source: Sophya/trunk/Cosmo/SimLSS/cmvobserv3d.cc@ 3157

Last change on this file since 3157 was 3157, checked in by cmv, 19 years ago

intro du facteur de croissance dans la simul cmv 25/01/2007

File size: 17.3 KB
RevLine 
[3115]1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9#include "timing.h"
10#include "ntuple.h"
11#include "matharr.h"
12
13#include "constcosmo.h"
[3157]14#include "cosmocalc.h"
[3115]15#include "schechter.h"
16#include "geneutils.h"
17#include "integfunc.h"
18#include "genefluct3d.h"
19
20void usage(void);
21void usage(void)
22{
23 cout<<"cmvobserv3d [-a] [-0]"<<endl
24 <<" -a : init auto de l aleatoire"<<endl
25 <<" -0 : use methode ComputeFourier0"<<endl
[3157]26 <<" -G : compute Pk(z=0) and apply growth factor in real space"<<endl
[3115]27 <<" -x nx,dx : taille en x (npix,Mpc)"<<endl
28 <<" -y ny,dy : taille en y (npix,Mpc)"<<endl
29 <<" -z nz,dz : taille en z (npix,Mpc)"<<endl
30 <<" -Z zref : redshift median"<<endl
[3120]31 <<" -s snoise : sigma du bruit en Msol"<<endl
[3154]32 <<" -2 : compute 2D spectrum"<<endl
33 <<" -F : write cube in FITS format"<<endl
34 <<" -P : write cube in PPF format"<<endl
35 <<" -V : compute variance from real space"<<endl
[3115]36 <<endl;
37}
38
39int main(int narg,char *arg[])
40{
41 InitTim();
42
43 //-----------------------------------------------------------------
44 // *** Survey definition
[3129]45 long nx=360, ny=-1, nz=64; double dx=1., dy=-1., dz=-1.;
46 //long nx=1000, ny=-1, nz=128; double dx=3., dy=-1., dz=6.;
47 //long nx=1200, ny=-1, nz=128; double dx=1., dy=-1., dz=3;
[3115]48
49 // *** Cosmography definition (WMAP)
[3157]50 unsigned short flat = 0;
[3115]51 double ob0 = 0.0444356;
52 double h100=0.71, om0=0.267804, or0=7.9e-05, ol0=0.73,w0=-1.;
53 double zref = 0.5;
[3157]54 double perc=0.01,dzinc=-1.,dzmax=5.; unsigned short glorder=4;
[3115]55
56 // *** Spectrum and variance definition
57 double ns = 1., as = 1.;
58 double R=8./h100, Rg=R/sqrt(5.);
59 double sigmaR = 1.;
60
61 double kmin=1e-5,kmax=1000.;
62 int npt = 10000;
63 double lkmin=log10(kmin), lkmax=log10(kmax);
64 double eps=1.e-3;
65
66 // *** Schechter mass function definition
67 double h75 = 0.71 / 0.75;
68 double nstar = 0.006*pow(h75,3.);
69 double mstar = pow(10.,9.8/(h75*h75)); // MSol
70 double alpha = -1.37;
71
72 double schmin=1e8, schmax=1e12;
73 int schnpt = 1000;
74 double lschmin=log10(schmin), lschmax=log10(schmax), dlsch=(lschmax-lschmin)/schnpt;
75
76 // *** Niveau de bruit
77 double snoise= 0.; // en equivalent MSol
78
79 // *** type de generation
80 bool computefourier0=false;
[3157]81 bool use_growth_factor = false;
[3115]82 unsigned short nthread=4;
83
[3154]84 // *** What to do
85 bool comp2dspec = false;
86 bool wfits = false;
87 bool wppf = false;
88 bool compvarreal = false;
89
[3115]90 // --- Decodage arguments
91
92 char c;
[3157]93 while((c = getopt(narg,arg,"ha0PWV2Gx:y:z:s:Z:")) != -1) {
[3115]94 switch (c) {
95 case 'a' :
96 Auto_Ini_Ranf(5);
97 break;
