1 | #include "sopnamsp.h"
|
---|
2 | #include "machdefs.h"
|
---|
3 | #include <iostream>
|
---|
4 | #include <stdlib.h>
|
---|
5 | #include <stdio.h>
|
---|
6 | #include <string.h>
|
---|
7 | #include <math.h>
|
---|
8 | #include <unistd.h>
|
---|
9 |
|
---|
10 | #include "constcosmo.h"
|
---|
11 | #include "cosmocalc.h"
|
---|
12 | #include "geneutils.h"
|
---|
13 | #include "schechter.h"
|
---|
14 | #include "planckspectra.h"
|
---|
15 |
|
---|
16 | /* --- Check Peterson at al. astro-ph/0606104 v1
|
---|
17 | cmvdefsurv -z 0.0025 -x 1 -U 0.75,0.3,0.7,-1,1 -V 300 -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
|
---|
18 | --- */
|
---|
19 |
|
---|
20 | inline double rad2deg(double trad) {return trad/M_PI*180.;}
|
---|
21 | inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
|
---|
22 | inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
|
---|
23 | inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
|
---|
24 | inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
|
---|
25 | inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
|
---|
26 |
|
---|
27 | void usage(void);
|
---|
28 | void usage(void) {
|
---|
29 | cout<<"cmvdefsurv [-r] -x adtx,atxlarg [-y adty,atylarg] -z dred,redlarg redshift"<<endl
|
---|
30 | <<" -x adtx,atxlarg : resolution en Theta_x (arcmin), largeur (degre)"<<endl
|
---|
31 | <<" -y adty,atylarg : idem selon y, si <=0 meme que x"<<endl
|
---|
32 | <<" -z dred,redlarg : resolution en redshift, largeur en redshift"<<endl
|
---|
33 | <<" -P : on donne -x -y -z en Mpc au lieu d\'angles et de redshift"<<endl
|
---|
34 | <<" -L lobewidth : taille du lobe d\'observation (FWHM) en arcmin (def= 1\')"<<endl
|
---|
35 | <<" -O surf,tobs : surface effective (m^2) et temps d\'observation (s)"<<endl
|
---|
36 | <<" -N Tsys : temperature du system (K)"<<endl
|
---|
37 | <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
|
---|
38 | <<" (indnu==0 no evolution with freq.)"<<endl
|
---|
39 | <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
|
---|
40 | <<" -F : HI flux factor to be applied for our redshift"<<endl
|
---|
41 | <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
|
---|
42 | <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
|
---|
43 | <<" -2 : two polarisations measured"<<endl
|
---|
44 | <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
|
---|
45 | <<" redshift : redshift moyen du survey"<<endl
|
---|
46 | <<endl;
|
---|
47 | }
|
---|
48 |
|
---|
49 | int main(int narg,char *arg[])
|
---|
50 | {
|
---|
51 | // --- Valeurs fixes
|
---|
52 | // WMAP
|
---|
53 | unsigned short flat = 0;
|
---|
54 | double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
|
---|
55 | // Schechter
|
---|
56 | double h75 = h100 / 0.75;
|
---|
57 | double nstar = 0.006*pow(h75,3.); //
