1 | #include "sopnamsp.h"
|
---|
2 | #include "machdefs.h"
|
---|
3 | #include <iostream>
|
---|
4 | #include <stdlib.h>
|
---|
5 | #include <stdio.h>
|
---|
6 | #include <string.h>
|
---|
7 | #include <math.h>
|
---|
8 | #include <unistd.h>
|
---|
9 |
|
---|
10 | #include <vector>
|
---|
11 |
|
---|
12 | #include "constcosmo.h"
|
---|
13 | #include "cosmocalc.h"
|
---|
14 | #include "geneutils.h"
|
---|
15 | #include "schechter.h"
|
---|
16 | #include "pkspectrum.h"
|
---|
17 | #include "planckspectra.h"
|
---|
18 |
|
---|
19 | /* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
|
---|
20 | cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
|
---|
21 | --- */
|
---|
22 |
|
---|
23 | inline double rad2deg(double trad) {return trad/M_PI*180.;}
|
---|
24 | inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
|
---|
25 | inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
|
---|
26 | inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
|
---|
27 | inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
|
---|
28 | inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
|
---|
29 |
|
---|
30 | void usage(void);
|
---|
31 | void usage(void) {
|
---|
32 | cout<<"cmvdefsurv [options] -x adtx,atxlarg[,unit_x] -y adty,atylarg[,unit_y] -z dred,redlarg[,unit_z] redshift"<<endl
|
---|
33 | <<"----------------"<<endl
|
---|
34 | <<" -x adtx,atxlarg : resolution et largeur dans le plan transverse selon X"<<endl
|
---|
35 | <<" -y adty,atylarg : idem selon Y, si <=0 meme que X"<<endl
|
---|
36 | <<" -z dred,redlarg : resolution et largeur sur la ligne de visee"<<endl
|
---|
37 | <<"-- Unites pour X-Y:"<<endl
|
---|
38 | <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
|
---|
39 | <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
|
---|
40 | <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
|
---|
41 | <<" \'M\' : en distance (pour X-Y-Z) : resolution et largeur Mpc"<<endl
|
---|
42 | <<"----------------"<<endl
|
---|
43 | <<" -K k,dk,pk : k(Mpc^-1) dk(Mpc^-1) pk(a z=0 en Mpc^-3) pour estimer la variance cosmique"<<endl
|
---|
44 | <<"----------------"<<endl
|
---|
45 | <<" -O surf,tobs,eta : surface effective (m^2), temps d\'observation (s), efficacite d\'ouverture"<<endl
|
---|
46 | <<" -N Tsys : temperature du system (K)"<<endl
|
---|
47 | <<" -L lobewidth,freqlob : taille du lobe d\'observation (FWHM) en arcmin (def= 1\')"<<endl
|
---|
48 | <<" pour la frequence freqlob en MHz"<<endl
|
---|
49 | <<" Si lobewidth<=0 : l'angle solide du lobe = celui du pixel"<<endl
|
---|
50 | <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie"<<endl
|
---|
51 | <<" Si freqlob absent : la frequence de reference 1.4 GHz"<<endl
|
---|
52 | <<" -2 : two polarisations measured"<<endl
|
---|
53 | <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
|
---|
54 | <<" -F : HI flux factor to be applied for our redshift"<<endl
|
---|
55 | <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
|
---|
56 | <<"----------------"<<endl
|
---|
57 | <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
|
---|
58 | <<" (indnu==0 no evolution with freq.)"<<endl
|
---|
59 | <<"----------------"<<endl
|
---|
60 | <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
|
---|
61 | <<"----------------"<<endl
|
---|
62 | <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
|
---|
63 | <<" redshift : redshift moyen du survey"<<endl
|
---|
64 | <<endl;
|
---|
65 | }
|
---|
66 |
|
---|
67 | int main(int narg,char *arg[])
|
---|
68 | {
|
---|
69 | // --- Valeurs fixes
|
---|
70 | // WMAP
|
---|
71 | unsigned short flat = 0;
|
---|
72 | double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
|
---|
73 | // Schechter
|
---|
74 | double h75 = h100 / 0.75;
|
---|
75 | double nstar = 0.006*pow(h75,3.); //
|
---|
