source: Sophya/trunk/Cosmo/SimLSS/cmvdefsurv.cc@ 3792

Last change on this file since 3792 was 3749, checked in by cmv, 16 years ago

deplacement de fct utilitaires depuis cmvdefsurv.cc vers cosmocalc.cc, cmv 02/03/2010

File size: 35.8 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9
10#include <vector>
11
12#include "constcosmo.h"
13#include "cosmocalc.h"
14#include "geneutils.h"
15#include "schechter.h"
16#include "pkspectrum.h"
17#include "planckspectra.h"
18
19/* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
20cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
21 --- */
22
23//-----------------------------------------------------------------------------------------------------------
24inline double rad2deg(double trad) {return trad/M_PI*180.;}
25inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
26inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
27inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
28inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
29inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
30
31inline double sr2deg2(double asr) {return asr*pow(rad2deg(1.),2.);}
32inline double sr2min2(double asr) {return asr*pow(rad2min(1.),2.);}
33inline double deg22sr(double adeg) {return adeg*pow(deg2rad(1.),2.);}
34inline double min22sr(double amin) {return amin*pow(min2rad(1.),2.);}
35
36double AngsolEqTelescope(double nu /* GHz */,double telsurf /* m^2 */);
37
38void usage(void);
39
40void usage(void) {
41 cout<<"cmvdefsurv [options] -x dx,txlarg[,unit_x] -y dy,tylarg[,unit_y] -z dz,tzlarg[,unit_z] redshift"<<endl
42 <<"----------------"<<endl
43 <<" -x dx,txlarg[,unit_x] : resolution et largeur dans le plan transverse selon X"<<endl
44 <<" -y dy,tylarg[,unit_y] : idem selon Y, si <=0 meme que X"<<endl
45 <<" -z dz,tzlarg[,unit_z] : resolution et largeur sur la ligne de visee"<<endl
46 <<"-- Unites pour X-Y:"<<endl
47 <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
48 <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
49 <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
50 <<" \'M\' : en longeur comobile (pour X-Y-Z) : resolution et largeur Mpc"<<endl
51 <<"----------------"<<endl
52 <<" -K k,dk,pk : k(Mpc^-1) dk(Mpc^-1) pk(a z=0 en Mpc^-3) pour estimer la variance cosmique"<<endl
53 <<"----------------"<<endl
54 <<" -O surf,tobs,eta : surface effective (m^2), temps d\'observation (s), efficacite d\'ouverture"<<endl
55 <<" -N Tsys : temperature du system (K)"<<endl
56 <<" -L lobearea,freqlob : angle solide du lobe d\'observation en arcmin^2 (def= celle du pixel)"<<endl
57 <<" pour la frequence freqlob en MHz"<<endl
58 <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie (def)"<<endl
59 <<" -2 : two polarisations measured"<<endl
60 <<" -M : masse de HI de reference (MSol), si <=0 mean schechter in pixel"<<endl
61 <<" -F : HI flux factor to be applied for our redshift"<<endl
62 <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
63 <<"----------------"<<endl
64 <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
65 <<" (indnu==0 no evolution with freq.)"<<endl
66 <<"----------------"<<endl
67 <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
68 <<"----------------"<<endl
69 <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
70 <<" redshift : redshift moyen du survey"<<endl
71 <<endl;
72}
73
74//-------------------------------------------------------------------------------------------
75int main(int narg,char *arg[])
76{
77 // ---
78 // --- Valeurs fixes ou par defaut
79 // ---
80
81 //-- WMAP
82 unsigned short flat = 0;
83 double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
84
85 //-- Schechter HIMASS
86 double h75 = h100 / 0.75;
87 double nstar = 0.006*pow(h75,3.); //
88 double mstar = pow(10.,9.8); // MSol
89 double alpha = -1.37;
90 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
91
92 double hifactor = 1.;
93 double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
94
95 //-- CMB , Synchrotron et AGN
96 double tcmb = T_CMB_Par;
97 // a 408 MHz (Haslam) + evol index a -2.6
98 double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
99 double lflux_agn = -3.;
100
101 //-- Appareillage
102 bool ya2polar = false;
103 double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
104 double Tsys=75.;
105 double tobs = 6000., surftot = 400000., eta_eff = 1.;
106 // taille du lobe d'observation en arcmin pour la frequence
107 double lobearea0 = -1., lobefreq0 = -1.;
108
109 //-- Variance cosmique (default = standard SDSSII)
110 double kcosm = 0.05, dkcosm = -1., pkcosm = 40000.;
111
112 // --- Pour taille du survey