|
---|
58 | double mstar = pow(10.,9.8/(h75*h75)); // MSol
|
---|
59 | double alpha = -1.37;
|
---|
60 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
61 |
|
---|
62 | // --- Arguments
|
---|
63 | bool inmpc = false;
|
---|
64 | double adtx=1., atxlarg=90., adty=-1., atylarg=-1.;
|
---|
65 | double dx=1.,txlarg=1000., dy=-1.,tylarg=1000., dz=1.,tzlarg=100.;
|
---|
66 | int nx,ny,nz;
|
---|
67 | double redshift = 1., dred=0.01, redlarg=0.3;
|
---|
68 | double tobs = 6000., surfeff = 400000.;
|
---|
69 | double lobewidth = 1.; // taille du lobe d'observation en arcmin
|
---|
70 | double Tsys=75.;
|
---|
71 | // a 408 MHz (Haslam) + evol index a -2.6
|
---|
72 | double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
|
---|
73 | double mhiref = -1.; // reference Mass en HI (def integ schechter)
|
---|
74 | double hifactor = 1.;
|
---|
75 | double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
|
---|
76 | double facpolar = 0.5; // si on ne mesure les 2 polars -> 1.0
|
---|
77 | double lflux_agn = -3.;
|
---|
78 |
|
---|
79 | // --- Decodage arguments
|
---|
80 | char c;
|
---|
81 | while((c = getopt(narg,arg,"hP2x:y:z:N:S:O:M:F:V:U:L:A:")) != -1) {
|
---|
82 | switch (c) {
|
---|
83 | case 'P' :
|
---|
84 | inmpc = true;
|
---|
85 | break;
|
---|
86 | case 'x' :
|
---|
87 | sscanf(optarg,"%lf,%lf",&adtx,&atxlarg);
|
---|
88 | break;
|
---|
89 | case 'y' :
|
---|
90 | sscanf(optarg,"%lf,%lf",&adty,&atylarg);
|
---|
91 | break;
|
---|
92 | case 'z' :
|
---|
93 | sscanf(optarg,"%lf,%lf",&dred,&redlarg);
|
---|
94 | break;
|
---|
95 | case 'O' :
|
---|
96 | sscanf(optarg,"%lf,%lf",&surfeff,&tobs);
|
---|
97 | break;
|
---|
98 | case 'L' :
|
---|
99 | sscanf(optarg,"%lf",&lobewidth);
|
---|
100 | break;
|
---|
101 | case 'N' :
|
---|
102 | sscanf(optarg,"%lf",&Tsys);
|
---|
103 | break;
|
---|
104 | case 'S' :
|
---|
105 | sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
|
---|
106 | break;
|
---|
107 | case 'M' :
|
---|
108 | sscanf(optarg,"%lf",&mhiref);
|
---|
109 | break;
|
---|
110 | case 'F' :
|
---|
111 | sscanf(optarg,"%lf",&hifactor);
|
---|
112 | break;
|
---|
113 | case 'V' :
|
---|
114 | sscanf(optarg,"%lf",&vrot);
|
---|
115 | break;
|
---|
116 | case 'U' :
|
---|
117 | sscanf(optarg,"%lf,%lf,%lf,%lf,%u",&h100,&om0,&ol0,&w0,&flat);
|
---|
118 | break;
|
---|
119 | case '2' :
|
---|
120 | facpolar = 1.0;
|
---|
121 | break;
|
---|
122 | case 'A' :
|
---|
123 | sscanf(optarg,"%lf",&lflux_agn);
|
---|
124 | break;
|
---|
125 | case 'h' :
|
---|
126 | default :
|
---|
127 | usage(); return -1;
|
---|
128 | }
|
---|
129 | }
|
---|
130 | if(optind>=narg) {usage(); return-1;}
|
---|
131 | sscanf(arg[optind],"%lf",&redshift);
|
---|
132 | if(redshift<=0.) {cout<<"Redshift "<<redshift<<" should be >0"<<endl; return -2;}