76 | double mstar = pow(10.,9.8); // MSol
|
---|
77 | double alpha = -1.37;
|
---|
78 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
79 |
|
---|
80 | // --- Arguments
|
---|
81 | double adtx=0., atxlarg=0., dx=0.,txlarg=0.;
|
---|
82 | int nx=0; char unit_x = 'A';
|
---|
83 | double adty=-1., atylarg=-1., dy=0.,tylarg=0.;
|
---|
84 | int ny=0; char unit_y = 'A';
|
---|
85 | double dred=0., redlarg=0., dz=0.,tzlarg=0.;
|
---|
86 | int nz=0; char unit_z = 'Z';
|
---|
87 | double redshift = 0.;
|
---|
88 | double tobs = 6000., surftot = 400000., eta_eff = 1.;
|
---|
89 | // variance cosmique (default = standard SDSSII)
|
---|
90 | double kcosm = 0.05, dkcosm = -1., pkcosm = 40000.;
|
---|
91 | // taille du lobe d'observation en arcmin pour la frequence
|
---|
92 | double lobewidth0 = -1., lobefreq0 = Fr_HyperFin_Par*1.e3;
|
---|
93 | double Tsys=75.;
|
---|
94 | // a 408 MHz (Haslam) + evol index a -2.6
|
---|
95 | double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
|
---|
96 | double mhiref = -1.; // reference Mass en HI (def integ schechter)
|
---|
97 | double hifactor = 1.;
|
---|
98 | double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
|
---|
99 | bool ya2polar = false;
|
---|
100 | double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
|
---|
101 | double lflux_agn = -3.;
|
---|
102 |
|
---|
103 | // --- Decodage arguments
|
---|
104 | char c;
|
---|
105 | while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:K:")) != -1) {
|
---|
106 | switch (c) {
|
---|
107 | case 'x' :
|
---|
108 | sscanf(optarg,"%lf,%lf,%c",&adtx,&atxlarg,&unit_x);
|
---|
109 | break;
|
---|
110 | case 'y' :
|
---|
111 | sscanf(optarg,"%lf,%lf,%c",&adty,&atylarg,&unit_y);
|
---|
112 | break;
|
---|
113 | case 'z' :
|
---|
114 | sscanf(optarg,"%lf,%lf,%c",&dred,&redlarg,&unit_z);
|
---|
115 | break;
|
---|
116 | case 'O' :
|
---|
117 | sscanf(optarg,"%lf,%lf,%lf",&surftot,&tobs,&eta_eff);
|
---|
118 | break;
|
---|
119 | case 'L' :
|
---|
120 | sscanf(optarg,"%lf,%lf",&lobewidth0,&lobefreq0);
|
---|
121 | break;
|
---|
122 | case 'N' :
|
---|
123 | sscanf(optarg,"%lf",&Tsys);
|
---|
124 | break;
|
---|
125 | case 'S' :
|
---|
126 | sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
|
---|
127 | break;
|
---|
128 | case 'M' :
|
---|
129 | sscanf(optarg,"%lf",&mhiref);
|
---|
130 | break;
|
---|
131 | case 'F' :
|
---|
132 | sscanf(optarg,"%lf",&hifactor);
|
---|
133 | break;
|
---|
134 | case 'V' :
|
---|
135 | sscanf(optarg,"%lf",&vrot);
|
---|
136 | break;
|
---|
137 | case 'U' :
|
---|
138 | sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
|
---|
139 | break;
|
---|
140 | case '2' :
|
---|
141 | ya2polar = true;
|
---|
142 | facpolar = 1.0;
|
---|
143 | break;
|
---|
144 | case 'A' :
|
---|
145 | sscanf(optarg,"%lf",&lflux_agn);
|
---|
146 | break;
|
---|
147 | case 'K' :
|
---|
148 | sscanf(optarg,"%lf,%lf,%lf",&kcosm,&dkcosm,&pkcosm);
|
---|
149 | break;
|
---|
150 | case 'h' :
|
---|
151 | default :
|
---|
152 | usage(); return -1;
|
---|
153 | }
|
---|
154 | }
|
---|
155 | if(optind>=narg) {usage(); return-1;}
|
---|
156 | sscanf(arg[optind],"%lf",&redshift);
|
---|
157 | if(redshift<=0.) {cout<<"Redshift "<<redshift<<" should be >0"<<endl; return -2;}
|
---|
158 |
|
---|
159 | // --- Initialisation de la Cosmologie
|
---|
160 | cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
|
---|
161 | cout<<"h100="<<h100<<" Om0="<<om0<<" Or0="<<or0<<" Or0="
|
---|
162 | <<or0<<" Ol0="<<ol0<<" w0="<<w0<<" flat="<<flat<<endl;
|
---|
163 | cout<<"--- Cosmology for z = "<<redshift<<endl;
|
---|
164 | CosmoCalc univ(flat,true,2.*redshift);
|
---|
165 | double perc=0.01,dzinc=redshift/100.,dzmax=dzinc*10.; unsigned short glorder=4;
|
---|
166 | univ.SetInteg(perc,dzinc,dzmax,glorder);
|
---|
167 | univ.SetDynParam(h100,om0,or0,ol0,w0);
