source: Sophya/trunk/Cosmo/SimLSS/cmvdefsurv.cc@ 4047

Last change on this file since 4047 was 3970, checked in by cmv, 14 years ago

qques ameliorations, cmv, 31/03/2011

File size: 36.6 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9
10#include <vector>
11
12#include "constcosmo.h"
13#include "cosmocalc.h"
14#include "geneutils.h"
15#include "schechter.h"
16#include "pkspectrum.h"
17#include "planckspectra.h"
18
19/* --- Check Peterson at al. astro-ph/0606104 v1 (pb facteur sqrt(2) sur S/N !)
20cmvdefsurv -U 0.75,0.3,0.7,-1,1 -V 300 -z 0.0025,0.2,Z -x 1,90,A -O 400000,6000 -N 75 -M 6.156e9 -F 3 -2 1.5
21 --- */
22
23//-----------------------------------------------------------------------------------------------------------
24inline double rad2deg(double trad) {return trad/M_PI*180.;}
25inline double rad2min(double trad) {return trad/M_PI*180.*60.;}
26inline double rad2sec(double trad) {return trad/M_PI*180.*3600.;}
27inline double deg2rad(double tdeg) {return tdeg*M_PI/180.;}
28inline double min2rad(double tmin) {return tmin*M_PI/(180.*60.);}
29inline double sec2rad(double tsec) {return tsec*M_PI/(180.*3600.);}
30
31inline double sr2deg2(double asr) {return asr*pow(rad2deg(1.),2.);}
32inline double sr2min2(double asr) {return asr*pow(rad2min(1.),2.);}
33inline double deg22sr(double adeg) {return adeg*pow(deg2rad(1.),2.);}
34inline double min22sr(double amin) {return amin*pow(min2rad(1.),2.);}
35
36double AngsolEqTelescope(double nu /* GHz */,double telsurf /* m^2 */);
37
38void usage(void);
39
40void usage(void) {
41 cout<<"cmvdefsurv [options] -x dx,txlarg[,unit_x] -y dy,tylarg[,unit_y] -z dz,tzlarg[,unit_z] redshift"<<endl
42 <<"----------------"<<endl
43 <<" -x dx,txlarg[,unit_x] : resolution et largeur dans le plan transverse selon X"<<endl
44 <<" -y dy,tylarg[,unit_y] : idem selon Y, si <=0 meme que X"<<endl
45 <<" -z dz,tzlarg[,unit_z] : resolution et largeur sur la ligne de visee"<<endl
46 <<"-- Unites pour X-Y:"<<endl
47 <<" \'A\' : en angles (pour X-Y) : resolution=ArcMin, largeur=Degre (defaut)"<<endl
48 <<" \'Z\' : en redshift (pour Z) : resolution et largeur en redshift (defaut)"<<endl
49 <<" \'F\' : en frequence (pour Z) : resolution et largeur MHz"<<endl
50 <<" \'M\' : en longeur comobile (pour X-Y-Z) : resolution et largeur Mpc"<<endl
51 <<"----------------"<<endl
52 <<" -K k,dk,pk : k(Mpc^-1) dk(Mpc^-1) pk(a z=0 en Mpc^-3) pour estimer la variance cosmique"<<endl
53 <<"----------------"<<endl
54 <<" -O surf,tobs,eta : surface effective (m^2), temps d\'observation (s), efficacite d\'ouverture"<<endl
55 <<" -N Tsys : temperature du system (K)"<<endl
56 <<" -L lobearea,freqlob : angle solide du lobe d\'observation en arcmin^2 (def= celle du pixel)"<<endl
57 <<" pour la frequence freqlob en MHz"<<endl
58 <<" Si freqlob<=0 : la frequence de reference est celle du redshift etudie (def)"<<endl
59 <<" -2 : two polarisations measured"<<endl
60 <<" -M mhi : masse de HI de reference (MSol)"<<endl
61 <<" si mhi=0 mean schechter in pixel (defaut)"<<endl
62 <<" si mhi<0 computed as fration |mhi| of Baryon"<<endl
63 <<" -F : HI flux factor to be applied for our redshift"<<endl
64 <<" -V Vrot : largeur en vitesse (km/s) pour l\'elargissement doppler (def=300km/s)"<<endl
65 <<"----------------"<<endl
66 <<" -S Tsynch,indnu : temperature (K) synch a 408 Mhz, index d\'evolution"<<endl
67 <<" (indnu==0 no evolution with freq.)"<<endl
68 <<"----------------"<<endl
69 <<" -U h100,om0,ol0,w0,or0,flat : cosmology"<<endl
70 <<"----------------"<<endl
71 <<" -A <log10(S_agn)> : moyenne du flux AGN en Jy dans le pixel"<<endl
72 <<" redshift : redshift moyen du survey"<<endl
73 <<endl;
74}
75
76//-------------------------------------------------------------------------------------------
77int main(int narg,char *arg[])
78{
79 // ---
80 // --- Valeurs fixes ou par defaut
81 // ---
82
83 //-- WMAP
84 unsigned short flat = 0;
85 double h100=0.71, om0=0.267804, or0=7.9e-05*0., ol0=0.73,w0=-1.;
86
87 //-- Schechter HIMASS
88 double h75 = h100 / 0.75;
89 double nstar = 0.006*pow(h75,3.); //
90 double mstar = pow(10.,9.8); // MSol
91 double alpha = -1.37;
92 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
93
94 double hifactor = 1.;
95 double vrot = 300.; // largeur en vitesse (km/s) pour elargissement doppler
96
97 //-- CMB , Synchrotron et AGN
98 double tcmb = T_CMB_Par;
99 // a 408 MHz (Haslam) + evol index a -2.6
100 double Tsynch408=60., nuhaslam=0.408, indnu = -2.6;
101 double lflux_agn = -3.;
102
103 //-- Appareillage
104 bool ya2polar = false;