98 case '0' :
99 computefourier0 = true;
100 break;
[3157]101 case 'G' :
102 use_growth_factor = true;
103 break;
[3115]104 case 'x' :
[3129]105 sscanf(optarg,"%ld,%lf",&nx,&dx);
[3115]106 break;
107 case 'y' :
[3129]108 sscanf(optarg,"%ld,%lf",&ny,&dy);
[3115]109 break;
110 case 'z' :
[3129]111 sscanf(optarg,"%ld,%lf",&nz,&dz);
[3115]112 break;
113 case 's' :
114 sscanf(optarg,"%lf",&snoise);
115 break;
116 case 'Z' :
117 sscanf(optarg,"%lf",&zref);
118 break;
[3154]119 case '2' :
120 comp2dspec = true;
121 break;
122 case 'V' :
123 compvarreal = true;
124 break;
125 case 'W' :
126 wfits = true;
127 break;
128 case 'P' :
129 wppf = true;
130 break;
[3115]131 case 'h' :
132 default :
133 usage(); return -1;
134 }
135 }
136
137 string tagobs = "cmvobserv3d.ppf";
138 POutPersist posobs(tagobs);
139
140 cout<<"zref="<<zref<<endl;
141 cout<<"nx="<<nx<<" dx="<<dx<<" ny="<<ny<<" dy="<<dy<<" nz="<<nz<<" dz="<<dz<<endl;
142 cout<<"kmin="<<kmin<<" ("<<lkmin<<"), kmax="<<kmax<<" ("<<lkmax<<") Mpc^-1"
143 <<", npt="<<npt<<endl;
144 cout<<"R="<<R<<" Rg="<<Rg<<" Mpc, sigmaR="<<sigmaR<<endl;
[3155]145 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpa="<<alpha<<endl;
[3115]146 cout<<"schmin="<<schmin<<" ("<<lschmin
147 <<"), schmax="<<schmax<<" ("<<lschmax<<") Msol"
148 <<", schnpt="<<schnpt<<endl;
149 cout<<"snoise="<<snoise<<" equivalent Msol"<<endl;
150
151 //-----------------------------------------------------------------
[3157]152 cout<<endl<<"\n--- Create Cosmology"<<endl;
[3115]153
[3157]154 CosmoCalc univ(flat,true,zref+1.);
155 univ.SetInteg(perc,dzinc,dzmax,glorder);
156 univ.SetDynParam(h100,om0,or0,ol0,w0);
157 univ.Print();
158 double loscomref = univ.Dloscom(zref);
159 cout<<"zref = "<<zref<<" -> dloscom = "<<loscomref<<" Mpc"<<endl;
160
161 //-----------------------------------------------------------------
162 cout<<endl<<"\n--- Create Spectrum and mass function"<<endl;
163
[3115]164 InitialSpectrum pkini(ns,as);
165
166 TransfertEisenstein tf(h100,om0-ob0,ob0,T_CMB_Par,false);
167 //tf.SetNoOscEnv(2);
168
[3157]169 GrowthFactor growth(om0,ol0);
[3115]170
171 PkSpectrum0 pk0(pkini,tf);
172
[3157]173 PkSpectrumZ pkz(pk0,growth,zref);
[3115]174
175 Schechter sch(nstar,mstar,alpha);
176
177 //-----------------------------------------------------------------
178 pkz.SetZ(0.);
179 cout<<endl<<"\n--- Compute variance for top-hat R="<<R
180 <<" at z="<<pkz.GetZ()<<endl;
181 VarianceSpectrum varpk_th(pkz,0);
182 double kfind_th = varpk_th.FindMaximum(R,kmin,kmax,eps);
183 double pkmax_th = varpk_th(kfind_th);
184 cout<<"kfind_th = "<<kfind_th<<" ("<<log10(kfind_th)<<"), integrand="<<pkmax_th<<endl;
185 double k1=kmin, k2=kmax;
186 int rc = varpk_th.FindLimits(R,pkmax_th/1.e4,k1,k2,eps);
187 cout<<"limit_th: rc="<<rc<<" : "<<k1<<" ("<<log10(k1)<<") , "
188 <<k2<<" ("<<log10(k2)<<")"<<endl;
189
190 double ldlk = (log10(k2)-log10(k1))/npt;
191 varpk_th.SetInteg(0.01,ldlk,-1.,4);
192 double sr2 = varpk_th.Variance(R,k1,k2);