|
---|
168 | univ.Print(0.);
|
---|
169 | univ.Print(redshift);
|
---|
170 | GrowthFactor growth(om0,ol0);
|
---|
171 | double growthfac = growth(redshift);
|
---|
172 | cout<<"Facteur de croissance lineaire = "<<growthfac
|
---|
173 | <<" ^2 , ( 1/(1+z)="<<1./(1.+redshift)<<" )"<<endl;
|
---|
174 | double rhoc0 = univ.Rhoc(0.)*GCm3toMsolMpc3_Cst;
|
---|
175 | double rhocz = univ.Rhoc(redshift)*GCm3toMsolMpc3_Cst;
|
---|
176 | cout<<"Rho_c a z=0: "<<rhoc0<<", a z="<<redshift<<": "<<rhocz<<" Msol/Mpc^3"<<endl;
|
---|
177 |
|
---|
178 | double dang = univ.Dang(redshift);
|
---|
179 | double dtrcom = univ.Dtrcom(redshift);
|
---|
180 | double dlum = univ.Dlum(redshift);
|
---|
181 | double dloscom = univ.Dloscom(redshift);
|
---|
182 | double dlosdz = univ.Dhubble()/univ.E(redshift);
|
---|
183 | cout<<"dang="<<dang<<" dlum="<<dlum<<" dtrcom="<<dtrcom
|
---|
184 | <<" dloscom="<<dloscom<<" dlosdz="<<dlosdz<<" Mpc"<<endl;
|
---|
185 |
|
---|
186 | cout<<"\n1\" -> "<<dang*sec2rad(1.)<<" Mpc = "<<dtrcom*sec2rad(1.)<<" Mpc com"<<endl;
|
---|
187 | cout<<"1\' -> "<<dang*min2rad(1.)<<" Mpc = "<<dtrcom*min2rad(1.)<<" Mpc com"<<endl;
|
---|
188 | cout<<"1d -> "<<dang*deg2rad(1.)<<" Mpc = "<<dtrcom*deg2rad(1.)<<" Mpc com"<<endl;
|
---|
189 |
|
---|
190 | cout<<"dz=1 -> "<<dlosdz<<" Mpc com"<<endl;
|
---|
191 |
|
---|
192 | cout<<"1 Mpc los com -> dz = "<<1./dlosdz<<endl;
|
---|
193 | cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom)<<"\" = "
|
---|
194 | <<rad2min(1./dtrcom)<<" \' = "<<rad2deg(1./dtrcom)<<" d"<<endl;
|
---|
195 |
|
---|
196 | // --- Mise en forme dans les unites appropriees
|
---|
197 | cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
|
---|
198 | if(adty<=0. || atylarg<=0.) {adty=adtx; atylarg=atxlarg; unit_y=unit_x;}
|
---|
199 | cout<<"X values: resolution="<<adtx<<" largeur="<<atxlarg<<" unite="<<unit_x<<endl;
|
---|
200 | if(unit_x == 'A') {
|
---|
201 | nx = int(atxlarg*60./adtx+0.5);
|
---|
202 | adtx = min2rad(adtx); atxlarg = deg2rad(atxlarg);
|
---|
203 | dx = adtx*dtrcom; txlarg = dx*nx;
|
---|
204 | } else if(unit_x == 'M') {
|
---|
205 | nx = int(atxlarg/adtx+0.5);
|
---|
206 | dx = adtx; txlarg = atxlarg;
|
---|
207 | adtx = dx/dtrcom; atxlarg = adtx*nx;
|
---|
208 | } else {
|
---|
209 | cout<<"Unknown unit_x = "<<unit_x<<endl;
|
---|
210 | }
|
---|
211 | cout<<"Y values: resolution="<<adty<<" largeur="<<atylarg<<" unite="<<unit_y<<endl;
|
---|
212 | if(unit_y == 'A') {
|
---|
213 | ny = int(atylarg*60./adty+0.5);
|
---|
214 | adty = min2rad(adty); atylarg = deg2rad(atylarg);
|
---|
215 | dy = adty*dtrcom; tylarg = dy*ny;
|
---|
216 | } else if(unit_y == 'M') {
|
---|
217 | ny = int(atylarg/adty+0.5);
|
---|
218 | dy = adty; tylarg = atylarg;
|
---|
219 | adty = dy/dtrcom; atylarg = adty*ny;
|
---|
220 | } else {
|
---|
221 | cout<<"Unknown unit_y = "<<unit_y<<endl;
|
---|
222 | }
|
---|
223 | cout<<"Z values: resolution="<<dred<<" largeur="<<redlarg<<" unite="<<unit_z<<endl;
|
---|
224 | if(unit_z == 'Z') {
|
---|
225 | nz = int(redlarg/dred+0.5);
|
---|
226 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
227 | } else if(unit_z == 'M') {
|
---|
228 | nz = int(redlarg/dred+0.5);
|
---|
229 | dz = dred; tzlarg = redlarg;
|
---|
230 | dred = dz/dlosdz; redlarg = dred*nz;
|
---|
231 | } else if(unit_z == 'F') {
|
---|
232 | nz = int(redlarg/dred+0.5);
|
---|
233 | dred = dred/(Fr_HyperFin_Par*1.e3)*pow(1.+redshift,2.); redlarg = dred*nz;
|
---|
234 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
235 | } else {
|
---|
236 | cout<<"Unknown unit_z = "<<unit_z<<endl;
|
---|
237 | }
|
---|
238 |
|
---|
239 | double Npix = (double)nx*(double)ny*(double)nz;
|
---|
240 | double redlim[2] = {redshift-redlarg/2.,redshift+redlarg/2.};
|
---|
241 | if(redlim[0]<=0.)