105 double facpolar = 0.5; // si on mesure les 2 polars -> 1.0
106 double Tsys=75.;
107 double tobs = 6000., surftot = 400000., eta_eff = 1.;
108 // taille du lobe d'observation en arcmin pour la frequence
109 double lobearea0 = -1., lobefreq0 = -1.;
110
111 //-- Variance cosmique (default = standard SDSSII)
112 double kcosm = 0.05, dkcosm = -1., pkcosm = 40000.;
113
114 // --- Pour taille du survey
115 double dx=1., dy=-1., dz=0.0007, txlarg=100., tylarg=-1., tzlarg=0.1;
116 int nx=0, ny=0, nz=0;
117 char unit_x = 'A', unit_y = 'A', unit_z = 'Z';
118 double redshift0 = 0.;
119 double mhiref = 0.; // reference Mass en HI (def integ schechter)
120
121 // ---
122 // --- Decodage arguments
123 // ---
124 char c;
125 while((c = getopt(narg,arg,"h2x:y:z:N:S:O:M:F:V:U:L:A:K:")) != -1) {
126 switch (c) {
127 case 'x' :
128 sscanf(optarg,"%lf,%lf,%c",&dx,&txlarg,&unit_x);
129 break;
130 case 'y' :
131 sscanf(optarg,"%lf,%lf,%c",&dy,&tylarg,&unit_y);
132 break;
133 case 'z' :
134 sscanf(optarg,"%lf,%lf,%c",&dz,&tzlarg,&unit_z);
135 break;
136 case 'O' :
137 sscanf(optarg,"%lf,%lf,%lf",&surftot,&tobs,&eta_eff);
138 break;
139 case 'L' :
140 sscanf(optarg,"%lf,%lf",&lobearea0,&lobefreq0);
141 break;
142 case 'N' :
143 sscanf(optarg,"%lf",&Tsys);
144 break;
145 case 'S' :
146 sscanf(optarg,"%lf,%lf",&Tsynch408,&indnu);
147 break;
148 case 'M' :
149 sscanf(optarg,"%lf",&mhiref);
150 break;
151 case 'F' :
152 sscanf(optarg,"%lf",&hifactor);
153 break;
154 case 'V' :
155 sscanf(optarg,"%lf",&vrot);
156 break;
157 case 'U' :
158 sscanf(optarg,"%lf,%lf,%lf,%lf,%hu",&h100,&om0,&ol0,&w0,&flat);
159 break;
160 case '2' :
161 ya2polar = true;
162 facpolar = 1.0;
163 break;
164 case 'A' :
165 sscanf(optarg,"%lf",&lflux_agn);
166 break;
167 case 'K' :
168 sscanf(optarg,"%lf,%lf,%lf",&kcosm,&dkcosm,&pkcosm);
169 break;
170 case 'h' :
171 default :
172 usage(); return -1;
173 }
174 }
175 if(optind>=narg) {usage(); return -1;}
176 sscanf(arg[optind],"%lf",&redshift0);
177 if(redshift0<=0.) {cout<<"Redshift "<<redshift0<<" should be >0"<<endl; return -2;}
178
179 // ---
180 // --- Initialisation de la Cosmologie
181 // ---
182 CosmoCalc univ(flat,true,2.*redshift0);
183 double perc=0.01,dzinc=redshift0/100.,dzmax=dzinc*10.; unsigned short glorder=4;
184 univ.SetInteg(perc,dzinc,dzmax,glorder);
185 univ.SetDynParam(h100,om0,or0,ol0,w0);
186
187 GrowthEisenstein growth(om0,ol0);
188
189 // ---
190 // --- Mise en forme dans les unites appropriees
191 // ---
192 // ATTENTION: le cube de simulation est en Mpc avec des pixels de taille comobile fixe
193 cout<<"\n>>>>\n>>>> Geometrie\n>>>>"<<endl;
194 if(dy<=0. || tylarg<=0.) {dy=dx; tylarg=txlarg; unit_y=unit_x;}
195 cout<<"X values: resolution="<<dx<<" largeur="<<txlarg<<" unite="<<unit_x<<endl;
196 if(unit_x == 'A') {
197 nx = int(txlarg*60./dx+0.5);
198 dx = min2rad(dx)*univ.Dtrcom(redshift0);
199 txlarg = dx*nx;
200 } else if(unit_x == 'M') {
201 nx = int(txlarg/dx+0.5);
202 txlarg = dx*nx;
203 } else {
204 cout<<"Unknown unit_x = "<<unit_x<<endl; return -2;
205 }
206 cout<<"Y values: resolution="<<dy<<" largeur="<<tylarg<<" unite="<<unit_y<<endl;
207 if(unit_y == 'A') {
208 ny = int(tylarg*60./dy+0.5);
209 dy = min2rad(dy)*univ.Dtrcom(redshift0);
210 tylarg = dy*ny;
211 } else if(unit_y == 'M') {
212 ny = int(tylarg/dy+0.5);
213 tylarg = dy*ny;
214 } else {
215 cout<<"Unknown unit_y = "<<unit_y<<endl; return -2;
216 }
217 cout<<"Z values: resolution="<<dz<<" largeur="<<tzlarg<<" unite="<<unit_z<<endl;
218 if(unit_z == 'Z') {
219 nz = int(tzlarg/dz+0.5);
220 dz = dz*univ.Dhubble()/univ.E(redshift0);
221 tzlarg = dz*nz;
222 } else if(unit_z == 'M') {
223 nz = int(tzlarg/dz+0.5);
224 tzlarg = dz*nz;
225 } else if(unit_z == 'F') { // unite en MHz
226 nz = int(tzlarg/dz+0.5);
227 dz = DzFrDNu(dz,Fr_HyperFin_Par*1.e3,redshift0); //dzred
228 dz = dz*univ.Dhubble()/univ.E(redshift0);
229 tzlarg = dz*nz;
230 } else {
231 cout<<"Unknown unit_z = "<<unit_z<<endl; return -2;
232 }
233
234 // On estime la valeur du redshift le plus grand
235 double bigred = redshift0 + dz/univ.Dhubble()*univ.E(redshift0) * nz/2.;
236 cout<<"biggest redshift estimated to be "<<bigred<<endl;
237 dzinc=bigred/100.; dzmax=dzinc*10.;
238 univ.SetInteg(perc,dzinc,dzmax,glorder);
239
240 // ---
241 // --- Calcul des valeurs au centre du cube et aux faces limites av/ar
242 // ---
243 cout<<"\n>>>>\n>>>> Cosmologie generale\n>>>>"<<endl;
244 double adtx[3], adty[3], atxlarg[3], atylarg[3];
245 double loscom[3], redshift[3], unplusz[3], dred[3], growthfac[3], rhocz[3];