|
---|
133 |
|
---|
134 | // --- Initialisation de la Cosmologie
|
---|
135 | cout<<"\nh100="<<h100<<" Om0="<<om0<<" Or0="<<or0<<" Or0="
|
---|
136 | <<or0<<" Ol0="<<ol0<<" w0="<<w0<<" flat="<<flat<<endl;
|
---|
137 | cout<<"\n--- Cosmology for z = "<<redshift<<endl;
|
---|
138 | CosmoCalc univ(flat,true,2.*redshift);
|
---|
139 | double perc=0.01,dzinc=redshift/100.,dzmax=dzinc*10.; unsigned short glorder=4;
|
---|
140 | univ.SetInteg(perc,dzinc,dzmax,glorder);
|
---|
141 | univ.SetDynParam(h100,om0,or0,ol0,w0);
|
---|
142 | univ.Print(0.);
|
---|
143 | univ.Print(redshift);
|
---|
144 |
|
---|
145 | double dang = univ.Dang(redshift);
|
---|
146 | double dtrcom = univ.Dtrcom(redshift);
|
---|
147 | double dlum = univ.Dlum(redshift);
|
---|
148 | double dloscom = univ.Dloscom(redshift);
|
---|
149 | double dlosdz = univ.Dhubble()/univ.E(redshift);
|
---|
150 | cout<<"dang="<<dang<<" dlum="<<dlum<<" dtrcom="<<dtrcom
|
---|
151 | <<" dloscom="<<dloscom<<" dlosdz="<<dlosdz<<" Mpc"<<endl;
|
---|
152 |
|
---|
153 | cout<<"\n1\" -> "<<dang*sec2rad(1.)<<" Mpc = "<<dtrcom*sec2rad(1.)<<" Mpc com"<<endl;
|
---|
154 | cout<<"1\' -> "<<dang*min2rad(1.)<<" Mpc = "<<dtrcom*min2rad(1.)<<" Mpc com"<<endl;
|
---|
155 | cout<<"1d -> "<<dang*deg2rad(1.)<<" Mpc = "<<dtrcom*deg2rad(1.)<<" Mpc com"<<endl;
|
---|
156 |
|
---|
157 | cout<<"dz=1 -> "<<dlosdz<<" Mpc com"<<endl;
|
---|
158 |
|
---|
159 | cout<<"1 Mpc los com -> dz = "<<1./dlosdz<<endl;
|
---|
160 | cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom)<<"\" = "
|
---|
161 | <<rad2min(1./dtrcom)<<" \' = "<<rad2deg(1./dtrcom)<<" d"<<endl;
|
---|
162 |
|
---|
163 | // --- Mise en forme dans les unites appropriees
|
---|
164 | if(adty<=0.) adty=adtx;
|
---|
165 | if(atylarg<=0.) atylarg=atxlarg;
|
---|
166 | if(inmpc) {
|
---|
167 | dx = adtx; txlarg = atxlarg; nx = int(txlarg/dx+0.5);
|
---|
168 | dy = adty; txlarg = atxlarg; ny = int(tylarg/dy+0.5);
|
---|
169 | dz = dred; tzlarg = redlarg; nz = int(tzlarg/dz+0.5);
|
---|
170 | adtx = dx/dtrcom; atxlarg = adtx*nx;
|
---|
171 | adty = dy/dtrcom; atylarg = adty*ny;
|
---|
172 | dred = dz/dlosdz; redlarg = dred*nz;
|
---|
173 | } else {
|
---|
174 | adtx = min2rad(adtx); atxlarg = deg2rad(atxlarg); nx = int(atxlarg/adtx+0.5);
|
---|
175 | adty = min2rad(adty); atylarg = deg2rad(atylarg); ny = int(atylarg/adty+0.5);
|
---|
176 | nz = int(redlarg/dred+0.5);
|
---|
177 | dx = adtx*dtrcom; txlarg = dx*nx;
|
---|
178 | dy = adty*dtrcom; tylarg = dy*ny;
|
---|
179 | dz = dred*dlosdz; tzlarg = dz*nz;
|
---|
180 | }
|
---|
181 | double Npix = (double)nx*(double)ny*(double)nz;
|
---|
182 |
|
---|
183 | double redlim[2] = {redshift-redlarg/2.,redshift+redlarg/2.};
|
---|
184 | if(redlim[0]<=0.)