|
---|
242 | {cout<<"Lower redshift limit "<<redlim[0]<<" should be >0"<<endl; return -3;}
|
---|
243 | double dtrlim[2] = {univ.Dtrcom(redlim[0]),univ.Dtrcom(redlim[1])};
|
---|
244 | double loslim[2] = {univ.Dloscom(redlim[0]), univ.Dloscom(redlim[1])};
|
---|
245 | double dlumlim[2] = {univ.Dlum(redlim[0]),univ.Dlum(redlim[1])};
|
---|
246 |
|
---|
247 | cout<<"---- Line of Sight: Redshift = "<<redshift<<endl
|
---|
248 | <<"dred = "<<dred<<" redlarg = "<<redlarg<<endl
|
---|
249 | <<" dz = "<<dz<<" Mpc redlarg = "<<tzlarg<<" Mpc com, nz = "<<nz<<" pix"<<endl;
|
---|
250 | cout<<"---- Transverse X:"<<endl
|
---|
251 | <<"adtx = "<<rad2min(adtx)<<"\', atxlarg = "<<rad2deg(atxlarg)<<" d"<<endl
|
---|
252 | <<" dx = "<<dx<<" Mpc, txlarg = "<<txlarg<<" Mpc com, nx = "<<nx<<" pix"<<endl;
|
---|
253 | cout<<"---- Transverse Y:"<<endl
|
---|
254 | <<"adty = "<<rad2min(adty)<<"\', atylarg = "<<rad2deg(atylarg)<<" d"<<endl
|
---|
255 | <<" dy = "<<dy<<" Mpc, tylarg = "<<tylarg<<" Mpc com, ny = "<<ny<<" pix"<<endl;
|
---|
256 | cout<<"---- Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
|
---|
257 | cout<<" Volume pixel = "<<dx*dy*dz<<" Mpc^3"<<endl;
|
---|
258 | cout<<" Volume total = "<<Npix*dx*dy*dz<<" Mpc^3"<<endl;
|
---|
259 |
|
---|
260 | // --- Cosmolographie Transverse
|
---|
261 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
|
---|
262 | cout<<"dang comoving = "<<dtrcom<<" Mpc (com) var_in_z ["
|
---|
263 | <<dtrlim[0]<<","<<dtrlim[1]<<"]"<<endl;
|
---|
264 |
|
---|
265 | cout<<"... dx = "<<dx<<" Mpc (com), with angle "<<adtx*dtrcom<<endl
|
---|
266 | <<" with angle var_in_z ["<<adtx*dtrlim[0]<<","<<adtx*dtrlim[1]<<"]"<<endl;
|
---|
267 | cout<<"... largx = "<<txlarg<<" Mpc (com), with angle "<<atxlarg*dtrcom<<endl
|
---|
268 | <<" with angle var_in_z ["<<atxlarg*dtrlim[0]<<","<<atxlarg*dtrlim[1]<<"]"<<endl;
|
---|
269 |
|
---|
270 | cout<<"... dy = "<<dy<<" Mpc (com), with angle "<<adty*dtrcom<<endl
|
---|
271 | <<" with angle var_in_z ["<<adty*dtrlim[0]<<","<<adty*dtrlim[1]<<"]"<<endl;
|
---|
272 | cout<<"... largy = "<<tylarg<<" Mpc (com), with angle "<<atylarg*dtrcom<<endl
|
---|
273 | <<" with angle var_in_z ["<<atylarg*dtrlim[0]<<","<<atylarg*dtrlim[1]<<"]"<<endl;
|
---|
274 |
|
---|
275 | // --- Cosmolographie Line of sight
|
---|
276 | cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
|
---|
277 | cout<<"los comoving distance = "<<dloscom<<" Mpc (com) in ["
|
---|
278 | <<loslim[0]<<","<<loslim[1]<<"]"<<endl
|
---|
279 | <<" diff = "
|
---|
280 | <<loslim[1]-loslim[0]<<" Mpc"<<endl;
|
---|
281 |
|
---|
282 | cout<<"...dz = "<<dz<<" Mpc (com), with redshift approx "<<dred*dlosdz<<endl;
|
---|
283 | cout<<"...tzlarg = "<<tzlarg<<" Mpc (com), with redshift approx "<<redlarg*dlosdz<<endl;
|
---|
284 |
|
---|
285 | // --- Solid Angle & Volume
|
---|
286 | cout<<"\n>>>>\n>>>> Angles solides et Volumes\n>>>>"<<endl;
|
---|
287 | cout<<"--- Solid angle"<<endl;
|
---|
288 | double angsol = AngSol(adtx/2.,adty/2.,M_PI/2.);
|
---|
289 | cout<<"Elementary solid angle = "<<angsol<<" sr = "<<angsol/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
290 | double angsoltot = AngSol(atxlarg/2.,atylarg/2.,M_PI/2.);
|
---|
291 | cout<<"Total solid angle = "<<angsoltot<<" sr = "<<angsoltot/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
292 |
|
---|
293 | cout<<"\n--- Volume"<<endl;
|
---|
294 | double dvol = dx*dy*dz;
|
---|
295 | cout<<"Pixel volume comoving = "<<dvol<<" Mpc^3"<<endl;
|
---|
296 | double vol = univ.Vol4Pi(redlim[0],redlim[1])/(4.*M_PI)*angsoltot;
|
---|
297 | cout<<"Volume comoving = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
|
---|
298 | <<"Pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
|
---|
299 |
|
---|
300 | // --- Fourier space: k = omega = 2*Pi*Nu
|
---|
301 | cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
|
---|
302 | cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
|
---|
303 | double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
|
---|
304 | double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