113 double dx=1., dy=-1., dz=0.0007, txlarg=100., tylarg=-1., tzlarg=0.1;
114 int nx=0, ny=0, nz=0;
115 char unit_x = 'A', unit_y = 'A', unit_z = 'Z';
116 double redshift0 = 0.;
117 double mhiref = -1.; // reference Mass en HI (def integ schechter)
118
119 // ---
120 // --- Decodage arguments
121 // ---
122 char c;
123 while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:K:")) != -1) {
124 switch (c) {
125 case 'x' :
126 sscanf(optarg,"%lf,%lf,%c",&dx,&txlarg,&unit_x);
127 break;
128 case 'y' :
129 sscanf(optarg,"%lf,%lf,%c",&dy,&tylarg,&unit_y);
130 break;
131 case 'z' :
132 sscanf(optarg,"%lf,%lf,%c",&dz,&tzlarg,&unit_z);
133 break;
134 case 'O' :
135 sscanf(optarg,"%lf,%lf,%lf",&surftot,&tobs,&eta_eff);
136 break;
137 case 'L' :
138 sscanf(optarg,"%lf,%lf",&lobearea0,&lobefreq0);
139 break;
140 case 'N' :
141 sscanf(optarg,"%lf",&Tsys);
142 break;
143 case 'S' :
144 sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
145 break;
146 case 'M' :
147 sscanf(optarg,"%lf",&mhiref);
148 break;
149 case 'F' :
150 sscanf(optarg,"%lf",&hifactor);
151 break;
152 case 'V' :
153 sscanf(optarg,"%lf",&vrot);
154 break;
155 case 'U' :
156 sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
157 break;
158 case '2' :
159 ya2polar = true;
160 facpolar = 1.0;
161 break;
162 case 'A' :
163 sscanf(optarg,"%lf",&lflux_agn);
164 break;
165 case 'K' :
166 sscanf(optarg,"%lf,%lf,%lf",&kcosm,&dkcosm,&pkcosm);
167 break;
168 case 'h' :
169 default :
170 usage(); return -1;
171 }
172 }
173 if(optind>=narg) {usage(); return -1;}
174 sscanf(arg[optind],"%lf",&redshift0);
175 if(redshift0<=0.) {cout<<"Redshift "<<redshift0<<" should be >0"<<endl; return -2;}
176
177 // ---
178 // --- Initialisation de la Cosmologie
179 // ---
180 CosmoCalc univ(flat,true,2.*redshift0);
181 double perc=0.01,dzinc=redshift0/100.,dzmax=dzinc*10.; unsigned short glorder=4;
182 univ.SetInteg(perc,dzinc,dzmax,glorder);
183 univ.SetDynParam(h100,om0,or0,ol0,w0);
184
185 GrowthFactor growth(om0,ol0);
186
187 // ---
188 // --- Mise en forme dans les unites appropriees
189 // ---
190 // ATTENTION: le cube de simulation est en Mpc avec des pixels de taille comobile fixe
191 cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
192 if(dy<=0. || tylarg<=0.) {dy=dx; tylarg=txlarg; unit_y=unit_x;}
193 cout<<"X values: resolution="<<dx<<" largeur="<<txlarg<<" unite="<<unit_x<<endl;
194 if(unit_x == 'A') {
195 nx = int(txlarg*60./dx+0.5);
196 dx = min2rad(dx)*univ.Dtrcom(redshift0);
197 txlarg = dx*nx;
198 } else if(unit_x == 'M') {
199 nx = int(txlarg/dx+0.5);
200 txlarg = dx*nx;
201 } else {
202 cout<<"Unknown unit_x = "<<unit_x<<endl; return -2;
203 }
204 cout<<"Y values: resolution="<<dy<<" largeur="<<tylarg<<" unite="<<unit_y<<endl;
205 if(unit_y == 'A') {
206 ny = int(tylarg*60./dy+0.5);
207 dy = min2rad(dy)*univ.Dtrcom(redshift0);
208 tylarg = dy*ny;
209 } else if(unit_y == 'M') {
210 ny = int(tylarg/dy+0.5);
211 tylarg = dy*ny;
212 } else {
213 cout<<"Unknown unit_y = "<<unit_y<<endl; return -2;
214 }
215 cout<<"Z values: resolution="<<dz<<" largeur="<<tzlarg<<" unite="<<unit_z<<endl;
216 if(unit_z == 'Z') {
217 nz = int(tzlarg/dz+0.5);
218 dz = dz*univ.Dhubble()/univ.E(redshift0);
219 tzlarg = dz*nz;
220 } else if(unit_z == 'M') {
221 nz = int(tzlarg/dz+0.5);
222 tzlarg = dz*nz;
223 } else if(unit_z == 'F') { // unite en MHz
224 nz = int(tzlarg/dz+0.5);
225 dz = DzFrDNu(dz,Fr_HyperFin_Par*1.e3,redshift0); //dzred
226 dz = dz*univ.Dhubble()/univ.E(redshift0);
227 tzlarg = dz*nz;
228 } else {
229 cout<<"Unknown unit_z = "<<unit_z<<endl; return -2;
230 }
231
232 // On estime la valeur du redshift le plus grand
233 double bigred = redshift0 + dz/univ.Dhubble()*univ.E(redshift0) * nz/2.;
234 cout<<"biggest redshift estimated to be "<<bigred<<endl;
235 dzinc=bigred/100.; dzmax=dzinc*10.;
236 univ.SetInteg(perc,dzinc,dzmax,glorder);
237
238 // ---
239 // --- Calcul des valeurs au centre du cube et aux faces limites av/ar
240 // ---
241 cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
242 double adtx[3], adty[3], atxlarg[3], atylarg[3];
243 double loscom[3], redshift[3], unplusz[3], dred[3], growthfac[3], rhocz[3];
244 double dang[3], dtrcom[3], dlum[3], dloscom[3], dlosdz[3];
245 double nuhiz[3], lambdahiz[3], dnuhiz[3];
246 double angsol_pix[3], angsol_tot[3];
247
248 redshift[0] = redshift0;
249 loscom[0] = univ.Dloscom(redshift0);
250 loscom[1] = loscom[0]-tzlarg/2.;
251 loscom[2] = loscom[0]+tzlarg/2.;
252 //if(loscom[1]<=0.) {cout<<"Lower distance limit "<<loscom[1]<<" should be >0"<<endl; return -3;}
253 for(int i=0;i<3;i++) {
254 double l = loscom[i]; if(l<=0.) l = dz/2.;