246 double dang[3], dtrcom[3], dlum[3], dloscom[3], dlosdz[3];
247 double nuhiz[3], lambdahiz[3], dnuhiz[3];
248 double angsol_pix[3], angsol_tot[3];
249
250 redshift[0] = redshift0;
251 loscom[0] = univ.Dloscom(redshift0);
252 loscom[1] = loscom[0]-tzlarg/2.;
253 loscom[2] = loscom[0]+tzlarg/2.;
254 //if(loscom[1]<=0.) {cout<<"Lower distance limit "<<loscom[1]<<" should be >0"<<endl; return -3;}
255 for(int i=0;i<3;i++) {
256 double l = loscom[i]; if(l<=0.) l = dz/2.;
257 redshift[i] = univ.ZFrLos(l);
258 unplusz[i] = 1. + redshift[i];
259 growthfac[i] = growth(redshift[i]);
260 rhocz[i] = univ.Rhoc(redshift[i])*GCm3toMsolMpc3_Cst;
261 dang[i] = univ.Dang(redshift[i]);
262 dtrcom[i] = univ.Dtrcom(redshift[i]);
263 dlum[i] = univ.Dlum(redshift[i]);
264 dloscom[i] = univ.Dloscom(redshift[i]);
265 dlosdz[i] = univ.Dhubble()/univ.E(redshift[i]);
266 dred[i] = dz/dlosdz[i];
267 adtx[i] = dx/dtrcom[i];
268 atxlarg[i] = adtx[i]*nx;
269 adty[i] = dy/dtrcom[i];
270 atylarg[i] = adty[i]*ny;
271 nuhiz[i] = Fr_HyperFin_Par / unplusz[i]; // GHz
272 lambdahiz[i] = SpeedOfLight_Cst*1000./(nuhiz[i]*1.e9); // m
273 dnuhiz[i] = DNuFrDz(dred[i],Fr_HyperFin_Par,redshift[i]); // GHz
274 angsol_pix[i] = AngSol(adtx[i]/2.,adty[i]/2.,M_PI/2.);
275 angsol_tot[i] = AngSol(atxlarg[i]/2.,atylarg[i]/2.,M_PI/2.);
276 }
277
278
279 cout<<"--- Cosmology for z = "<<0.<<endl;
280 univ.Print(0.);
281 double rhoc0 = univ.Rhoc(0.)*GCm3toMsolMpc3_Cst;
282
283 for(int i=0;i<3;i++) {
284 cout<<"\n--- Cosmology for z = "<<redshift[i]<<endl;
285 univ.Print(redshift[i]);
286 cout<<"Nu(HI) = "<<Fr_HyperFin_Par*1000./(1.+redshift[i])<<" MHz"<<endl;
287 }
288
289 cout<<endl;
290 cout<<"--- Resume"<<endl;
291 cout<<"Facteur de croissance lineaire = "<<growthfac[0]
292 <<" in ["<<growthfac[1]<<","<<growthfac[2]<<"]"<<endl;
293 cout<<" 1/(1+z) = "<<1./(1.+redshift[0])
294 <<" in ["<<1./(1.+redshift[1])<<","<<1./(1.+redshift[2])<<"]"<<endl;
295 cout<<"Facteur de croissance lineaire^2 = "<<growthfac[0]*growthfac[0]
296 <<" in ["<<growthfac[1]*growthfac[1]<<","<<growthfac[2]*growthfac[2]<<"]"<<endl;
297
298 cout<<"Rho_c (z=0) = "<<rhoc0<<", a z="<<0<<": "<<rhoc0<<" Msol/Mpc^3"<<endl;
299 cout<<"Rho_c a z = "<<rhocz[0]
300 <<" Msol/Mpc^3 in ["<<rhocz[1]<<","<<rhocz[2]<<"]"<<endl;
301
302 cout<<endl;
303 cout<<"dang= "<<dang[0]<<" Mpc in ["<<dang[1]<<","<<dang[2]<<"]"<<endl;
304 cout<<"dtrcom= "<<dtrcom[0]<<" Mpc com in ["<<dtrcom[1]<<","<<dtrcom[2]<<"]"<<endl;
305 cout<<"dlum= "<<dlum[0]<<" Mpc in ["<<dlum[1]<<","<<dlum[2]<<"]"<<endl;
306 cout<<"dloscom= "<<dloscom[0]<<" Mpc com in ["<<dloscom[1]<<","<<dloscom[2]<<"]"<<endl;
307 cout<<"dz=1 -> dlosdz= "<<dlosdz[0]<<" Mpc com in ["<<dlosdz[1]<<","<<dlosdz[2]<<"]"<<endl;
308 cout<<"1 Mpc los com -> dz = "<<1./dlosdz[0]<<" in ["<<1./dlosdz[1]<<","<<1./dlosdz[2]<<"]"<<endl;
309
310 cout<<endl;
311 for(int i=0;i<3;i++) {
312 cout<<"...Redshift="<<redshift[i]<<endl;
313 cout<<"1\" -> "<<dang[i]*sec2rad(1.)<<" Mpc = "<<dtrcom[i]*sec2rad(1.)<<" Mpc com"<<endl;
314 cout<<"1\' -> "<<dang[i]*min2rad(1.)<<" Mpc = "<<dtrcom[i]*min2rad(1.)<<" Mpc com"<<endl;
315 cout<<"1d -> "<<dang[i]*deg2rad(1.)<<" Mpc = "<<dtrcom[i]*deg2rad(1.)<<" Mpc com"<<endl;
316 cout<<"1 Mpc transv com -> "<<rad2sec(1./dtrcom[i])<<"\" = "
317 <<rad2min(1./dtrcom[i])<<" \' = "<<rad2deg(1./dtrcom[i])<<" d"<<endl;
318 cout<<"dz=1 -> dlosdz= "<<dlosdz[i]<<" Mpc com"<<endl;
319 cout<<"1 Mpc los com -> dz = "<<1./dlosdz[0]<<endl;
320 }
321
322 // ---
323 // --- Cosmolographie Transverse
324 // ---
325 cout<<"\n>>>>\n>>>> Cosmologie & Geometrie transverse\n>>>>"<<endl;
326
327 cout<<"dx = "<<dx<<", txlarg = "<<txlarg<<" Mpc (com), nx="<<nx<<endl;
328 cout<<"adtx = "<<adtx[0]<<" rd in ["<<adtx[1]<<","<<adtx[2]<<"]"<<endl;
329 cout<<" = "<<rad2min(adtx[0])<<"\' in ["<<rad2min(adtx[1])<<","<<rad2min(adtx[2])<<"]"<<endl;
330 cout<<"atxlarg = "<<atxlarg[0]<<" rd in ["<<atxlarg[1]<<","<<atxlarg[2]<<"]"<<endl;
331 cout<<" "<<rad2deg(atxlarg[0])<<" d in ["<<rad2deg(atxlarg[1])<<","<<rad2deg(atxlarg[2])<<"]"<<endl;
332
333 if(fabs(dx-dy)>1.e-20 && fabs(txlarg-tylarg)>1.e-20) {
334 cout<<"\ndy = "<<dy<<", tylarg = "<<tylarg<<" Mpc (com), ny="<<ny<<endl;
335 cout<<"adty = "<<adty[0]<<" rd in ["<<adty[1]<<","<<adty[2]<<"]"<<endl;
336 cout<<" = "<<rad2min(adty[0])<<"\' in ["<<rad2min(adty[1])<<","<<rad2min(adty[2])<<"]"<<endl;
337 cout<<"atylarg = "<<atylarg[0]<<" rd in ["<<atylarg[1]<<","<<atylarg[2]<<"]"<<endl;
338 cout<<" "<<rad2deg(atylarg[0])<<" d in ["<<rad2deg(atylarg[1])<<","<<rad2deg(atylarg[2])<<"]"<<endl;
339 }
340