|
---|
305 | double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
|
---|
306 | cout<<"Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
|
---|
307 | <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl;
|
---|
308 | cout<<"Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
|
---|
309 | <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
|
---|
310 | cout<<"Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl;
|
---|
311 | cout<<"Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
|
---|
312 |
|
---|
313 | // --- Variance cosmique
|
---|
314 | // cosmique poisson
|
---|
315 | // (sigma/P)^2 = 2*(2Pi)^3 / (4Pi k^2 dk Vsurvey) * [(1+n*P)/(n*P)]^2
|
---|
316 | // nombre de mode = 1/2 * Vsurvey/(2Pi)^3 * 4Pi*k^2*dk
|
---|
317 | if(kcosm>0. && pkcosm>0.) {
|
---|
318 | double pk = pkcosm*pow(growthfac,2.);
|
---|
319 | cout<<"\n>>>>\n>>>> variance cosmique pour k="<<kcosm<<" Mpc^-1, pk(z=0)="
|
---|
320 | <<pkcosm<<", pk(z="<<redshift<<")="<<pk<<"\n>>>>"<<endl;
|
---|
321 | for(int i=0;i<3;i++) { // la correction de variance du au bruit de poisson
|
---|
322 | double v = 1.1; if(i==1) v=1.5; if(i==2) v=2.0;
|
---|
323 | double ngal = 1./(v-1.)/pk;
|
---|
324 | cout<<" pour "<<ngal<<" gal/Mpc^3 on multiplie par "<<v<<" sigma/P"<<endl;
|
---|
325 | }
|
---|
326 | vector<double> dk; if(dkcosm>0.) dk.push_back(dkcosm);
|
---|
327 | dk.push_back(dk_x); dk.push_back(dk_y); dk.push_back(dk_z);
|
---|
328 | for(int i=0;i<(int)dk.size();i++) { // la variance cosmique pure
|
---|
329 | double vcosm = sqrt( 2.*pow(2.*M_PI,3.)/(4.*M_PI*pow(kcosm,2.)*dk[i]*vol) );
|
---|
330 | double nmode = 0.5*vol/pow(2.*M_PI,3.) * 4.*M_PI*pow(kcosm,2.)*dk[i];
|
---|
331 | cout<<" pour dk = "<<dk[i]<<" Mpc^-1: sigma/P = "<<vcosm
|
---|
332 | <<" , Nmode = "<<nmode<<endl;
|
---|
333 | }
|
---|
334 | }
|
---|
335 |
|
---|
336 | // --- Masse de HI
|
---|
337 | cout<<"\n>>>>\n>>>> Mass HI\n>>>>"<<endl;
|
---|
338 | Schechter sch(nstar,mstar,alpha);
|
---|
339 | sch.SetOutValue(1);
|
---|
340 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
341 | cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
|
---|
342 | int npt = 10000;
|
---|
343 | double lnx1=log10(1.e+6), lnx2=log10(1.e+13), dlnx=(lnx2-lnx1)/npt;
|
---|
344 | double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
345 | cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
|
---|
346 |
|
---|
347 | double masshipix = masshimpc3*dvol;
|
---|
348 | double masshitot = masshimpc3*vol;
|
---|
349 | cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
|
---|
350 | <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
|
---|
351 | cout<<"OmegaHI a z=0: "<<masshimpc3/rhoc0
|
---|
352 | <<", a z="<<redshift<<": "<<masshimpc3/rhocz<<endl;
|
---|
353 | if(mhiref<=0.) mhiref = masshipix;
|
---|
354 |
|
---|
355 | sch.SetOutValue(0);
|
---|
356 | cout<<"\nsch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
|
---|
357 | cout<<"Galaxy number density:"<<endl;
|
---|
358 | for(double x=lnx1; x<lnx2-0.5; x+=1.) {
|
---|
359 | double n = IntegrateFuncLog(sch,x,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
360 | cout<<" m>"<<x<<" Msol: "<<n<<" /Mpc^3, "<<n*dvol<<" /pixel, "
|
---|
361 | <<n*vol<<" in survey"<<endl;
|
---|
362 | }
|
---|
363 | sch.SetOutValue(1);
|
---|
364 |
|
---|
365 |
|
---|
366 | // --- Survey values
|
---|
367 | cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
|
---|
368 | double surfeff = surftot * eta_eff;
|
---|
369 | double unplusz = 1.+redshift;
|
---|
370 | double nuhiz = Fr_HyperFin_Par / unplusz; // GHz
|
---|
371 | // dnu = NuHi/(1.+z0-dz/2) - NuHi/(1.+z0+dz/2)
|
---|
372 | // = NuHi*dz/(1.+z0)^2 * 1/[1-(dz/(2*(1+z0)))^2]
|
---|
373 | // ~= NuHi*dz/(1.+z0)^2
|
---|
374 | double dnuhiz = Fr_HyperFin_Par *dred/(unplusz*unplusz)
|
---|
375 | / (1.- pow(dred/.2/unplusz,2.));
|
---|
376 | cout<<" surf="<<surftot<<" m^2, eta="<<eta_eff<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl
|
---|
377 | <<" nu="<<nuhiz<<" GHz, dnu="<<dnuhiz*1.e3<<" Mhz"<<endl;
|
---|