255 redshift[i] = univ.ZFrLos(l);
256 unplusz[i] = 1. + redshift[i];
257 growthfac[i] = growth(redshift[i]);
258 rhocz[i] = univ.Rhoc(redshift[i])*GCm3toMsolMpc3_Cst;;
259 dang[i] = univ.Dang(redshift[i]);
260 dtrcom[i] = univ.Dtrcom(redshift[i]);
261 dlum[i] = univ.Dlum(redshift[i]);
262 dloscom[i] = univ.Dloscom(redshift[i]);
263 dlosdz[i] = univ.Dhubble()/univ.E(redshift[i]);
264 dred[i] = dz/dlosdz[i];
265 adtx[i] = dx/dtrcom[i];
266 atxlarg[i] = adtx[i]*nx;
267 adty[i] = dy/dtrcom[i];
268 atylarg[i] = adty[i]*ny;
269 nuhiz[i] = Fr_HyperFin_Par / unplusz[i]; // GHz
270 lambdahiz[i] = SpeedOfLight_Cst*1000./(nuhiz[i]*1.e9); // m
271 dnuhiz[i] = DNuFrDz(dred[i],Fr_HyperFin_Par,redshift[i]); // GHz
272 angsol_pix[i] = AngSol(adtx[i]/2.,adty[i]/2.,M_PI/2.);
273 angsol_tot[i] = AngSol(atxlarg[i]/2.,atylarg[i]/2.,M_PI/2.);
274 }
275
276
277 cout<<"--- Cosmology for z = "<<0.<<endl;
278 univ.Print(0.);
279 double rhoc0 = univ.Rhoc(0.)*GCm3toMsolMpc3_Cst;
280
281 for(int i=0;i<3;i++) {
282 cout<<"\n--- Cosmology for z = "<<redshift[i]<<endl;
283 univ.Print(redshift[i]);
284 cout<<"Nu(HI) = "<<Fr_HyperFin_Par*1000./(1.+redshift[i])<<" MHz"<<endl;
285 }
286
287 cout<<endl;
288 cout<<"--- Resume"<<endl;
289 cout<<"Facteur de croissance lineaire = "<<growthfac[0]
290 <<" in ["<<growthfac[1]<<","<<growthfac[2]<<"]"<<endl;
291 cout<<" 1/(1+z) = "<<1./(1.+redshift[0])
292 <<" in ["<<1./(1.+redshift[1])<<","<<1./(1.+redshift[2])<<"]"<<endl;
293 cout<<"Facteur de croissance lineaire^2 = "<<growthfac[0]*growthfac[0]
294 <<" in ["<<growthfac[1]*growthfac[1]<<","<<growthfac[2]*growthfac[2]<<"]"<<endl;
295
296 cout<<"Rho_c (z=0) = "<<rhoc0<<", a z="<<0<<": "<<rhoc0<<" Msol/Mpc^3"<<endl;
297 cout<<"Rho_c a z = "<<rhocz[0]
298 <<" Msol/Mpc^3 in ["<<rhocz[1]<<","<<rhocz[2]<<"]"<<endl;
299
300 cout<<endl;
301 cout<<"dang= "<<dang[0]<<" Mpc in ["<<dang[1]<<","<<dang[2]<<"]"<<endl;
302 cout<<"dtrcom= "<<dtrcom[0]<<" Mpc com in ["<<dtrcom[1]<<","<<dtrcom[2]<<"]"<<endl;
303 cout<<"dlum= "<<dlum[0]<<" Mpc in ["<<dlum[1]<<","<<dlum[2]<<"]"<<endl;
304 cout<<"dloscom= "<<dloscom[0]<<" Mpc com in ["<<dloscom[1]<<","<<dloscom[2]<<"]"<<endl;
305 cout<<"dz=1 -> dlosdz= "<<dlosdz[0]<<" Mpc com in ["<<dlosdz[1]<<","<<dlosdz[2]<<"]"<<endl;
306 cout<<"1 Mpc los com -> dz = "<<1./dlosdz[0]<<" in ["<<1./dlosdz[1]<<","<<1./dlosdz[2]<<"]"<<endl;
307
308 cout<<endl;
309 for(int i=0;i<3;i++) {
310 cout<<"...Redshift="<<redshift[i]<<endl;
311 cout<<"1\" -> "<<dang[i]*sec2rad(1.)<<" Mpc = "<<dtrcom[i]*sec2rad(1.)<<" Mpc com"<<endl;
312 cout<<"1\' -> "<<dang[i]*min2rad(1.)<<" Mpc = "<<dtrcom[i]*min2rad(1.)<<" Mpc com"<<endl;
313 cout<<"1d -> "<<dang[i]*deg2rad(1.)<<" Mpc = "<<dtrcom[i]*deg2rad(1.)<<" Mpc com"<<endl;
314 cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom[i])<<"\" = "
315 <<rad2min(1./dtrcom[i])<<" \' = "<<rad2deg(1./dtrcom[i])<<" d"<<endl;
316 cout<<"dz=1 -> dlosdz= "<<dlosdz[i]<<" Mpc com"<<endl;
317 cout<<"1 Mpc los com -> dz = "<<1./dlosdz[0]<<endl;
318 }
319
320 // ---
321 // --- Cosmolographie Transverse
322 // ---
323 cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
324
325 cout<<"dx = "<<dx<<", txlarg = "<<txlarg<<" Mpc (com), nx="<<nx<<endl;
326 cout<<"adtx = "<<adtx[0]<<" rd in ["<<adtx[1]<<","<<adtx[2]<<"]"<<endl;
327 cout<<" = "<<rad2min(adtx[0])<<"\' in ["<<rad2min(adtx[1])<<","<<rad2min(adtx[2])<<"]"<<endl;
328 cout<<"atxlarg = "<<atxlarg[0]<<" rd in ["<<atxlarg[1]<<","<<atxlarg[2]<<"]"<<endl;
329 cout<<" "<<rad2deg(atxlarg[0])<<" d in ["<<rad2deg(atxlarg[1])<<","<<rad2deg(atxlarg[2])<<"]"<<endl;
330
331 if(fabs(dx-dy)>1.e-20 && fabs(txlarg-tylarg)>1.e-20) {
332 cout<<"\ndy = "<<dy<<", tylarg = "<<tylarg<<" Mpc (com), ny="<<ny<<endl;
333 cout<<"adty = "<<adty[0]<<" rd in ["<<adty[1]<<","<<adty[2]<<"]"<<endl;
334 cout<<" = "<<rad2min(adty[0])<<"\' in ["<<rad2min(adty[1])<<","<<rad2min(adty[2])<<"]"<<endl;
335 cout<<"atylarg = "<<atylarg[0]<<" rd in ["<<atylarg[1]<<","<<atylarg[2]<<"]"<<endl;
336 cout<<" "<<rad2deg(atylarg[0])<<" d in ["<<rad2deg(atylarg[1])<<","<<rad2deg(atylarg[2])<<"]"<<endl;
337 }
338
339 // ---
340 // --- Cosmolographie Line of sight
341 // ---
342 cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
343 cout<<"dz = "<<dz<<", tzlarg = "<<tzlarg<<" Mpc (com), nz="<<nz<<endl;
344 cout<<"Redshift = "<<redshift[0]<<" in ["<<redshift[1]<<","<<redshift[2]<<"]"<<endl;
345 cout<<"dred = "<<dred[0]<<" in ["<<dred[1]<<","<<dred[2]<<"]"<<endl;
346 cout<<"nu HI = "<<nuhiz[0]<<" GHz in ["<<nuhiz[1]<<","<<nuhiz[2]<<"]"<<endl;
347 cout<<"lambda HI = "<<lambdahiz[0]<<" m in ["<<lambdahiz[1]<<","<<lambdahiz[2]<<"]"<<endl;