341 // ---
342 // --- Cosmolographie Line of sight
343 // ---
344 cout<<"\n>>>>\n>>>> Cosmologie & Geometrie ligne de visee\n>>>>"<<endl;
345 cout<<"dz = "<<dz<<", tzlarg = "<<tzlarg<<" Mpc (com), nz="<<nz<<endl;
346 cout<<"Redshift = "<<redshift[0]<<" in ["<<redshift[1]<<","<<redshift[2]<<"]"<<endl;
347 cout<<"dred = "<<dred[0]<<" in ["<<dred[1]<<","<<dred[2]<<"]"<<endl;
348 cout<<"nu HI = "<<nuhiz[0]<<" GHz in ["<<nuhiz[1]<<","<<nuhiz[2]<<"]"<<endl;
349 cout<<"lambda HI = "<<lambdahiz[0]<<" m in ["<<lambdahiz[1]<<","<<lambdahiz[2]<<"]"<<endl;
350 cout<<"dnu HI= "<<dnuhiz[0]*1e3<<" MHz in ["<<dnuhiz[1]*1e3<<","<<dnuhiz[2]*1e3<<"]"<<endl;
351
352 // ---
353 // --- Volume
354 // ---
355 cout<<"\n>>>>\n>>>> Volumes\n>>>>"<<endl;
356 double Npix = (double)nx*(double)ny*(double)nz;
357 double vol_pixel = dx*dy*dz;
358 double vol_survey = vol_pixel*Npix;
359 cout<<"Npix total = "<<Npix<<" -> "<<Npix*sizeof(double)/1.e6<<" Mo"<<endl;
360 cout<<"Volume pixel = "<<vol_pixel<<" Mpc^3 com"<<endl;
361 cout<<"Volume total = "<<vol_survey<<" Mpc^3 com = "<<vol_survey/1.e9<<" Gpc^3"<<endl;
362
363 double vol = univ.Vol4Pi(redshift[1],redshift[2])/(4.*M_PI)*angsol_tot[0];
364 cout<<"Calcul avec angsol et redshift: vol = "<<vol<<" Mpc^3 = "<<vol/1.e9<<" Gpc^3"<<endl
365 <<" -> pixel volume comoving = vol/Npix = "<<vol/Npix<<" Mpc^3"<<endl;
366
367 // ---
368 // --- Angles solides
369 // ---
370 cout<<"\n>>>>\n>>>> Angles solides\n>>>>"<<endl;
371 cout<<"Pixel solid angle = "<<angsol_pix[0]<<" sr ("<<angsol_pix[0]/(4.*M_PI)<<" *4Pi)"
372 <<" in ["<<angsol_pix[1]<<","<<angsol_pix[2]<<"]"<<endl;
373 cout<<" = "<<sr2min2(angsol_pix[0])<<"\'^2"
374 <<" in ["<<sr2min2(angsol_pix[1])<<","<<sr2min2(angsol_pix[2])<<"]"<<endl;
375 cout<<"Total solid angle = "<<angsol_tot[0]<<" sr ("<<angsol_tot[0]/(4.*M_PI)<<" *4Pi)"
376 <<" in ["<<angsol_tot[1]<<","<<angsol_tot[2]<<"]"<<endl;
377
378 // ---
379 // --- Fourier space: k = omega = 2*Pi*Nu = 2*Pi*C/Lambda
380 // ---
381 cout<<"\n>>>>\n>>>> Geometrie dans l'espace de Fourier\n>>>>"<<endl;
382 cout<<"Array size: nx = "<<nx<<", ny = "<<ny<<", nz = "<<nz<<endl;
383 double dk_x = 2.*M_PI/(nx*dx), knyq_x = M_PI/dx;
384 double dk_y = 2.*M_PI/(nx*dy), knyq_y = M_PI/dy;
385 double dk_z = 2.*M_PI/(nz*dz), knyq_z = M_PI/dz;
386 cout<<"Transverse:"<<endl
387 <<" Resolution: dk_x = "<<dk_x<<" Mpc^-1 (2Pi/dk_x="<<2.*M_PI/dk_x<<" Mpc)"<<endl
388 <<" dk_y = "<<dk_y<<" Mpc^-1 (2Pi/dk_y="<<2.*M_PI/dk_y<<" Mpc)"<<endl
389 <<" Nyquist: kx = "<<knyq_x<<" Mpc^-1 (2Pi/knyq_x="<<2.*M_PI/knyq_x<<" Mpc)"<<endl
390 <<" ky = "<<knyq_y<<" Mpc^-1 (2Pi/knyq_y="<<2.*M_PI/knyq_y<<" Mpc)"<<endl;
391 cout<<"Line of sight:"<<endl
392 <<" Resolution: dk_z = "<<dk_z<<" Mpc^-1 (2Pi/dk_z="<<2.*M_PI/dk_z<<" Mpc)"<<endl
393 <<" Nyquist: kz = "<<knyq_z<<" Mpc^-1 (2Pi/knyq_z="<<2.*M_PI/knyq_z<<" Mpc)"<<endl;
394
395 // ---
396 // --- Variance cosmique
397 // ---
398 // cosmique poisson
399 // (sigma/P)^2 = 2*(2Pi)^3 / (4Pi k^2 dk Vsurvey) * [(1+n*P)/(n*P)]^2
400 // nombre de mode = 1/2 * Vsurvey/(2Pi)^3 * 4Pi*k^2*dk
401 if(kcosm>0. && pkcosm>0.) {
402 double pk = pkcosm*pow(growthfac[0],2.);
403 cout<<"\n>>>>\n>>>> variance cosmique pour k="<<kcosm<<" Mpc^-1, pk(z=0)="
404 <<pkcosm<<", pk(z="<<redshift[0]<<")="<<pk<<"\n>>>>"<<endl;
405 for(int i=0;i<3;i++) { // la correction de variance du au bruit de poisson
406 double v = 1.1; if(i==1) v=1.5; if(i==2) v=2.0;
407 double ngal = 1./(v-1.)/pk;
408 cout<<" pour "<<ngal<<" gal/Mpc^3 on multiplie par "<<v<<" sigma/P"<<endl;
409 }
410
411 cout<<endl;
412 vector<double> dk; if(dkcosm>0.) dk.push_back(dkcosm);
413 dk.push_back(dk_x); dk.push_back(dk_y); dk.push_back(dk_z);
414 for(int i=0;i<(int)dk.size();i++) { // la variance cosmique pure
415 double vcosm = sqrt( 2.*pow(2.*M_PI,3.)/(4.*M_PI*pow(kcosm,2.)*dk[i]*vol_survey) );
416 double nmode = 0.5*vol_survey/pow(2.*M_PI,3.) * 4.*M_PI*pow(kcosm,2.)*dk[i];
417 cout<<" pour dk = "<<dk[i]<<" Mpc^-1: sigma/P = "<<vcosm
418 <<" , Nmode = "<<nmode<<endl;
419 }
420 }
421
422 // ---
423 // --- Masse de HI
424 // ---
425 cout<<"\n>>>>\n>>>> Mass HI using Schechter\n>>>>"<<endl;
426 Schechter sch(nstar,mstar,alpha);
427 sch.SetOutValue(1);
428 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
429 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
430 int npt = 10000;
431 double lnx1=log10(1.e+6), lnx2=log10(1.e+13), dlnx=(lnx2-lnx1)/npt;
432 double masshimpc3 = IntegrateFuncLog(sch,lnx1,lnx2,0.001,dlnx,10.*dlnx,6);
433 cout<<"Mass density: "<<masshimpc3<<" Msol/Mpc^3 (Schechter)"<<endl;
434