378 | cout<<"dang lumi = "<<dlum<<" in ["<<dlumlim[0]<<","<<dlumlim[1]<<"] Mpc"<<endl;
|
---|
379 |
|
---|
380 | double nlobes = 1.;
|
---|
381 | if(lobewidth0>0.) {
|
---|
382 | double lobewidth = lobewidth0; // ArcMin
|
---|
383 | if(lobefreq0<=0.) lobefreq0 = nuhiz*1.e3; // MHz
|
---|
384 | // La taille angulaire du lobe change avec la frequence donc avec le redshift
|
---|
385 | lobewidth *= lobefreq0/(nuhiz*1.e3);
|
---|
386 | cout<<"\n--- Lobe: width="<<lobewidth0<<" pour "<<lobefreq0<<" MHz"<<endl
|
---|
387 | <<" changed to "<<lobewidth<<" pour "<<nuhiz*1.e3<<" MHz"<<endl;
|
---|
388 | double slobe = lobewidth/2.35482; // sigma du lobe en arcmin
|
---|
389 | double lobecyl = sqrt(8.)*slobe; // diametre du lobe cylindrique equiv en arcmin
|
---|
390 | double lobearea = M_PI*lobecyl*lobecyl/4.; // en arcmin^2 (hypothese lobe gaussien)
|
---|
391 | nlobes = rad2min(adtx)*rad2min(adty)/lobearea;
|
---|
392 | cout<<"Beam FWHM = "<<lobewidth<<"\' -> sigma = "<<slobe<<"\' -> "
|
---|
393 | <<" Dcyl = "<<lobecyl<<"\' -> area = "<<lobearea<<" arcmin^2"<<endl;
|
---|
394 | cout<<"Number of beams in one transversal pixel = "<<nlobes<<endl;
|
---|
395 | }
|
---|
396 |
|
---|
397 | // --- Power emitted by HI
|
---|
398 | cout<<"\n--- Power from HI for M = "<<mhiref<<" Msol at "<<nuhiz<<" GHz"<<endl;
|
---|
399 | cout<<"flux factor = "<<hifactor<<" at redshift = "<<redshift<<endl;
|
---|
400 |
|
---|
401 | double fhi = hifactor*Msol2FluxHI(mhiref,dlum);
|
---|
402 | cout<<"FluxHI("<<dlum<<" Mpc) all polar:"<<endl
|
---|
403 | <<" Flux= "<<fhi<<" W/m^2 = "<<fhi/Jansky2Watt_cst<<" Jy.Hz"<<endl
|
---|
404 | <<" in ["<<hifactor*Msol2FluxHI(mhiref,dlumlim[0])
|
---|
405 | <<","<<hifactor*Msol2FluxHI(mhiref,dlumlim[1])<<"] W/m^2"<<endl;
|
---|
406 | double sfhi = fhi / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
407 | cout<<"If spread over pixel depth ("<<dnuhiz<<" GHz), flux density = "<<sfhi*1.e6<<" mu_Jy"<<endl;
|
---|
408 |
|
---|
409 | // --- Signal analysis
|
---|
410 | cout<<"\n--- Signal analysis"<<endl;
|
---|
411 | cout<<"Facteur polar = "<<facpolar<<endl;
|
---|
412 |
|
---|
413 | PlanckSpectra planck(T_CMB_Par);
|
---|
414 | planck.SetSpectraApprox(PlanckSpectra::RAYLEIGH); // Rayleigh spectra
|
---|
415 | planck.SetSpectraVar(PlanckSpectra::NU); // frequency
|
---|
416 | planck.SetSpectraPower(PlanckSpectra::POWER); // output en W/....
|
---|
417 | planck.SetSpectraUnit(PlanckSpectra::ANGSFLUX); // radiance W/m^2/Sr/Hz
|
---|
418 |
|
---|
419 | // Signal
|
---|
420 | double psig_2polar = fhi * surfeff;
|
---|
421 | double tsig_2polar = psig_2polar / k_Boltzman_Cst / (dnuhiz*1e9);
|
---|
422 | double ssig_2polar = psig_2polar / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
423 | double psig = facpolar * psig_2polar;
|
---|
424 | double tsig = facpolar * tsig_2polar;
|
---|
425 | double ssig = facpolar * ssig_2polar;
|
---|
426 | cout<<"\nSignal("<<mhiref<<" Msol):"<<endl
|
---|
427 | <<" P="<<psig<<" W"<<endl
|
---|
428 | <<" flux density = "<<ssig*1.e6<<" mu_Jy (for Dnu="<<dnuhiz<<" GHz)"<<endl
|
---|
429 | <<" ("<<ssig_2polar<<" mu_Jy for 2 polars)"<<endl
|
---|
430 | <<" Antenna temperature: tsig="<<tsig<<" K"<<endl;
|
---|
431 |
|
---|
432 | // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
|
---|
433 | double doplarge = vrot / SpeedOfLight_Cst * nuhiz;
|
---|
434 | double dzvrot = vrot / SpeedOfLight_Cst * unplusz;
|
---|
435 | cout<<" Doppler width="<<doplarge*1.e3<<" MHz for rotation width of "<<vrot<<" km/s"<<endl
|
---|
436 | <<" dx= "<<dzvrot<<" a z="<<redshift<<endl;
|
---|
437 | if(doplarge>dnuhiz)
|
---|
438 | cout<<"Warning: doppler width "<<doplarge<<" GHz > "<<dnuhiz<<" GHz redshift bin width"<<endl;
|
---|
439 |
|
---|
440 | // Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
|
---|
441 | double tsynch = Tsynch408;
|
---|
442 | if(fabs(indnu)>1.e-50) tsynch *= pow(nuhiz/nuhaslam,indnu);
|
---|
443 | planck.SetTemperature(tsynch);
|
---|
444 | double psynch_2polar = planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