|
---|
185 | {cout<<"Lower redshift limit "<<redlim[0]<<" should be >0"<<endl; return -3;}
|
---|
186 | double dtrlim[2] = {univ.Dtrcom(redlim[0]),univ.Dtrcom(redlim[1])};
|
---|
187 | double loslim[2] = {univ.Dloscom(redlim[0]), univ.Dloscom(redlim[1])};
|
---|
188 | double dlumlim[2] = {univ.Dlum(redlim[0]),univ.Dlum(redlim[1])};
|
---|
189 |
|
---|
190 | cout<<"\n---- Type de donnees: inmpc = "<<inmpc<<endl;
|
---|
191 | cout<<"---- Line of Sight: Redshift = "<<redshift<<endl
|
---|
192 | <<"dred = "<<dred<<" redlarg = "<<redlarg<<endl
|
---|
193 | <<" dz = "<<dz<<" Mpc redlarg = "<<tzlarg<<" Mpc, nz = "<<nz<<" pix"<<endl;
|
---|
194 | cout<<"---- Transverse X:"<<endl
|
---|
195 | <<"adtx = "<<rad2min(adtx)<<"\', atxlarg = "<<rad2deg(atxlarg)<<" d"<<endl
|
---|
196 | <<" dx = "<<dx<<" Mpc, txlarg = "<<txlarg<<" Mpc, nx = "<<nx<<" pix"<<endl;
|
---|
197 | cout<<"---- Transverse Y:"<<endl
|
---|
198 | <<"adty = "<<rad2min(adty)<<"\', atylarg = "<<rad2deg(atylarg)<<" d"<<endl
|
---|
199 | <<" dy = "<<dy<<" Mpc, tylarg = "<<tylarg<<" Mpc, ny = "<<ny<<" pix"<<endl;
|
---|
200 | cout<<"---- Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
|
---|
201 |
|
---|
202 | // --- Cosmolographie Transverse
|
---|
203 | cout<<"\n--- Transverse"<<endl;
|
---|
204 | cout<<"dang comoving = "<<dtrcom<<" Mpc (com) var_in_z ["
|
---|
205 | <<dtrlim[0]<<","<<dtrlim[1]<<"]"<<endl;
|
---|
206 |
|
---|
207 | cout<<"... dx = "<<dx<<" Mpc (com), with angle "<<adtx*dtrcom<<endl
|
---|
208 | <<" with angle var_in_z ["<<adtx*dtrlim[0]<<","<<adtx*dtrlim[1]<<"]"<<endl;
|
---|
209 | cout<<"... largx = "<<txlarg<<" Mpc (com), with angle "<<atxlarg*dtrcom<<endl
|
---|
210 | <<" with angle var_in_z ["<<atxlarg*dtrlim[0]<<","<<atxlarg*dtrlim[1]<<"]"<<endl;
|
---|
211 |
|
---|
212 | cout<<"... dy = "<<dy<<" Mpc (com), with angle "<<adty*dtrcom<<endl
|
---|
213 | <<" with angle var_in_z ["<<adty*dtrlim[0]<<","<<adty*dtrlim[1]<<"]"<<endl;
|
---|
214 | cout<<"... largy = "<<tylarg<<" Mpc (com), with angle "<<atylarg*dtrcom<<endl
|
---|
215 | <<" with angle var_in_z ["<<atylarg*dtrlim[0]<<","<<atylarg*dtrlim[1]<<"]"<<endl;
|
---|
216 |
|
---|
217 | // --- Cosmolographie Line of sight
|
---|
218 | cout<<"\n--- Line of Sight"<<endl;
|
---|
219 | cout<<"los comoving distance = "<<dloscom<<" Mpc (com) in ["
|
---|
220 | <<loslim[0]<<","<<loslim[1]<<"]"<<endl
|
---|
221 | <<" diff = "
|
---|
222 | <<loslim[1]-loslim[0]<<" Mpc"<<endl;
|
---|
223 |
|
---|
224 | cout<<"...dz = "<<dz<<" Mpc (com), with redshift approx "<<dred*dlosdz<<endl;
|
---|
225 | cout<<"...tzlarg = "<<tzlarg<<" Mpc (com), with redshift approx "<<redlarg*dlosdz<<endl;
|
---|
226 |
|
---|
227 | // --- Solid Angle & Volume
|
---|
228 | cout<<"\n--- Solid angle"<<endl;
|
---|
229 | double angsol = AngSol(adtx/2.,adty/2.,M_PI/2.);
|
---|