435 double masshipix = masshimpc3*vol_pixel;
436 double masshitot = masshimpc3*vol_survey;
437 cout<<"Pixel mass = "<<masshipix<<" Msol"<<endl
438 <<"Total mass in survey = "<<masshitot<<" Msol (Schechter)"<<endl;
439 cout<<"OmegaHI a z=0: "<<masshimpc3/rhoc0<<" (Ob="<<univ.Obaryon(0)
440 <<", f_HI="<<(masshimpc3/rhoc0)/univ.Obaryon(0)<<")"<<endl;
441 for(int i=0;i<3;i++)
442 cout<<" a z="<<redshift[i]<<": "<<masshimpc3*pow(1+redshift[i],3.)/rhocz[i]
443 <<" (Ob="<<univ.Obaryon(redshift[i])
444 <<", f_HI="<<masshimpc3*pow(1+redshift[i],3.)/rhocz[i]/univ.Obaryon(redshift[i])<<")"<<endl;
445
446 sch.SetOutValue(0);
447 cout<<"\nsch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
448 cout<<"Galaxy number density:"<<endl;
449 for(double x=lnx1; x<lnx2-0.5; x+=1.) {
450 double n = IntegrateFuncLog(sch,x,lnx2,0.001,dlnx,10.*dlnx,6);
451 cout<<" m>10^"<<x<<" Msol: "<<n<<" /Mpc^3, "<<n*vol_pixel<<" /pixel, "
452 <<n*vol_survey<<" in survey"<<endl;
453 }
454 sch.SetOutValue(1);
455
456 // Choix de la masse a considerer pour la suite
457 cout<<endl;
458 if(fabs(mhiref)<1.e-200) {
459 cout<<"pixel mass automatically computed from Schechter"<<endl;
460 mhiref = masshipix;
461 } else if(mhiref<0.) {
462 cout<<"pixel mass selected as "<<-mhiref<<" of Obaryon at z=0"<<endl;
463 mhiref = fabs(mhiref) * univ.Obaryon(0) * rhoc0 * vol_pixel;
464 }
465 cout<<"**** Pixel mass set to mhiref = "<<mhiref<<" Msol"<<endl;
466
467 // ---
468 // --- Survey values
469 // ---
470 cout<<"\n>>>>\n>>>> Observations\n>>>>"<<endl;
471 double surfeff = surftot * eta_eff;
472 cout<<"surf_tot="<<surftot<<" m^2, eta="<<eta_eff<<" surf_eff="<<surfeff<<" m^2, tobs="<<tobs<<" s"<<endl;
473
474 // Angles solides pour un telescope plein
475 double angSEq[4], angEq[4];
476 for(int i=0;i<4;i++) {
477 double nu = Fr_HyperFin_Par;
478 if(i<3) nu = nuhiz[i];
479 angSEq[i] = AngsolEqTelescope(nu,surftot);
480 angEq[i] = 2.*FrAngSol(angSEq[i]);
481 }
482 cout<<"\nFor a "<<surftot<<" m^2 telescope:"<<endl
483 <<" equivalent Omega = "<<angSEq[0]<<" sr in ["<<angSEq[1]<<","<<angSEq[2]<<"]"<<endl
484 <<" angular diameter = "<<angEq[0]<<" rd = "<<rad2min(angEq[0])
485 <<"\' in ["<<angEq[2]<<","<<angEq[2]<<"]"<<endl;
486 cout<<"At z=0: equivalent Omega = "<<angSEq[3]<<" sr"<<endl
487 <<" angular diameter = "<<angEq[3]<<" rd = "<<rad2min(angEq[3])<<"\'"<<endl;
488
489 // Pour une observation ou le lobe est + petit ou grand que le pixel de simulation
490 // La taille angulaire du lobe change avec la frequence donc avec le redshift
491 // La taille du lobe "lobearea0" est donnee pour une frequence de reference "lobefreq0" en MHz
492 double nlobes[3] = {1.,1.,1.};
493 // Si "lobefreq0" negatif c'est la frequence du centre du cube
494 if(lobefreq0<=0.) lobefreq0 = nuhiz[0]*1.e3;
495 // Si "lobearea0" negatif c'est la taille du pixel ramenee a lobefreq0
496 if(lobearea0<=0.) lobearea0 = sr2min2(angsol_pix[0])*pow(nuhiz[0]*1.e3/lobefreq0,2.);
497 cout<<"\n--- Lobe: angsol="<<lobearea0<<"\'^2 pour "<<lobefreq0<<" MHz"<<endl;
498 double lobearea[3];
499 for(int i=0;i<3;i++) {
500 lobearea[i] = lobearea0*pow(lobefreq0/(nuhiz[0]*1.e3),2.);
501 nlobes[i] = sr2min2(angsol_pix[i])/lobearea[i];
502 }
503 cout<<"Lobe cylindrique area "<<lobearea[0]<<"\'^2 in ["<<lobearea[1]<<","<<lobearea[2]<<"]"<<endl;
504 cout<<"Number of beams in one transversal pixel "<<nlobes[0]<<" in ["<<nlobes[1]<<","<<nlobes[2]<<"]"<<endl;
505
506 // ---
507 // --- Signal analysis
508 // ---
509 // --- Temperature d'antenne Ta et temperature de brillance Tb
510 // La puissance d'une source de brillance I non polarisee est:
511 // P = I * S * Omega * dNu
512 // La puissance recue pour une seule polarisation est:
513 // P = 1/2 * I * S * Omega * dNu
514 // La puissance recue pour un telescope (plein) est
515 // en remplacant Omega = lambda^2/S
516 // P = 1/2 * I * lambda^2 * dNu
517 // En appliquant la loi de Rayleigh: I = 2*k*Tb/lambda^2
518 // on obtient
519 // P = 1/2 * 2*k*Tb * dNu = k * Tb * dNu
520 // La temperature d'antenne est definie comme
521 // P = k * Ta * dNu
522 // Donc pour un ciel de temperature de brillance Tb
523 // et pour une antenne qui mesure une seule polarisation
524 // on a: Ta = Tb
525
526 cout<<"\n>>>>\n>>>> Signal Analysis\n>>>>"<<endl;
527 cout<<"Facteur polar = "<<facpolar<<endl;
528
529 PlanckSpectra planck(T_CMB_Par);
530 planck.SetSpectraApprox(PlanckSpectra::RAYLEIGH); // Rayleigh spectra
531 planck.SetSpectraVar(PlanckSpectra::NU); // frequency
532 planck.SetSpectraPower(PlanckSpectra::POWER); // output en W/....