193 cout<<"varpk_th="<<sr2<<" -> sigma="<<sqrt(sr2)<<endl;
194
195 double normpkz = sigmaR*sigmaR/sr2;
196 pkz.SetScale(normpkz);
197 cout<<"Spectrum normalisation = "<<pkz.GetScale()<<endl;
198
199 pkz.SetZ(zref);
200
[3120]201 Histo hpkz(lkmin,lkmax,npt); hpkz.ReCenterBin();
[3115]202 FuncToHisto(pkz,hpkz,true);
203 {
204 tagobs = "hpkz"; posobs.PutObject(hpkz,tagobs);
205 }
206
207 //-----------------------------------------------------------------
208 cout<<endl<<"\n--- Compute variance for Pk at z="<<pkz.GetZ()<<endl;
209 VarianceSpectrum varpk_int(pkz,2);
210
211 double kfind_int = varpk_int.FindMaximum(R,kmin,kmax,eps);
212 double pkmax_int = varpk_int(kfind_int);
213 cout<<"kfind_int = "<<kfind_int<<" ("<<log10(kfind_int)<<"), integrand="<<pkmax_int<<endl;
214 double k1int=kmin, k2int=kmax;
215 int rcint = varpk_int.FindLimits(R,pkmax_int/1.e4,k1int,k2int,eps);
216 cout<<"limit_int: rc="<<rcint<<" : "<<k1int<<" ("<<log10(k1int)<<") , "
217 <<k2int<<" ("<<log10(k2int)<<")"<<endl;
218
219 double ldlkint = (log10(k2int)-log10(k1int))/npt;
220 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
221 double sr2int = varpk_int.Variance(R,k1int,k2int);
222 cout<<"varpk_int="<<sr2int<<" -> sigma="<<sqrt(sr2int)<<endl;
223
224 //-----------------------------------------------------------------
[3154]225 cout<<endl<<"\n--- Compute galaxy density number"<<endl;
[3115]226
227 sch.SetOutValue(0);
228 cout<<"sch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
229 double ngal_by_mpc3 = IntegrateFuncLog(sch,lschmin,lschmax,0.01,dlsch,10.*dlsch,4);
230 cout<<"Galaxy density number = "<<ngal_by_mpc3<<" /Mpc^3 between limits"<<endl;
231
232 sch.SetOutValue(1);
233 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
234 double mass_by_mpc3 = IntegrateFuncLog(sch,lschmin,lschmax,0.01,dlsch,10.*dlsch,4);
235 cout<<"Galaxy mass density= "<<mass_by_mpc3<<" Msol/Mpc^3 between limits"<<endl;
236
[3155]237 PrtTim(">>>> End of definition");
238
[3115]239 //-----------------------------------------------------------------
240 // FFTW3 (p26): faster if sizes 2^a 3^b 5^c 7^d 11^e 13^f with e+f=0 ou 1
[3155]241 cout<<endl<<"\n--- Initialisation de GeneFluct3D"<<endl;
[3115]242
243 TArray< complex<r_8> > pkgen;
[3141]244 GeneFluct3D fluct3d(pkgen);
[3155]245 fluct3d.SetPrtLevel(2);
[3115]246 fluct3d.SetNThread(nthread);
247 fluct3d.SetSize(nx,ny,nz,dx,dy,dz);
[3157]248 fluct3d.SetObservator(zref,nz/2.);
249 fluct3d.SetCosmology(univ);
250 fluct3d.SetGrowthFactor(growth);
251 fluct3d.LosComRedshift(0.001);
[3141]252 TArray<r_8>& rgen = fluct3d.GetRealArray();
[3157]253 cout<<endl; fluct3d.Print();
[3141]254
255 double dkmin = fluct3d.GetKincMin();
[3115]256 double knyqmax = fluct3d.GetKmax();
[3141]257 long nherr = long(knyqmax/dkmin+0.5);
258 cout<<"For HistoErr: d="<<dkmin<<" max="<<knyqmax<<" n="<<nherr<<endl;
[3115]259
[3141]260 double dktmin = fluct3d.GetKTincMin();
261 double ktnyqmax = fluct3d.GetKTmax();
262 long nherrt = long(ktnyqmax/dktmin+0.5);