348 cout<<"dnu HI= "<<dnuhiz[0]*1e3<<" MHz in ["<<dnuhiz[1]*1e3<<","<<dnuhiz[2]*1e3<<"]"<<endl;
349
350 // ---
351 // --- Volume
352 // ---
353 cout<<"\n>>>>\n>>>> Volumes\n>>>>"<<endl;
354 double Npix = (double)nx*(double)ny*(double)nz;
355 double vol_pixel = dx*dy*dz;
356 double vol_survey = vol_pixel*Npix;
357 cout<<"Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
358 cout<<"Volume pixel = "<<vol_pixel<<" Mpc^3 com"<<endl;
359 cout<<"Volume total = "<<vol_survey<<" Mpc^3 com = "<<vol_survey/1.e9<<" Gpc^3"<<endl;
360
361 double vol = univ.Vol4Pi(redshift[1],redshift[2])/(4.*M_PI)*angsol_tot[0];
362 cout<<"Calcul avec angsol et redshift: vol = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
363 <<" -> pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
364
365 // ---
366 // --- Angles solides
367 // ---
368 cout<<"\n>>>>\n>>>> Angles solides\n>>>>"<<endl;
369 cout<<"Pixel solid angle = "<<angsol_pix[0]<<" sr ("<<angsol_pix[0]/(4.*M_PI)<<" *4Pi)"
370 <<" in ["<<angsol_pix[1]<<","<<angsol_pix[2]<<"]"<<endl;
371 cout<<" = "<<sr2min2(angsol_pix[0])<<"\'^2"
372 <<" in ["<<sr2min2(angsol_pix[1])<<","<<sr2min2(angsol_pix[2])<<"]"<<endl;
373 cout<<"Total solid angle = "<<angsol_tot[0]<<" sr ("<<angsol_tot[0]/(4.*M_PI)<<" *4Pi)"
374 <<" in ["<<angsol_tot[1]<<","<<angsol_tot[2]<<"]"<<endl;
375
376 // ---
377 // --- Fourier space: k = omega = 2*Pi*Nu = 2*Pi*C/Lambda
378 // ---
379 cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
380 cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
381 double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
382 double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
383 double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
384 cout<<"Transverse:"<<endl
385 <<" Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
386 <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl
387 <<" Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
388 <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
389 cout<<"Line of sight:"<<endl
390 <<" Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl
391 <<" Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
392
393 // ---
394 // --- Variance cosmique
395 // ---
396 // cosmique poisson
397 // (sigma/P)^2 = 2*(2Pi)^3 / (4Pi k^2 dk Vsurvey) * [(1+n*P)/(n*P)]^2
398 // nombre de mode = 1/2 * Vsurvey/(2Pi)^3 * 4Pi*k^2*dk
399 if(kcosm>0. && pkcosm>0.) {
400 double pk = pkcosm*pow(growthfac[0],2.);
401 cout<<"\n>>>>\n>>>> variance cosmique pour k="<<kcosm<<" Mpc^-1, pk(z=0)="
402 <<pkcosm<<", pk(z="<<redshift[0]<<")="<<pk<<"\n>>>>"<<endl;
403 for(int i=0;i<3;i++) { // la correction de variance du au bruit de poisson
404 double v = 1.1; if(i==1) v=1.5; if(i==2) v=2.0;
405 double ngal = 1./(v-1.)/pk;
406 cout<<" pour "<<ngal<<" gal/Mpc^3 on multiplie par "<<v<<" sigma/P"<<endl;
407 }
408
409 cout<<endl;
410 vector<double> dk; if(dkcosm>0.) dk.push_back(dkcosm);
411 dk.push_back(dk_x); dk.push_back(dk_y); dk.push_back(dk_z);
412 for(int i=0;i<(int)dk.size();i++) { // la variance cosmique pure
413 double vcosm = sqrt( 2.*pow(2.*M_PI,3.)/(4.*M_PI*pow(kcosm,2.)*dk[i]*vol_survey) );
414 double nmode = 0.5*vol_survey/pow(2.*M_PI,3.) * 4.*M_PI*pow(kcosm,2.)*dk[i];
415 cout<<" pour dk = "<<dk[i]<<" Mpc^-1: sigma/P = "<<vcosm
416 <<" , Nmode = "<<nmode<<endl;
417 }
418 }
419
420 // ---
421 // --- Masse de HI
422 // ---
423 cout<<"\n>>>>\n>>>> Mass HI\n>>>>"<<endl;
424 Schechter sch(nstar,mstar,alpha);
425 sch.SetOutValue(1);
426 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
427 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
428 int npt = 10000;
429 double lnx1=log10(1.e+6), lnx2=log10(1.e+13), dlnx=(lnx2-lnx1)/npt;
430 double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
431 cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3"<<endl;
432
433 double masshipix = masshimpc3*vol_pixel;
434 double masshitot = masshimpc3*vol_survey;
435 cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
436 <<"Total mass in survey = "<<masshitot<<" Msol"<<endl;
437 cout<<"OmegaHI a z=0: "<<masshimpc3/rhoc0<<endl;
438 for(int i=0;i<3;i++)
439 cout<<" a z="<<redshift[i]<<": "<<masshimpc3/rhocz[i]<<endl;
440 if(mhiref<=0.) mhiref = masshipix;
441
442 sch.SetOutValue(0);
443 cout<<"\nsch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
444 cout<<"Galaxy number density:"<<endl;
445 for(double x=lnx1; x<lnx2-0.5; x+=1.) {
446 double n = IntegrateFuncLog(sch,x,lnx2,0.001,dlnx,10.*dlnx,6);
447 cout<<" m>10^"<<x<<" Msol: "<<n<<" /Mpc^3, "<<n*vol_pixel<<" /pixel, "
448 <<n*vol_survey<<" in survey"<<endl;
449 }