533 planck.SetSpectraUnit(PlanckSpectra::ANGSFLUX); // radiance W/m^2/Sr/Hz
534
535 // ---
536 // --- Signal HI
537 // ---
538 // Power emitted by HI
539 cout<<"--- Power from HI for M = "<<mhiref<<" Msol"<<endl;
540 cout<<"Evolution of flux factor = "<<hifactor<<" at redshift = "<<redshift[0]<<endl;
541 cout<<"Luminosite emise (par M) = "<<hifactor*Msol2LumiHI(mhiref)<<" W"<<endl;
542
543 double fhi_ref[3], sfhi_ref[3];
544 for(int i=0;i<3;i++) {
545 fhi_ref[i] = hifactor*Msol2FluxHI(mhiref,dlum[i]);
546 sfhi_ref[i] = fhi_ref[i] / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
547 }
548 cout<<"FluxHI("<<dlum[0]<<" Mpc) all polar: "<<fhi_ref[0]<<" W/m^2 = "
549 <<fhi_ref[0]/Jansky2Watt_cst<<" Jy.Hz"
550 <<" in ["<<fhi_ref[1]/Jansky2Watt_cst<<","<<fhi_ref[2]/Jansky2Watt_cst<<"]"<<endl;
551 cout<<"If spread over pixel depth ("<<dnuhiz[0]<<" GHz):"<<endl
552 <<" flux density = "<<sfhi_ref[0]*1.e6<<" mu_Jy"
553 <<" in ["<<sfhi_ref[1]<<","<<sfhi_ref[2]<<"]"<<endl;
554
555 // Signal HI
556 double psig_2polar[3], tasig_2polar[3], ssig_2polar[3], isig_2polar[3], tsig_2polar[3];
557 double psig[3], tasig[3], ssig[3], isig[3], tsig[3];
558 double doplarge[3], dzvrot[3];
559
560 for(int i=0;i<3;i++) {
561 psig_2polar[i] = fhi_ref[i] * surfeff;
562 tasig_2polar[i] = psig_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
563 ssig_2polar[i] = psig_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
564 isig_2polar[i] = ssig_2polar[i] / angsol_pix[i];
565 tsig_2polar[i] = isig_2polar[i]*Jansky2Watt_cst
566 / (2.*pow(nuhiz[i]*1e9/(SpeedOfLight_Cst*1000.),2.)*k_Boltzman_Cst);
567 psig[i] = facpolar * psig_2polar[i];
568 tasig[i] = facpolar * tasig_2polar[i];
569 ssig[i] = facpolar * ssig_2polar[i];
570 isig[i] = facpolar * isig_2polar[i];
571 tsig[i] = facpolar * tsig_2polar[i];
572 doplarge[i] = LargeurDoppler(vrot,nuhiz[i]);
573 dzvrot[i] = DzFrV(vrot,redshift[i]);
574 }
575 cout<<"\n--- Signal HI("<<mhiref<<" Msol) for Dnu="<<dnuhiz[0]<<" GHz :"<<endl
576 <<" Observation:"<<endl
577 <<" Power="<<psig[0]<<" W in ["<<psig[1]<<","<<psig[2]<<"]"<<endl
578 <<" Flux density = "<<ssig[0]*1.e6<<" mu_Jy in ["<<ssig[1]*1.e6<<","<<ssig[2]*1.e6<<"]"<<endl
579 <<" Intensity = "<<isig[0]<<" Jy/sr in ["<<isig[1]<<","<<isig[2]<<"]"<<endl
580 <<" Antenna temperature = "<<tasig[0]<<" K in ["<<tasig[1]<<","<<tasig[2]<<"]"<<endl
581 <<" Brightness temperature = "<<tsig[0]<<" K in ["<<tsig[1]<<","<<tsig[2]<<"]"<<endl
582 <<" 2 polars:"<<endl
583 <<" Power="<<psig_2polar[0]<<" W in ["<<psig_2polar[1]<<","<<psig_2polar[2]<<"]"<<endl
584 <<" Flux density = "<<ssig_2polar[0]*1.e6<<" mu_Jy in ["<<ssig_2polar[1]*1.e6<<","<<ssig_2polar[2]*1.e6<<"]"<<endl
585 <<" Intensity = "<<isig_2polar[0]<<" Jy/sr in ["<<isig_2polar[1]<<","<<isig_2polar[2]<<"]"<<endl
586 <<" Antenna temperature = "<<tasig_2polar[0]<<" K in ["<<tasig_2polar[1]<<","<<tasig_2polar[2]<<"]"<<endl
587 <<" Brightness temperature = "<<tsig_2polar[0]<<" K in ["<<tsig_2polar[1]<<","<<tsig_2polar[2]<<"]"<<endl;
588
589 // Elargissement doppler de la raie a 21cm: dNu = vrot/C * Nu(21cm) / (1+z)
590 cout<<" Doppler for rotation width of "<<vrot<<" km/s"<<endl
591 <<" width="<<doplarge[0]*1.e3<<" MHz in ["<<doplarge[1]*1.e3<<","<<doplarge[2]*1.e3<<"]"<<endl
592 <<" dzvrot= "<<dzvrot[0]<<" in ["<<dzvrot[1]<<","<<dzvrot[2]<<"]"<<endl;
593 if(doplarge[0]>dnuhiz[0])
594 cout<<"Warning: doppler width "<<doplarge[0]<<" GHz > "<<dnuhiz[0]<<" GHz redshift bin width"<<endl;
595
596 // ---
597 // --- Synchrotron (T en -2.7 -> Flux en -0.7 dans l'approximation Rayleigh)
598 // ---
599 double tsynch[3];
600 double psynch_2polar[3], tasynch_2polar[3], ssynch_2polar[3], isynch_2polar[3];
601 double psynch[3], tasynch[3], ssynch[3], isynch[3];
602
603 for(int i=0;i<3;i++) {
604 tsynch[i] = Tsynch408;
605 if(fabs(indnu)>1.e-50) tsynch[i] *= pow(nuhiz[i]/nuhaslam,indnu);
606 planck.SetTemperature(tsynch[i]);
607 psynch_2polar[i] = planck(nuhiz[i]*1.e+9) * surfeff * angsol_pix[i] * (dnuhiz[i]*1e9);
608 tasynch_2polar[i] = psynch_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
609 ssynch_2polar[i] = psynch_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
610 isynch_2polar[i] = ssynch_2polar[i] / angsol_pix[i];
611 psynch[i] = facpolar * psynch_2polar[i];
612 tasynch[i] = facpolar * tasynch_2polar[i];
613 ssynch[i] = facpolar * ssynch_2polar[i];
614 isynch[i] = ssynch[i] / angsol_pix[i];
615 }
616 cout<<"\n--- Synchrotron: T="<<Tsynch408<<" K ("<<nuhaslam<<" GHz), "<<endl
617 <<" tsynch="<<tsynch[0]<<" K ("<<nuhiz[0]<<" GHz) in ["<<tsynch[1]<<","<<tsynch[2]<<"]"<<endl
618 <<" Observation:"<<endl
619 <<" Power="<<psynch[0]<<" W for pixel in ["<<psynch[1]<<","<<psynch[2]<<"]"<<endl
620 <<" Flux density = "<<ssynch[0]<<" Jy for pixel solid angle in ["<<ssynch[1]<<","<<ssynch[2]<<"]"<<endl
621 <<" Intensity = "<<isynch[0]<<" Jy/sr in ["<<isynch[1]<<","<<isynch[2]<<"]"<<endl
622 <<" Antenna temperature = "<<tasynch[0]<<" K in ["<<tasynch[1]<<","<<tasynch[2]<<"]"<<endl
623 <<" 2 polars:"<<endl
624 <<" Power="<<psynch_2polar[0]<<" W for pixel in ["<<psynch_2polar[1]<<","<<psynch_2polar[2]<<"]"<<endl
