Tobs) pour N=2
494 // = k*Tsys*sqrt(2*dNu/Tobs) pour N>>grand
495 // =====================================================================
496
497 cout<<"\n---\n--- Noise analysis \n---"<<endl;
498 double psys = k_Boltzman_Cst * Tsys * (dnuhiz*1.e+9);
499 cout<<"Noise: T="<<Tsys<<" K, P="<<psys<<" W (for Dnu="<<dnuhiz<<" GHz)"<<endl;
500
501 cout<<"...Computation assume that noise dominate the signal."<<endl;
502 if(ya2polar)
503 cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
504
505 double slim,slim_nl,SsN,SsN_nl,smass,smass_nl;
506
507 //---
508 for(unsigned short it=0;it<2;it++) {
509
510 double fac = 1.;
511 if(it==0) { // Interferometre a 2 telescopes
512 fac = 0.5;
513 cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
514 <<" (sensitivity is given for real or complex correlator output)"<<endl;
515 } else if (it==1) { // Interferometre a N>> telescopes
516 fac = 1.;
517 cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
518 <<" (weak source limit sensitivity in a synthetised image)"<<endl
519 <<" Also valid for a single dish telescope."<<endl;
520 } else continue;
521
522 slim = 2. * k_Boltzman_Cst * Tsys / surfeff
523 / sqrt(fac*(dnuhiz*1.e+9)*tobs) /Jansky2Watt_cst;
524 if(ya2polar) slim /= sqrt(2.);
525 SsN = ssig_2polar / slim;
526 smass = mhiref / ssig_2polar * slim;
527 cout<<"for 1 lobe:"<<endl
528 <<" Slim = "<<slim<<" Jy"<<endl
529 <<" S/N = "<<SsN<<endl
530 <<" Mass HI = "<<smass<<" Msol"<<endl;
531
532 slim_nl = slim * sqrt(nlobes);
533 SsN_nl = ssig_2polar / slim_nl;
534 smass_nl = mhiref / ssig_2polar * slim_nl;
535 cout<<"for "<<nlobes<<" lobes:"<<endl
536 <<" Flux = "<<slim_nl<<" Jy"<<endl
537 <<" S/N = "<<SsN_nl<<endl
538 <<" Mass HI = "<<smass_nl<<" Msol"<<endl;
539
540 }
541
542 return 0;
543}
Note: See TracBrowser for help on using the repository browser.