230 | cout<<"Elementary solid angle = "<<angsol<<" sr = "<<angsol/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
231 | double angsoltot = AngSol(atxlarg/2.,atylarg/2.,M_PI/2.);
|
---|
232 | cout<<"Total solid angle = "<<angsoltot<<" sr = "<<angsoltot/(4.*M_PI)<<" *4Pi sr"<<endl;
|
---|
233 |
|
---|
234 | cout<<"\n--- Volume"<<endl;
|
---|
235 | double dvol = dx*dy*dz;
|
---|
236 | cout<<"Pixel volume comoving = "<<dvol<<" Mpc^3"<<endl;
|
---|
237 | double vol = univ.Vol4Pi(redlim[0],redlim[1])/(4.*M_PI)*angsoltot;
|
---|
238 | cout<<"Volume comoving = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
|
---|
239 | <<"Pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
|
---|
240 |
|
---|
241 | // --- Fourier space: k = omega = 2*Pi*Nu
|
---|
242 | cout<<"\n--- Fourier space"<<endl;
|
---|
243 | cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
|
---|
244 | double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
|
---|
245 | double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
|
---|
246 | double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
|
---|
247 | cout<<"Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
|
---|
248 | <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl;
|
---|
249 | cout<<"Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
|
---|
250 | <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
|
---|
251 | cout<<"Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl;
|
---|
252 | cout<<"Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
|
---|
253 |
|
---|
254 | // --- Masse de HI
|
---|
255 | cout<<"\n--- Mass HI"<<endl;
|
---|
256 | Schechter sch(nstar,mstar,alpha);
|
---|
257 | sch.SetOutValue(1);
|
---|
258 | cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
|
---|
259 | cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
|
---|
260 | int npt = 10000;
|
---|
261 | double lnx1=log10(1e-6), lnx2=log10(1e+14), dlnx=(lnx2-lnx1)/npt;
|
---|
262 | double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
|
---|
263 | cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
|
---|
264 |
|
---|
265 | double masshipix = masshimpc3*dvol;
|
---|
266 | double masshitot = masshimpc3*vol;
|
---|
267 | cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
|
---|
268 | <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
|
---|
269 | if(mhiref<=0.) mhiref = masshipix;
|
---|
270 |
|
---|
271 | // --- Survey values
|
---|
272 | double unplusz = 1.+redshift;
|
---|
273 | double nuhiz = Fr_HyperFin_Par / unplusz; // GHz
|
---|
274 | // dnu = NuHi/(1.+z0-dz/2) - NuHi/(1.+z0+dz/2)
|
---|
275 | // = NuHi*dz/(1.+z0)^2 * 1/[1-(dz/(2*(1+z0)))^2]
|
---|
276 | double dnuhiz = Fr_HyperFin_Par *dred/(unplusz*unplusz)
|
---|
277 | / (1.- (dred/.2/unplusz)*(dred/.2/unplusz));
|
---|
278 | cout<<"\n--- Observation:"<<endl
|
---|