450 sch.SetOutValue(1);
451
452 // ---
453 // --- Survey values
454 // ---
455 cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
456 double surfeff = surftot * eta_eff;
457 cout<<"surf_tot="<<surftot<<" m^2, eta="<<eta_eff<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl;
458
459 // Angles solides pour un telescope plein
460 double angSEq[4], angEq[4];
461 for(int i=0;i<4;i++) {
462 double nu = Fr_HyperFin_Par;
463 if(i<3) nu = nuhiz[i];
464 angSEq[i] = AngsolEqTelescope(nu,surftot);
465 angEq[i] = 2.*FrAngSol(angSEq[i]);
466 }
467 cout<<"\nFor a "<<surftot<<" m^2 telescope:"<<endl
468 <<" equivalent Omega = "<<angSEq[0]<<" sr in ["<<angSEq[1]<<","<<angSEq[2]<<"]"<<endl
469 <<" angular diameter = "<<angEq[0]<<" rd = "<<rad2min(angEq[0])
470 <<"\' in ["<<angEq[2]<<","<<angEq[2]<<"]"<<endl;
471 cout<<"At z=0: equivalent Omega = "<<angSEq[3]<<" sr"<<endl
472 <<" angular diameter = "<<angEq[3]<<" rd = "<<rad2min(angEq[3])<<"\'"<<endl;
473
474 // Pour une observation ou le lobe est + petit ou grand que le pixel de simulation
475 // La taille angulaire du lobe change avec la frequence donc avec le redshift
476 // La taille du lobe "lobearea0" est donnee pour une frequence de reference "lobefreq0" en MHz
477 double nlobes[3] = {1.,1.,1.};
478 // Si "lobefreq0" negatif c'est la frequence du centre du cube
479 if(lobefreq0<=0.) lobefreq0 = nuhiz[0]*1.e3;
480 // Si "lobearea0" negatif c'est la taille du pixel ramenee a lobefreq0
481 if(lobearea0<=0.) lobearea0 = sr2min2(angsol_pix[0])*pow(nuhiz[0]*1.e3/lobefreq0,2.);
482 cout<<"\n--- Lobe: angsol="<<lobearea0<<"\'^2 pour "<<lobefreq0<<" MHz"<<endl;
483 double lobearea[3];
484 for(int i=0;i<3;i++) {
485 lobearea[i] = lobearea0*pow(lobefreq0/(nuhiz[0]*1.e3),2.);
486 nlobes[i] = sr2min2(angsol_pix[i])/lobearea[i];
487 }
488 cout<<"Lobe cylindrique area "<<lobearea[0]<<"\'^2 in ["<<lobearea[1]<<","<<lobearea[2]<<"]"<<endl;
489 cout<<"Number of beams in one transversal pixel "<<nlobes[0]<<" in ["<<nlobes[1]<<","<<nlobes[2]<<"]"<<endl;
490
491 // ---
492 // --- Signal analysis
493 // ---
494 // --- Temperature d'antenne Ta et temperature de brillance Tb
495 // La puissance d'une source de brillance I non polarisee est:
496 // P = I * S * Omega * dNu
497 // La puissance recue pour une seule polarisation est:
498 // P = 1/2 * I * S * Omega * dNu
499 // La puissance recue pour un telescope (plein) est
500 // en remplacant Omega = lambda^2/S
501 // P = 1/2 * I * lambda^2 * dNu
502 // En appliquant la loi de Rayleigh: I = 2*k*Tb/lambda^2
503 // on obtient
504 // P = 1/2 * 2*k*Tb * dNu = k * Tb * dNu
505 // La temperature d'antenne est definie comme
506 // P = k * Ta * dNu
507 // Donc pour un ciel de temperature de brillance Tb
508 // et pour une antenne qui mesure une seule polarisation
509 // on a: Ta = Tb
510
511 cout<<"\n>>>>\n>>>> Signal Analysis\n>>>>"<<endl;
512 cout<<"Facteur polar = "<<facpolar<<endl;
513
514 PlanckSpectra planck(T_CMB_Par);
515 planck.SetSpectraApprox(PlanckSpectra::RAYLEIGH); // Rayleigh spectra
516 planck.SetSpectraVar(PlanckSpectra::NU); // frequency
517 planck.SetSpectraPower(PlanckSpectra::POWER); // output en W/....
518 planck.SetSpectraUnit(PlanckSpectra::ANGSFLUX); // radiance W/m^2/Sr/Hz
519
520 // ---
521 // --- Signal HI
522 // ---
523 // Power emitted by HI
524 cout<<"--- Power from HI for M = "<<mhiref<<" Msol"<<endl;
525 cout<<"Flux factor = "<<hifactor<<" at redshift = "<<redshift[0]<<endl;
526 cout<<"Luminosite = "<<hifactor*Msol2LumiHI(mhiref)<<" W"<<endl;
527
528 double fhi_ref[3], sfhi_ref[3];
529 for(int i=0;i<3;i++) {
530 fhi_ref[i] = hifactor*Msol2FluxHI(mhiref,dlum[i]);
531 sfhi_ref[i] = fhi_ref[i] / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
532 }
533 cout<<"FluxHI("<<dlum[0]<<" Mpc) all polar: "<<fhi_ref[0]<<" W/m^2 = "
534 <<fhi_ref[0]/Jansky2Watt_cst<<" Jy.Hz"
535 <<" in ["<<fhi_ref[1]/Jansky2Watt_cst<<","<<fhi_ref[2]/Jansky2Watt_cst<<"]"<<endl;
536 cout<<"If spread over pixel depth ("<<dnuhiz[0]<<" GHz):"<<endl
537 <<" flux density = "<<sfhi_ref[0]*1.e6<<" mu_Jy"
538 <<" in ["<<sfhi_ref[1]<<","<<sfhi_ref[2]<<"]"<<endl;
539
540 // Signal HI
541 double psig_2polar[3], tasig_2polar[3], ssig_2polar[3], isig_2polar[3], tsig_2polar[3];
542 double psig[3], tasig[3], ssig[3], isig[3], tsig[3];
543 double doplarge[3], dzvrot[3];
544
545 for(int i=0;i<3;i++) {
546 psig_2polar[i] = fhi_ref[i] * surfeff;
547 tasig_2polar[i] = psig_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
548 ssig_2polar[i] = psig_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
549 isig_2polar[i] = ssig_2polar[i] / angsol_pix[i];