625 <<" Flux density = "<<ssynch_2polar[0]<<" Jy for pixel solid angle in ["<<ssynch_2polar[1]<<","<<ssynch_2polar[2]<<"]"<<endl
626 <<" Intensity = "<<isynch_2polar[0]<<" Jy/sr in ["<<isynch_2polar[1]<<","<<isynch_2polar[2]<<"]"<<endl
627 <<" Antenna temperature = "<<tasynch_2polar[0]<<" K in ["<<tasynch_2polar[1]<<","<<tasynch_2polar[2]<<"]"<<endl;
628
629 // ---
630 // --- CMB
631 // ---
632 planck.SetTemperature(tcmb);
633 double pcmb_2polar[3], tacmb_2polar[3], scmb_2polar[3], icmb_2polar[3];
634 double pcmb[3], tacmb[3], scmb[3], icmb[3];
635
636 for(int i=0;i<3;i++) {
637 pcmb_2polar[i] = planck(nuhiz[i]*1.e+9) * surfeff * angsol_pix[i] * (dnuhiz[i]*1e9);
638 tacmb_2polar[i] = pcmb_2polar[i] / k_Boltzman_Cst / (dnuhiz[i]*1e9);
639 scmb_2polar[i] = pcmb_2polar[i] / surfeff / (dnuhiz[i]*1e9) / Jansky2Watt_cst;
640 icmb_2polar[i] = scmb_2polar[i] / angsol_pix[i];
641 pcmb[i] = facpolar * pcmb_2polar[i];
642 tacmb[i] = facpolar * tacmb_2polar[i];
643 scmb[i] = facpolar * scmb_2polar[i];
644 icmb[i] = scmb[i] / angsol_pix[i];
645 }
646 cout<<"\n--- CMB: T="<<tcmb<<" K"<<endl
647 <<" Observation:"<<endl
648 <<" Power="<<pcmb[0]<<" W for pixel in ["<<pcmb[1]<<","<<pcmb[2]<<"]"<<endl
649 <<" Flux density = "<<scmb[0]<<" Jy for pixel solid angle in ["<<scmb[1]<<","<<scmb[2]<<"]"<<endl
650 <<" Intensity = "<<icmb[0]<<" Jy/sr in ["<<icmb[1]<<","<<icmb[2]<<"]"<<endl
651 <<" Antenna temperature = "<<tacmb[0]<<" K in ["<<tacmb[1]<<","<<tacmb[2]<<"]"<<endl
652 <<" 2 polars:"<<endl
653 <<" Power="<<pcmb_2polar[0]<<" W for pixel in ["<<pcmb_2polar[1]<<","<<pcmb_2polar[2]<<"]"<<endl
654 <<" Flux density = "<<scmb_2polar[0]<<" Jy for pixel solid angle in ["<<scmb_2polar[1]<<","<<scmb_2polar[2]<<"]"<<endl
655 <<" Intensity = "<<icmb_2polar[0]<<" Jy/sr in ["<<icmb_2polar[1]<<","<<icmb_2polar[2]<<"]"<<endl
656 <<" Antenna temperature = "<<tacmb_2polar[0]<<" K in ["<<tacmb_2polar[1]<<","<<tacmb_2polar[2]<<"]"<<endl;
657
658 // ---
659 // --- AGN
660 // ---
661 double flux_agn = pow(10.,lflux_agn);
662 double mass_agn[3], flux_agn_pix[3], mass_agn_pix[3], lmass_agn_pix[3];
663 for(int i=0;i<3;i++) {
664 mass_agn[i] = FluxHI2Msol(flux_agn*Jansky2Watt_cst,dlum[i]);
665 flux_agn_pix[i] = flux_agn*(dnuhiz[i]*1e9);
666 mass_agn_pix[i] = FluxHI2Msol(flux_agn_pix[i]*Jansky2Watt_cst,dlum[i]);
667 lmass_agn_pix[i] = log10(mass_agn_pix[i]);
668 }
669 cout<<"\n--- AGN: log10(S_agn)="<<lflux_agn<<" S_agn="<<flux_agn<<" Jy :"<<endl
670 <<" mass_agn = "<<mass_agn[0]<<" equiv. Msol/Hz in ["<<mass_agn[1]<<","<<mass_agn[2]<<"]"<<endl
671 <<" flux_agn_pix = "<<flux_agn_pix[0]<<" 10^-26 W/m^2 in ["<<flux_agn_pix[1]<<","<<flux_agn_pix[2]<<"]"<<endl
672 <<" mass_agn_pix = "<<mass_agn_pix[0]<<" Msol in ["<<mass_agn_pix[1]<<","<<mass_agn_pix[2]<<"]"<<endl
673 <<" log10(mass_agn_pix) = "<<lmass_agn_pix[0]<<" in ["<<lmass_agn_pix[1]<<","<<lmass_agn_pix[2]<<"]"<<endl;
674
675 // =====================================================================
676 // ---
677 // --- Noise analysis
678 // ---
679 // --- Puissance du bruit pour un telescope de surface Ae et de BW dNu
680 // Par definition la puissance du bruit est:
681 // Pb = k * Tsys * dNu (W)
682 // Pour une source (non-polarisee) de densite de flux (totale 2 polars)
683 // St (exprimee en Jy = 10^-26 W/m^2/Hz)
684 // Pt = St * Ae * dNu (puissance totale emise en W pour 2 polars)
685 // P1 = 1/2 * St * Ae * dNu (puissance emise en W pour une polar)
686 // la SEFD (system equivalent flux density en Jy) est definie comme
687 // la densite de flux total (2 polars) "St" d'une source (non-polarisee)
688 // dont la puissance P1 mesuree pour une seule polarisation
689 // serait egale a la puissance du bruit. De P1 = Pb on deduit:
690 // SEFD = 2 * k * Tsys / Ae (en Jy)
691 // la puissance du bruit est: Pb = 1/2 * SEFD * Ae * dNu (en W)
692 // la sensibilite Slim tient compte du temps d'integration et de la BW:
693 // le nombre de mesures independantes est "2*dNu*Tobs" donc
694 // Slim = SEFD / sqrt(2*dNu*Tobs) = 2*k*Tsys/[Ae*sqrt(2*dNu*Tobs) (en Jy)
695 // --- Puissance du bruit pour un interferometre
696 // Ae = surface d'un telescope elementaire
697 // N = nombre de telescopes dans l'interferometre (Atot = N*Ae)
698 // La sensibilite Slim en Jy est:
699 // Slim = 2 * k * Tsys / [ Ae * Sqrt(2*N(N-1)/2 *dnu*Tobs) ]
700 // = 2 * k * Tsys / [ Atot/N * Sqrt(2*N(N-1)/2*dnu*Tobs) ]
701 // = 2 * k * Tsys / [ Atot * Sqrt((N-1)/N *dnu*Tobs) ]
702 // - Interferometre a deux antennes:
703 // Slim = 2 * k * Tsys / [ Atot * Sqrt(1/2 *dnu*Tobs) ]
704 // - Interferometre a N antennes (N grand):
705 // Slim -> 2 * k * Tsys / [ Atot * Sqrt(dnu*Tobs) ]
706 // C'est aussi la formule pour un telescope unique de surface Atot
707 // --- On ne mesure qu'une seule polarisation
708 // Ces formules sont valables si on mesure 1 polarisation:
709 // Slim est la densite de flux total "St" (2 polars) d'une source (non-polarisee)
710 // qui donne la meme puissance que le bruit dans un detecteur qui ne
711 // mesure qu'une seule polarisation:
712 // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
713 // S/N = St / Slim
714 // La puissance de bruit est, par definition:
715 // Pb = 1/2 *Slim*Atot*dNu
716 // = k*Tsys*sqrt(2*dNu/Tobs) pour N=2