279 | <<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl
|
---|
280 | <<" nu="<<nuhiz<<" GHz, dnu="<<dnuhiz*1.e3<<" Mhz"<<endl;
|
---|
281 | cout<<"dang lumi = "<<dlum<<" in ["<<dlumlim[0]<<","<<dlumlim[1]<<"] Mpc"<<endl;
|
---|
282 |
|
---|
283 | double slobe = lobewidth/2.35482; // sigma du lobe en arcmin
|
---|
284 | double lobecyl = sqrt(8.)*slobe; // diametre du lobe cylindrique equiv en arcmin
|
---|
285 | double lobearea = M_PI*lobecyl*lobecyl/4.; // en arcmin^2 (hypothese lobe gaussien)
|
---|
286 | double nlobes = rad2min(adtx)*rad2min(adty)/lobearea;
|
---|
287 | if(lobewidth<=0.) nlobes = 1.;
|
---|
288 | cout<<"\nBeam FWHM = "<<lobewidth<<"\' -> sigma = "<<slobe<<"\' -> "
|
---|
289 | <<" Dcyl = "<<lobecyl<<"\' -> area = "<<lobearea<<" arcmin^2"<<endl;
|
---|
290 | cout<<"Number of beams in one transversal pixel = "<<nlobes<<endl;
|
---|
291 |
|
---|
292 | // --- Power emitted by HI
|
---|
293 | cout<<"\n--- Power from HI for M = "<<mhiref<<" Msol at "<<nuhiz<<" GHz"<<endl;
|
---|
294 | cout<<"flux factor = "<<hifactor<<" at redshift = "<<redshift<<endl;
|
---|
295 |
|
---|
296 | double fhi = hifactor*Msol2FluxHI(mhiref,dlum);
|
---|
297 | cout<<"FluxHI("<<dlum<<" Mpc) all polar:"<<endl
|
---|
298 | <<" Flux= "<<fhi<<" W/m^2 = "<<fhi/Jansky2Watt_cst<<" Jy.Hz"<<endl
|
---|
299 | <<" in ["<<hifactor*Msol2FluxHI(mhiref,dlumlim[0])
|
---|
300 | <<","<<hifactor*Msol2FluxHI(mhiref,dlumlim[1])<<"] W/m^2"<<endl;
|
---|
301 | double sfhi = fhi / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
302 | cout<<"If spread over "<<dnuhiz<<" GHz, flux density = "<<sfhi<<" Jy"<<endl;
|
---|
303 |
|
---|
304 | // --- Signal analysis
|
---|
305 | cout<<"\n--- Signal analysis"<<endl;
|
---|
306 | cout<<"Facteur polar = "<<facpolar<<endl;
|
---|
307 |
|
---|
308 | PlanckSpectra planck(T_CMB_Par);
|
---|
309 | planck.SetApprox(1); // Rayleigh spectra
|
---|
310 | planck.SetVar(0); // frequency
|
---|
311 | planck.SetUnitOut(0); // output en W/....
|
---|
312 | planck.SetTypSpectra(0); // radiance W/m^2/Sr/Hz
|
---|
313 |
|
---|
314 | // Signal
|
---|
315 | double psig = facpolar * fhi * surfeff;
|
---|
316 | double tsig = psig / k_Boltzman_Cst / (dnuhiz*1e9);
|
---|
317 | double ssig = psig / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
318 | cout<<"Signal("<<mhiref<<" Msol): P="<<psig<<" W"<<endl;
|
---|
319 | cout<<" flux density = "<<ssig<<" Jy (for Dnu="<<dnuhiz<<" GHz)"<<endl;
|
---|
320 | cout<<" Antenna temperature: tsig="<<tsig<<" K"<<endl;
|
---|
321 |
|
---|
322 | // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
|
---|
323 | double doplarge = vrot / SpeedOfLight_Cst * nuhiz;
|
---|
324 | cout<<" Doppler width="<<doplarge*1.e3<<" MHz for rotation width of "<<vrot<<" km/s"<<endl;
|
---|
325 | if(doplarge>dnuhiz) {
|
---|