550 tsig_2polar[i] = isig_2polar[i]*Jansky2Watt_cst
551 / (2.*pow(nuhiz[i]*1e9/(SpeedOfLight_Cst*1000.),2.)*k_Boltzman_Cst);
552 psig[i] = facpolar * psig_2polar[i];
553 tasig[i] = facpolar * tasig_2polar[i];
554 ssig[i] = facpolar * ssig_2polar[i];
555 isig[i] = facpolar * isig_2polar[i];
556 tsig[i] = facpolar * tsig_2polar[i];
557 doplarge[i] = LargeurDoppler(vrot,nuhiz[i]);
558 dzvrot[i] = DzFrV(vrot,redshift[i]);
559 }
560 cout<<"\n--- Signal HI("<<mhiref<<" Msol) for Dnu="<<dnuhiz[0]<<" GHz :"<<endl
561 <<" Observation:"<<endl
562 <<" Power="<<psig[0]<<" W in ["<<psig[1]<<","<<psig[2]<<"]"<<endl
563 <<" Flux density = "<<ssig[0]*1.e6<<" mu_Jy in ["<<ssig[1]*1.e6<<","<<ssig[2]*1.e6<<"]"<<endl
564 <<" Intensity = "<<isig[0]<<" Jy/sr in ["<<isig[1]<<","<<isig[2]<<"]"<<endl
565 <<" Antenna temperature = "<<tasig[0]<<" K in ["<<tasig[1]<<","<<tasig[2]<<"]"<<endl
566 <<" Brightness temperature = "<<tsig[0]<<" K in ["<<tsig[1]<<","<<tsig[2]<<"]"<<endl
567 <<" 2 polars:"<<endl
568 <<" Power="<<psig_2polar[0]<<" W in ["<<psig_2polar[1]<<","<<psig_2polar[2]<<"]"<<endl
569 <<" Flux density = "<<ssig_2polar[0]*1.e6<<" mu_Jy in ["<<ssig_2polar[1]*1.e6<<","<<ssig_2polar[2]*1.e6<<"]"<<endl
570 <<" Intensity = "<<isig_2polar[0]<<" Jy/sr in ["<<isig_2polar[1]<<","<<isig_2polar[2]<<"]"<<endl
571 <<" Antenna temperature = "<<tasig_2polar[0]<<" K in ["<<tasig_2polar[1]<<","<<tasig_2polar[2]<<"]"<<endl
572 <<" Brightness temperature = "<<tsig_2polar[0]<<" K in ["<<tsig_2polar[1]<<","<<tsig_2polar[2]<<"]"<<endl;
573
574 // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
575 cout<<" Doppler for rotation width of "<<vrot<<" km/s"<<endl
576 <<" width="<<doplarge[0]*1.e3<<" MHz in ["<<doplarge[1]*1.e3<<","<<doplarge[2]*1.e3<<"]"<<endl
577 <<" dzvrot= "<<dzvrot[0]<<" in ["<<dzvrot[1]<<","<<dzvrot[2]<<"]"<<endl;
578 if(doplarge[0]>dnuhiz[0])
579 cout<<"Warning: doppler width "<<doplarge[0]<<" GHz > "<<dnuhiz[0]<<" GHz redshift bin width"<<endl;
580
581 // ---
582 // --- Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
583 // ---
584 double tsynch[3];
585 double psynch_2polar[3], tasynch_2polar[3], ssynch_2polar[3], isynch_2polar[3];
586 double psynch[3], tasynch[3], ssynch[3], isynch[3];
587
588 for(int i=0;i<3;i++) {
589 tsynch[i] = Tsynch408;
590 if(fabs(indnu)>1.e-50) tsynch[i] *= pow(nuhiz[i]/nuhaslam,indnu);
591 planck.SetTemperature(tsynch[i]);
592 psynch_2polar[i] = planck(nuhiz[i]*1.e+9) * surfeff * angsol_pix[i] * (dnuhiz[i]*1e9);
593 tasynch_2polar[i] = psynch_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
594 ssynch_2polar[i] = psynch_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
595 isynch_2polar[i] = ssynch_2polar[i] / angsol_pix[i];
596 psynch[i] = facpolar * psynch_2polar[i];
597 tasynch[i] = facpolar * tasynch_2polar[i];
598 ssynch[i] = facpolar * ssynch_2polar[i];
599 isynch[i] = ssynch[i] / angsol_pix[i];
600 }
601 cout<<"\n--- Synchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "<<endl
602 <<" tsynch="<<tsynch[0]<<" K ("<<nuhiz[0]<<" GHz) in ["<<tsynch[1]<<","<<tsynch[2]<<"]"<<endl
603 <<" Observation:"<<endl
604 <<" Power="<<psynch[0]<<" W for pixel in ["<<psynch[1]<<","<<psynch[2]<<"]"<<endl
605 <<" Flux density = "<<ssynch[0]<<" Jy for pixel solid angle in ["<<ssynch[1]<<","<<ssynch[2]<<"]"<<endl
606 <<" Intensity = "<<isynch[0]<<" Jy/sr in ["<<isynch[1]<<","<<isynch[2]<<"]"<<endl
607 <<" Antenna temperature = "<<tasynch[0]<<" K in ["<<tasynch[1]<<","<<tasynch[2]<<"]"<<endl
608 <<" 2 polars:"<<endl
609 <<" Power="<<psynch_2polar[0]<<" W for pixel in ["<<psynch_2polar[1]<<","<<psynch_2polar[2]<<"]"<<endl
610 <<" Flux density = "<<ssynch_2polar[0]<<" Jy for pixel solid angle in ["<<ssynch_2polar[1]<<","<<ssynch_2polar[2]<<"]"<<endl
611 <<" Intensity = "<<isynch_2polar[0]<<" Jy/sr in ["<<isynch_2polar[1]<<","<<isynch_2polar[2]<<"]"<<endl
612 <<" Antenna temperature = "<<tasynch_2polar[0]<<" K in ["<<tasynch_2polar[1]<<","<<tasynch_2polar[2]<<"]"<<endl;
613
614 // ---
615 // --- CMB
616 // ---
617 planck.SetTemperature(tcmb);
618 double pcmb_2polar[3], tacmb_2polar[3], scmb_2polar[3], icmb_2polar[3];
619 double pcmb[3], tacmb[3], scmb[3], icmb[3];
620
621 for(int i=0;i<3;i++) {
622 pcmb_2polar[i] = planck(nuhiz[i]*1.e+9) * surfeff * angsol_pix[i] * (dnuhiz[i]*1e9);
623 tacmb_2polar[i] = pcmb_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
624 scmb_2polar[i] = pcmb_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
625 icmb_2polar[i] = scmb_2polar[i] / angsol_pix[i];
626 pcmb[i] = facpolar * pcmb_2polar[i];
627 tacmb[i] = facpolar * tacmb_2polar[i];
628 scmb[i] = facpolar * scmb_2polar[i];