445 | double ssynch_2polar = psynch_2polar / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
446 | double psynch = facpolar * psynch_2polar;
|
---|
447 | double ssynch = facpolar * ssynch_2polar;
|
---|
448 | cout<<"\nSynchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "
|
---|
449 | <<tsynch<<" K ("<<nuhiz<<" GHz)"<<endl
|
---|
450 | <<" P="<<psynch<<" W for pixel"<<endl
|
---|
451 | <<" flux density = "<<ssynch<<" Jy for pixel solid angle"<<endl;
|
---|
452 |
|
---|
453 | // CMB
|
---|
454 | double tcmb = T_CMB_Par;
|
---|
455 | planck.SetTemperature(tcmb);
|
---|
456 | double pcmb_2polar = planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
457 | double scmb_2polar = pcmb_2polar / surfeff / (dnuhiz*1.e+9) / Jansky2Watt_cst;
|
---|
458 | double pcmb = facpolar * pcmb_2polar;
|
---|
459 | double scmb = facpolar * scmb_2polar;
|
---|
460 | cout<<"\nCMB: T="<<tcmb<<" K"<<endl
|
---|
461 | <<" P="<<pcmb<<" W for pixel"<<endl
|
---|
462 | <<" flux density = "<<scmb<<" Jy for pixel solid angle"<<endl;
|
---|
463 |
|
---|
464 | // AGN
|
---|
465 | double flux_agn = pow(10.,lflux_agn);
|
---|
466 | double mass_agn = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum);
|
---|
467 | cout<<"\nAGN: log10(S_agn)="<<lflux_agn<<" -> S_agn="
|
---|
468 | <<flux_agn<<" Jy -> "<<mass_agn<<" equiv. Msol/Hz"<<endl;
|
---|
469 | double flux_agn_pix = flux_agn*(dnuhiz*1e9);
|
---|
470 | double mass_agn_pix = FluxHI2Msol(flux_agn_pix*Jansky2Watt_cst,dlum);
|
---|
471 | double lmass_agn_pix = log10(mass_agn_pix);
|
---|
472 | cout<<"...pixel: f="<<flux_agn_pix<<" 10^-26 W/m^2"
|
---|
473 | <<" -> "<<mass_agn_pix<<" Msol -> log10 = "<<lmass_agn_pix<<endl;
|
---|
474 |
|
---|
475 | // =====================================================================
|
---|
476 | // ---
|
---|
477 | // --- Noise analysis
|
---|
478 | // ---
|
---|
479 | // --- Puissance du bruit pour un telescope de surface Ae et de BW dNu
|
---|
480 | // Par definition la puissance du bruit est:
|
---|
481 | // Pb = k * Tsys * dNu (W)
|
---|
482 | // Pour une source (non-polarisee) de densite de flux (totale 2 polars)
|
---|
483 | // St (exprimee en Jy = 10^-26 W/m^2/Hz)
|
---|
484 | // Pt = St * Ae * dNu (puissance totale emise en W pour 2 polars)
|
---|
485 | // P1 = 1/2 * St * Ae * dNu (puissance emise en W pour une polar)
|
---|
486 | // la SEFD (system equivalent flux density en Jy) est definie comme
|
---|
487 | // la densite de flux total (2 polars) "St" d'une source (non-polarisee)
|
---|
488 | // dont la puissance P1 mesuree pour une seule polarisation
|
---|
489 | // serait egale a la puissance du bruit. De P1 = Pb on deduit:
|
---|
490 | // SEFD = 2 * k * Tsys / Ae (en Jy)
|
---|
491 | // la puissance du bruit est: Pb = 1/2 * SEFD * Ae * dNu (en W)
|
---|
492 | // la sensibilite Slim tient compte du temps d'integration et de la BW:
|
---|
493 | // le nombre de mesures independantes est "2*dNu*Tobs" donc
|
---|
494 | // Slim = SEFD / sqrt(2*dNu*Tobs) = 2*k*Tsys/[Ae*sqrt(2*dNu*Tobs) (en Jy)
|
---|
495 | // --- Puissance du bruit pour un interferometre
|
---|
496 | // Ae = surface d'un telescope elementaire
|
---|
497 | // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
|
---|
498 | // La sensibilite Slim en Jy est:
|
---|
499 | // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
|
---|
500 | // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
|
---|
501 | // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
|
---|
502 | // - Interferometre a deux antennes:
|
---|
503 | // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
|
---|
504 | // - Interferometre a N antennes (N grand):
|
---|
505 | // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
|
---|
506 | // C'est aussi la formule pour un telescope unique de surface Atot
|
---|
507 | // --- On ne mesure qu'une seule polarisation
|
---|
508 | // Ces formules sont valables si on mesure 1 polarisation:
|
---|
509 | // Slim est la densite de flux total "St" (2 polars) d'une source (non-polarisee)
|
---|