326 | cout<<"Warning: doppler width "<<doplarge<<" GHz > "<<dnuhiz<<" GHz redshift bin width"<<endl;
|
---|
327 | }
|
---|
328 |
|
---|
329 | // Synchrotron
|
---|
330 | double tsynch = Tsynch408;
|
---|
331 | if(fabs(indnu)>1.e-50) tsynch *= pow(nuhiz/nuhaslam,indnu);
|
---|
332 | planck.SetTemperature(tsynch);
|
---|
333 | double psynch = facpolar * planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
334 | double ssynch = psynch / surfeff / (dnuhiz*1e9) / Jansky2Watt_cst;
|
---|
335 | cout<<"Synchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "
|
---|
336 | <<tsynch<<" K ("<<nuhiz<<" GHz)"<<endl
|
---|
337 | <<" P="<<psynch<<" W"<<endl;
|
---|
338 | cout<<" flux density = "<<ssynch<<" Jy"<<endl;
|
---|
339 |
|
---|
340 | // CMB
|
---|
341 | double tcmb = T_CMB_Par;
|
---|
342 | planck.SetTemperature(tcmb);
|
---|
343 | double pcmb = facpolar * planck(nuhiz*1.e+9) * surfeff * angsol * (dnuhiz*1e9);
|
---|
344 | double scmb = pcmb / surfeff / (dnuhiz*1.e+9) / Jansky2Watt_cst;
|
---|
345 | cout<<"CMB: T="<<tcmb<<" K -> P="<<pcmb<<" W"<<endl;
|
---|
346 | cout<<" flux density = "<<scmb<<" Jy"<<endl;
|
---|
347 |
|
---|
348 | // AGN
|
---|
349 | double flux_agn = pow(10.,lflux_agn);
|
---|
350 | double mass_agn = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum);
|
---|
351 | cout<<"AGN: log10(S_agn)="<<lflux_agn<<" -> S_agn="
|
---|
352 | <<flux_agn<<" Jy -> "<<mass_agn<<" equiv. Msol/Hz"<<endl;
|
---|
353 | double flux_agn_pix = flux_agn*(dnuhiz*1e9);
|
---|
354 | double mass_agn_pix = FluxHI2Msol(flux_agn_pix*Jansky2Watt_cst,dlum);
|
---|
355 | double lmass_agn_pix = log10(mass_agn_pix);
|
---|
356 | cout<<"...pixel: f="<<flux_agn_pix<<" 10^-26 W/m^2"
|
---|
357 | <<" -> "<<mass_agn_pix<<" Msol -> log10 = "<<lmass_agn_pix<<endl;
|
---|
358 |
|
---|
359 | // --- Noise analysis
|
---|
360 | cout<<"\n--- Noise analysis"<<endl;
|
---|
361 | double psys = k_Boltzman_Cst * Tsys * (dnuhiz*1.e+9);
|
---|
362 | cout<<"Noise: T="<<Tsys<<" K, P="<<psys<<" W (for Dnu="<<dnuhiz<<" GHz)"<<endl;
|
---|
363 |
|
---|
364 | double slim = 2. * k_Boltzman_Cst * Tsys / surfeff
|
---|
365 | / sqrt(2.*(dnuhiz*1.e+9)*tobs) /Jansky2Watt_cst;
|
---|
366 | cout<<"Observation flux density limit: "<<slim<<" Jy (in 1 lobe)"<<endl;
|
---|
367 |
|
---|
368 | double slim_nl = slim * sqrt(nlobes);
|
---|
369 | cout<<"Observation flux density limit: "<<slim_nl<<" Jy (in "<<nlobes<<" lobes)"<<endl;
|
---|
370 |
|
---|
371 | double SsN = ssig/slim;
|
---|
372 | cout<<"\nSignal to noise ratio = "<<SsN<<" (1 lobe)"<<endl;
|
---|
373 | double SsN_nl = ssig/slim_nl;
|
---|
374 | cout<<"\nSignal to noise ratio = "<<SsN_nl<<" ("<<nlobes<<" lobes)"<<endl;
|
---|
375 |
|
---|
376 | double smass = mhiref/ssig*slim;
|
---|
377 | cout<<"\nSigma noise equivalent = "<<smass<<" Msol"<<endl;
|
---|
378 |
|
---|
379 | return 0;
|
---|
380 | }
|
---|