717 // = k*Tsys*sqrt(dNu/Tobs) pour N>>grand
718 // La densite de flux d'une source a S/N=1 est:
719 // St = Slim
720 // La puissance d'une source a S/N=1 mesuree par un detecteur
721 // qui ne mesure qu'une polar est:
722 // P1_lim = 1/2 *Slim*Atot*dNu
723 // --- On mesure les 2 polarisations avec deux voies d'electronique distinctes
724 // la puissance du signal mesure est multipliee par 2
725 // la puissance du bruit est multipliee par sqrt(2)
726 // on a donc un gain d'un facteur sqrt(2) sur le rapport S/N
727 // (cela revient d'ailleur a doubler le temps de pose: Tobs -> 2*Tobs)
728 // En notant arbitrairement: Slim' = Slim / sqrt(2)
729 // ou Slim est defini par les formules ci-dessus
730 // Le rapport S/N pour une source de densite de flux St (totale 2 polars):
731 // (S/N)_2 = (S/N)_1 * sqrt(2) = (St / Slim) * sqrt(2) = St / Slim'
732 // La densite de flux d'une source a S/N=1 est:
733 // St = Slim' = Slim / sqrt(2)
734 // La puissance d'une source a S/N=1 cumulee par les 2 detecteurs est:
735 // P_lim = St*Atot*dNu = Slim'*Atot*dNu = 1/sqrt(2) *Slim*Atot*dNu
736 // = P1_lim * sqrt(2)
737 // La puissance de bruit cumulee par les 2 detecteurs est, par definition:
738 // Pb = P_lim = Slim'*Atot*dNu = P1_lim * sqrt(2)
739 // = 2*k*Tsys*sqrt(dNu/Tobs) pour N=2
740 // = k*Tsys*sqrt(2*dNu/Tobs) pour N>>grand
741 // =====================================================================
742
743 cout<<"\n>>>>\n>>>> Noise analysis\n>>>>"<<endl;
744 double psys[3];
745 for(int i=0;i<3;i++) psys[i] = k_Boltzman_Cst * Tsys * (dnuhiz[i]*1.e+9);
746 cout<<"Noise: T="<<Tsys<<" K"<<endl
747 <<" P="<<psys[0]<<" W in ["<<psys[1]<<","<<psys[2]<<"]"<<endl;
748
749 cout<<"...Computation assume that noise dominate the signal."<<endl;
750 if(ya2polar)
751 cout<<"...Assuming 2 polarisations measurements with 2 different electronics."<<endl;
752
753
754 //---
755 for(unsigned short it=0;it<2;it++) {
756
757 double fac = 1.;
758 if(it==0) { // Interferometre a 2 telescopes
759 fac = 0.5;
760 cout<<"\n...Observation limits for a 2 telescope interferometer (with complex correlator)"<<endl
761 <<" (sensitivity is given for real or complex correlator output)"<<endl;
762 } else if (it==1) { // Interferometre a N>> telescopes
763 fac = 1.;
764 cout<<"\n...Observation limits for a N (large) telescope interferometer (with complex correlator)"<<endl
765 <<" (weak source limit sensitivity in a synthetised image)"<<endl
766 <<" Also valid for a single dish telescope(with collecting area N*A)"<<endl
767 <<" (add factor sqrt(2) if ON-OFF with T_ON=t_OFF)"<<endl;
768 } else continue;
769
770 double slim[3], SsN[3], smass[3], pkbruit[3];
771 for(int i=0;i<3;i++) {
772 slim[i] = 2. * k_Boltzman_Cst * Tsys / surfeff
773 / sqrt(fac*(dnuhiz[i]*1.e+9)*tobs) /Jansky2Watt_cst;
774 if(ya2polar) slim[i] /= sqrt(2.);
775 SsN[i] = ssig_2polar[i] / slim[i]; // independant de angsol_pix*surfeff
776 smass[i] = mhiref / ssig_2polar[i] * slim[i];
777 pkbruit[i] = pow(smass[i]/mhiref,2.)*vol_pixel;
778 }
779 cout<<"for 1 lobe:"<<endl
780 <<" Slim = "<<slim[0]*1.e6<<" mu_Jy in ["<<slim[1]*1.e6<<","<<slim[2]*1.e6<<"]"<<endl
781 <<" S/N = "<<SsN[0]<<" in ["<<SsN[1]<<","<<SsN[2]<<"]"<<endl
782 <<" Mass HI = "<<smass[0]<<" Msol in ["<<smass[1]<<","<<smass[2]<<"]"<<endl
783 <<" Pk = "<<pkbruit[0]<<" Mpc^3 in ["<<pkbruit[1]<<","<<pkbruit[2]<<"]"<<endl;
784
785 double slim_nl[3], SsN_nl[3], smass_nl[3], pkbruit_nl[3];
786 for(int i=0;i<3;i++) {
787 slim_nl[i] = slim[i] * sqrt(nlobes[i]);
788 SsN_nl[i] = ssig_2polar[i] / slim_nl[i];
789 smass_nl[i] = mhiref / ssig_2polar[i] * slim_nl[i];
790 pkbruit_nl[i] = pow(smass_nl[i]/mhiref,2.)*vol_pixel;
791 }
792 cout<<"for "<<nlobes[0]<<" lobes[i] in ["<<nlobes[1]<<","<<nlobes[2]<<"] :"<<endl
793 <<" Slim = "<<slim_nl[0]*1.e6<<" mu_Jy in ["<<slim_nl[1]*1.e6<<","<<slim_nl[2]*1.e6<<"]"<<endl
794 <<" S/N = "<<SsN_nl[0]<<" in ["<<SsN_nl[1]<<","<<SsN_nl[2]<<"]"<<endl
795 <<" Mass HI = "<<smass_nl[0]<<" Msol in ["<<smass_nl[1]<<","<<smass_nl[2]<<"]"<<endl
796 <<" Pk = "<<pkbruit_nl[0]<<" Mpc^3 in ["<<pkbruit_nl[1]<<","<<pkbruit_nl[2]<<"]"<<endl;
797
798 }
799
800 return 0;
801 }
802
803
804//-----------------------------------------------------------------------------------
805double AngsolEqTelescope(double nu /* GHz */,double telsurf /* m^2 */)
806/*
807Calcul de l'angle solide (sr) equivalent pour un telescope
808de surface totale "telsurf" (m^2) a la frequence "nu" (GHz)
809- Soit D(t) la figure de diffraction du telescope telle que D(t=0)=1
810 (t = angle depuis l'axe optique)
811 telescope circulaire de diametre D:
812 D(t) = [2J1(Pi*D*t/l)/(Pi*D*t/l)]
813 telescope rectangulaire axb:
814 D(t) = [sin(Pi*a*t/l)/(Pi*a*t/l)]*[sin(Pi*b*t/l)/(Pi*b*t/l)]
815- On cherche l'angle solide equivalent (par ex d'un cylindre de hauteur 1)
816 Int[ D(t)^2 dOmega ] = Int[ D(t)^2 2Pi t dt ] = Lambda^2/S
817- En conclusion, pour un ciel d'intensite uniforme I, on a:
818 P = I * S * Omega * dNu = I * S * (Lambda^2/S) * dNu
819*/
820{
821 double lambda = SpeedOfLight_Cst*1000./(nu*1.e9);
822 return lambda*lambda / telsurf;
823}
Note: See TracBrowser for help on using the repository browser.