510 | // qui donne la meme puissance que le bruit dans un detecteur qui ne
|
---|
511 | // mesure qu'une seule polarisation:
|
---|
512 | // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
|
---|
513 | // S/N = St / Slim
|
---|
514 | // La puissance de bruit est, par definition:
|
---|
515 | // Pb = 1/2 *Slim*Atot*dNu
|
---|
516 | // = k*Tsys*sqrt(2*dNu/Tobs) pour N=2
|
---|
517 | // = k*Tsys*sqrt(dNu/Tobs) pour N>>grand
|
---|
518 | // La densite de flux d'une source a S/N=1 est:
|
---|
519 | // St = Slim
|
---|
520 | // La puissance d'une source a S/N=1 mesuree par un detecteur
|
---|
521 | // qui ne mesure qu'une polar est:
|
---|
522 | // P1_lim = 1/2 *Slim*Atot*dNu
|
---|
523 | // --- On mesure les 2 polarisations avec deux voies d'electronique distinctes
|
---|
524 | // la puissance du signal mesure est multipliee par 2
|
---|
525 | // la puissance du bruit est multipliee par sqrt(2)
|
---|
526 | // on a donc un gain d'un facteur sqrt(2) sur le rapport S/N
|
---|
527 | // (cela revient d'ailleur a doubler le temps de pose: Tobs -> 2*Tobs)
|
---|
528 | // En notant arbitrairement: Slim' = Slim / sqrt(2)
|
---|
529 | // ou Slim est defini par les formules ci-dessus
|
---|
530 | // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
|
---|
531 | // (S/N)_2 = (S/N)_1 * sqrt(2) = (St / Slim) * sqrt(2) = St / Slim'
|
---|
532 | // La densite de flux d'une source a S/N=1 est:
|
---|
533 | // St = Slim' = Slim / sqrt(2)
|
---|
534 | // La puissance d'une source a S/N=1 cumulee par les 2 detecteurs est:
|
---|
535 | // P_lim = St*Atot*dNu = Slim'*Atot*dNu = 1/sqrt(2) *Slim*Atot*dNu
|
---|
536 | // = P1_lim * sqrt(2)
|
---|
537 | // La puissance de bruit cumulee par les 2 detecteurs est, par definition:
|
---|
538 | // Pb = P_lim = Slim'*Atot*dNu = P1_lim * sqrt(2)
|
---|
539 | // = 2*k*Tsys*sqrt(dNu/Tobs) pour N=2
|
---|
540 | // = k*Tsys*sqrt(2*dNu/Tobs) pour N>>grand
|
---|
541 | // =====================================================================
|
---|
542 |
|
---|
543 | cout<<"\n---\n--- Noise analysis \n---"<<endl;
|
---|
544 | double psys = k_Boltzman_Cst * Tsys * (dnuhiz*1.e+9);
|
---|
545 | cout<<"Noise: T="<<Tsys<<" K, P="<<psys<<" W (for Dnu="<<dnuhiz<<" GHz)"<<endl;
|
---|
546 |
|
---|
547 | cout<<"...Computation assume that noise dominate the signal."<<endl;
|
---|
548 | if(ya2polar)
|
---|
549 | cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
|
---|
550 |
|
---|
551 | double slim,slim_nl,SsN,SsN_nl,smass,smass_nl;
|
---|
552 |
|
---|
553 | //---
|
---|
554 | for(unsigned short it=0;it<2;it++) {
|
---|
555 |
|
---|
556 | double fac = 1.;
|
---|
557 | if(it==0) { // Interferometre a 2 telescopes
|
---|
558 | fac = 0.5;
|
---|
559 | cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
|
---|
560 | <<" (sensitivity is given for real or complex correlator output)"<<endl;
|
---|
561 | } else if (it==1) { // Interferometre a N>> telescopes
|
---|
562 | fac = 1.;
|
---|
563 | cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
|
---|
564 | <<" (weak source limit sensitivity in a synthetised image)"<<endl
|
---|
565 | <<" Also valid for a single dish telescope."<<endl;
|
---|
566 | } else continue;
|
---|
567 |
|
---|
568 | slim = 2. * k_Boltzman_Cst * Tsys / surfeff
|
---|
569 | / sqrt(fac*(dnuhiz*1.e+9)*tobs) /Jansky2Watt_cst;
|
---|
570 | if(ya2polar) slim /= sqrt(2.);
|
---|
571 | SsN = ssig_2polar / slim;
|
---|
572 | smass = mhiref / ssig_2polar * slim;
|
---|
573 | cout<<"for 1 lobe:"<<endl
|
---|
574 | <<" Slim = "<<slim*1.e6<<" mu_Jy"<<endl
|
---|
575 | <<" S/N = "<<SsN<<endl
|
---|
576 | <<" Mass HI = "<<smass<<" Msol"<<endl;
|
---|
577 |
|
---|
578 | slim_nl = slim * sqrt(nlobes);
|
---|
579 | SsN_nl = ssig_2polar / slim_nl;
|
---|
580 | smass_nl = mhiref / ssig_2polar * slim_nl;
|
---|
581 | cout<<"for "<<nlobes<<" lobes:"<<endl
|
---|
582 | <<" Flux = "<<slim_nl*1.e6<<" mu_Jy"<<endl
|
---|
583 | <<" S/N = "<<SsN_nl<<endl
|
---|
584 | <<" Mass HI = "<<smass_nl<<" Msol"<<endl;
|
---|
585 |
|
---|
586 | }
|
---|
587 |
|
---|
588 | return 0;
|
---|
589 | }
|
---|