629 icmb[i] = scmb[i] / angsol_pix[i];
630 }
631 cout<<"\n--- CMB: T="<<tcmb<<" K"<<endl
632 <<" Observation:"<<endl
633 <<" Power="<<pcmb[0]<<" W for pixel in ["<<pcmb[1]<<","<<pcmb[2]<<"]"<<endl
634 <<" Flux density = "<<scmb[0]<<" Jy for pixel solid angle in ["<<scmb[1]<<","<<scmb[2]<<"]"<<endl
635 <<" Intensity = "<<icmb[0]<<" Jy/sr in ["<<icmb[1]<<","<<icmb[2]<<"]"<<endl
636 <<" Antenna temperature = "<<tacmb[0]<<" K in ["<<tacmb[1]<<","<<tacmb[2]<<"]"<<endl
637 <<" 2 polars:"<<endl
638 <<" Power="<<pcmb_2polar[0]<<" W for pixel in ["<<pcmb_2polar[1]<<","<<pcmb_2polar[2]<<"]"<<endl
639 <<" Flux density = "<<scmb_2polar[0]<<" Jy for pixel solid angle in ["<<scmb_2polar[1]<<","<<scmb_2polar[2]<<"]"<<endl
640 <<" Intensity = "<<icmb_2polar[0]<<" Jy/sr in ["<<icmb_2polar[1]<<","<<icmb_2polar[2]<<"]"<<endl
641 <<" Antenna temperature = "<<tacmb_2polar[0]<<" K in ["<<tacmb_2polar[1]<<","<<tacmb_2polar[2]<<"]"<<endl;
642
643 // ---
644 // --- AGN
645 // ---
646 double flux_agn = pow(10.,lflux_agn);
647 double mass_agn[3], flux_agn_pix[3], mass_agn_pix[3], lmass_agn_pix[3];
648 for(int i=0;i<3;i++) {
649 mass_agn[i] = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum[i]);
650 flux_agn_pix[i] = flux_agn*(dnuhiz[i]*1e9);
651 mass_agn_pix[i] = FluxHI2Msol(flux_agn_pix[i]*Jansky2Watt_cst,dlum[i]);
652 lmass_agn_pix[i] = log10(mass_agn_pix[i]);
653 }
654 cout<<"\n--- AGN: log10(S_agn)="<<lflux_agn<<" S_agn="<<flux_agn<<" Jy :"<<endl
655 <<" mass_agn = "<<mass_agn[0]<<" equiv. Msol/Hz in ["<<mass_agn[1]<<","<<mass_agn[2]<<"]"<<endl
656 <<" flux_agn_pix = "<<flux_agn_pix[0]<<" 10^-26 W/m^2 in ["<<flux_agn_pix[1]<<","<<flux_agn_pix[2]<<"]"<<endl
657 <<" mass_agn_pix = "<<mass_agn_pix[0]<<" Msol in ["<<mass_agn_pix[1]<<","<<mass_agn_pix[2]<<"]"<<endl
658 <<" log10(mass_agn_pix) = "<<lmass_agn_pix[0]<<" in ["<<lmass_agn_pix[1]<<","<<lmass_agn_pix[2]<<"]"<<endl;
659
660 // =====================================================================
661 // ---
662 // --- Noise analysis
663 // ---
664 // --- Puissance du bruit pour un telescope de surface Ae et de BW dNu
665 // Par definition la puissance du bruit est:
666 // Pb = k * Tsys * dNu (W)
667 // Pour une source (non-polarisee) de densite de flux (totale 2 polars)
668 // St (exprimee en Jy = 10^-26 W/m^2/Hz)
669 // Pt = St * Ae * dNu (puissance totale emise en W pour 2 polars)
670 // P1 = 1/2 * St * Ae * dNu (puissance emise en W pour une polar)
671 // la SEFD (system equivalent flux density en Jy) est definie comme
672 // la densite de flux total (2 polars) "St" d'une source (non-polarisee)
673 // dont la puissance P1 mesuree pour une seule polarisation
674 // serait egale a la puissance du bruit. De P1 = Pb on deduit:
675 // SEFD = 2 * k * Tsys / Ae (en Jy)
676 // la puissance du bruit est: Pb = 1/2 * SEFD * Ae * dNu (en W)
677 // la sensibilite Slim tient compte du temps d'integration et de la BW:
678 // le nombre de mesures independantes est "2*dNu*Tobs" donc
679 // Slim = SEFD / sqrt(2*dNu*Tobs) = 2*k*Tsys/[Ae*sqrt(2*dNu*Tobs) (en Jy)
680 // --- Puissance du bruit pour un interferometre
681 // Ae = surface d'un telescope elementaire
682 // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
683 // La sensibilite Slim en Jy est:
684 // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
685 // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
686 // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
687 // - Interferometre a deux antennes:
688 // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
689 // - Interferometre a N antennes (N grand):
690 // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
691 // C'est aussi la formule pour un telescope unique de surface Atot
692 // --- On ne mesure qu'une seule polarisation
693 // Ces formules sont valables si on mesure 1 polarisation:
694 // Slim est la densite de flux total "St" (2 polars) d'une source (non-polarisee)
695 // qui donne la meme puissance que le bruit dans un detecteur qui ne
696 // mesure qu'une seule polarisation:
697 // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
698 // S/N = St / Slim
699 // La puissance de bruit est, par definition:
700 // Pb = 1/2 *Slim*Atot*dNu
701 // = k*Tsys*sqrt(2*dNu/Tobs) pour N=2
702 // = k*Tsys*sqrt(dNu/Tobs) pour N>>grand
703 // La densite de flux d'une source a S/N=1 est:
704 // St = Slim
705 // La puissance d'une source a S/N=1 mesuree par un detecteur
706 // qui ne mesure qu'une polar est:
707 // P1_lim = 1/2 *Slim*Atot*dNu
708 // --- On mesure les 2 polarisations avec deux voies d'electronique distinctes
709 // la puissance du signal mesure est multipliee par 2
710 // la puissance du bruit est multipliee par sqrt(2)
711 // on a donc un gain d'un facteur sqrt(2) sur le rapport S/N
712 // (cela revient d'ailleur a doubler le temps de pose: Tobs -> 2*Tobs)
713 // En notant arbitrairement: Slim' = Slim / sqrt(2)
714 // ou Slim est defini par les formules ci-dessus
715 // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
716 // (S/N)_2 = (S/N)_1 * sqrt(2) = (St / Slim) * sqrt(2) = St / Slim'
717 // La densite de flux d'une source a S/N=1 est:
718 // St = Slim' = Slim / sqrt(2)
719 // La puissance d'une source a S/N=1 cumulee par les 2 detecteurs est:
720 // P_lim = St*Atot*dNu = Slim'*Atot*dNu = 1/sqrt(2) *Slim*Atot*dNu
721 // = P1_lim * sqrt(2)
722 // La puissance de bruit cumulee par les 2 detecteurs est, par definition:
723 // Pb = P_lim = Slim'*Atot*dNu = P1_lim * sqrt(2)
724 // = 2*k*Tsys*sqrt(dNu/Tobs) pour N=2
725 // = k*Tsys*sqrt(2*dNu/Tobs) pour N>>grand
726 // =====================================================================
727
728 cout<<"\n>>>>\n>>>> Noise analysis\n>>>>"<<endl;
729 double psys[3];
730 for(int i=0;i<3;i++) psys[i] = k_Boltzman_Cst * Tsys * (dnuhiz[i]*1.e+9);
731 cout<<"Noise: T="<<Tsys<<" K"<<endl
732 <<" P="<<psys[0]<<" W in ["<<psys[1]<<","<<psys[2]<<"]"<<endl;
733
734 cout<<"...Computation assume that noise dominate the signal."<<endl;
735 if(ya2polar)
736 cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
737
738
739 //---
740 for(unsigned short it=0;it<2;it++) {
741
742 double fac = 1.;
743 if(it==0) { // Interferometre a 2 telescopes
744 fac = 0.5;
745 cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
746 <<" (sensitivity is given for real or complex correlator output)"<<endl;
747 } else if (it==1) { // Interferometre a N>> telescopes
748 fac = 1.;
749 cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
750 <<" (weak source limit sensitivity in a synthetised image)"<<endl
751 <<" Also valid for a single dish telescope(with collecting area N*A)"<<endl
752 <<" (add factor sqrt(2) if ON-OFF with T_ON=t_OFF)"<<endl;
753 } else continue;
754
755 double slim[3], SsN[3], smass[3], pkbruit[3];
756 for(int i=0;i<3;i++) {
757 slim[i] = 2. * k_Boltzman_Cst * Tsys / surfeff
758 / sqrt(fac*(dnuhiz[i]*1.e+9)*tobs) /Jansky2Watt_cst;
759 if(ya2polar) slim[i] /= sqrt(2.);
760 SsN[i] = ssig_2polar[i] / slim[i]; // independant de angsol_pix*surfeff
761 smass[i] = mhiref / ssig_2polar[i] * slim[i];
762 pkbruit[i] = pow(smass[i]/mhiref,2.)*vol_pixel;
763 }
764 cout<<"for 1 lobe:"<<endl
765 <<" Slim = "<<slim[0]*1.e6<<" mu_Jy in ["<<slim[1]*1.e6<<","<<slim[2]*1.e6<<"]"<<endl
766 <<" S/N = "<<SsN[0]<<" in ["<<SsN[1]<<","<<SsN[2]<<"]"<<endl
767 <<" Mass HI = "<<smass[0]<<" Msol in ["<<smass[1]<<","<<smass[2]<<"]"<<endl
768 <<" Pk = "<<pkbruit[0]<<" Mpc^3 in ["<<pkbruit[1]<<","<<pkbruit[2]<<"]"<<endl;
769
770 double slim_nl[3], SsN_nl[3], smass_nl[3], pkbruit_nl[3];
771 for(int i=0;i<3;i++) {
772 slim_nl[i] = slim[i] * sqrt(nlobes[i]);
773 SsN_nl[i] = ssig_2polar[i] / slim_nl[i];
774 smass_nl[i] = mhiref / ssig_2polar[i] * slim_nl[i];
775 pkbruit_nl[i] = pow(smass_nl[i]/mhiref,2.)*vol_pixel;
776 }
777 cout<<"for "<<nlobes[0]<<" lobes[i] in ["<<nlobes[1]<<","<<nlobes[2]<<"] :"<<endl
778 <<" Slim = "<<slim_nl[0]*1.e6<<" mu_Jy in ["<<slim_nl[1]*1.e6<<","<<slim_nl[2]*1.e6<<"]"<<endl
779 <<" S/N = "<<SsN_nl[0]<<" in ["<<SsN_nl[1]<<","<<SsN_nl[2]<<"]"<<endl
780 <<" Mass HI = "<<smass_nl[0]<<" Msol in ["<<smass_nl[1]<<","<<smass_nl[2]<<"]"<<endl
781 <<" Pk = "<<pkbruit_nl[0]<<" Mpc^3 in ["<<pkbruit_nl[1]<<","<<pkbruit_nl[2]<<"]"<<endl;
782
783 }
784
785 return 0;
786 }
787
788
789//-----------------------------------------------------------------------------------
790double AngsolEqTelescope(double nu /* GHz */,double telsurf /* m^2 */)
791/*
792Calcul de l'angle solide (sr) equivalent pour un telescope
793de surface totale "telsurf" (m^2) a la frequence "nu" (GHz)
794- Soit D(t) la figure de diffraction du telescope telle que D(t=0)=1
795 (t = angle depuis l'axe optique)
796 telescope circulaire de diametre D:
797 D(t) = [2J1(Pi*D*t/l)/(Pi*D*t/l)]
798 telescope rectangulaire axb:
799 D(t) = [sin(Pi*a*t/l)/(Pi*a*t/l)]*[sin(Pi*b*t/l)/(Pi*b*t/l)]
800- On cherche l'angle solide equivalent (par ex d'un cylindre de hauteur 1)
801 Int[ D(t)^2 dOmega ] = Int[ D(t)^2 2Pi t dt ] = Lambda^2/S
802- En conclusion, pour un ciel d'intensite uniforme I, on a:
803 P = I * S * Omega * dNu = I * S * (Lambda^2/S) * dNu
804*/
805{
806 double lambda = SpeedOfLight_Cst*1000./(nu*1.e9);
807 return lambda*lambda / telsurf;
808}
Note: See TracBrowser for help on using the repository browser.