263 double dkzmin = fluct3d.GetKinc()[2];
264 double kznyqmax = fluct3d.GetKnyq()[2];
265 long nherrz = long(kznyqmax/dkzmin+0.5);
266 cout<<"For Histo2DErr: d="<<dktmin<<","<<dkzmin
267 <<" max="<<ktnyqmax<<","<<kznyqmax<<" n="<<nherrt<<","<<nherrz<<endl;
268
[3157]269 //-----------------------------------------------------------------
[3115]270 cout<<"\n--- Computing spectra variance up to Kmax at z="<<pkz.GetZ()<<endl;
271 // En fait on travaille sur un cube inscrit dans la sphere de rayon kmax:
272 // sphere: Vs = 4Pi/3 k^3 , cube inscrit (cote k*sqrt(2)): Vc = (k*sqrt(2))^3
273 // Vc/Vs = 0.675 -> keff = kmax * (0.675)^(1/3) = kmax * 0.877
[3141]274 double knyqmax_mod = 0.877*knyqmax;
275 ldlkint = (log10(knyqmax_mod)-log10(k1int))/npt;
[3115]276 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
[3141]277 double sr2int_kmax = varpk_int.Variance(R,k1int,knyqmax_mod);
278 cout<<"varpk_int(<"<<knyqmax_mod<<")="<<sr2int_kmax<<" -> sigma="<<sqrt(sr2int_kmax)<<endl;
[3115]279
[3155]280 PrtTim(">>>> End Initialisation de GeneFluct3D");
281
[3157]282 //-----------------------------------------------------------------
[3115]283 cout<<"\n--- Computing a realization in Fourier space"<<endl;
[3157]284 if(use_growth_factor) pkz.SetZ(0.); else pkz.SetZ(zref);
285 cout<<"Power spectrum set at redshift: "<<pkz.GetZ()<<endl;
[3141]286 if(computefourier0) fluct3d.ComputeFourier0(pkz);
287 else fluct3d.ComputeFourier(pkz);
[3155]288 PrtTim(">>>> End Computing a realization in Fourier space");
[3115]289
[3141]290 if(1) {
291 cout<<"\n--- Checking realization spectra"<<endl;
292 HistoErr hpkgen(0.,knyqmax,nherr);
293 hpkgen.ReCenterBin(); hpkgen.Zero();
294 hpkgen.Show();
295 fluct3d.ComputeSpectrum(hpkgen);
296 {
297 tagobs = "hpkgen"; posobs.PutObject(hpkgen,tagobs);
298 }
[3155]299 PrtTim(">>>> End Checking realization spectra");
[3115]300 }
301
[3154]302 if(comp2dspec) {
[3141]303 cout<<"\n--- Checking realization 2D spectra"<<endl;
304 Histo2DErr hpkgen2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
305 hpkgen2.ReCenterBin(); hpkgen2.Zero();
306 hpkgen2.Show();
307 fluct3d.ComputeSpectrum2D(hpkgen2);
308 {
309 tagobs = "hpkgen2"; posobs.PutObject(hpkgen2,tagobs);
310 }
[3155]311 PrtTim(">>>> End Checking realization 2D spectra");
[3141]312 }
313
314 if(1) {
[3115]315 cout<<"\n--- Computing convolution by pixel shape"<<endl;
316 fluct3d.FilterByPixel();
[3155]317 PrtTim(">>>> End Computing convolution by pixel shape");
[3141]318 }
[3115]319
[3155]320 if(wfits) {
321 fluct3d.WriteFits("!cmvobserv3d_k0.fits");
322 PrtTim(">>>> End WriteFits");
323 }
324 if(wppf) {
325 fluct3d.WritePPF("cmvobserv3d_k0.ppf",false);
326 PrtTim(">>>> End WritePPF");
327 }
[3141]328
329 if(1) {
[3115]330 cout<<"\n--- Checking realization spectra after pixel shape convol."<<endl;
[3141]331 HistoErr hpkgenf(0.,knyqmax,nherr);
332 hpkgenf.ReCenterBin(); hpkgenf.Zero();
333 hpkgenf.Show();
[3115]334 fluct3d.ComputeSpectrum(hpkgenf);
335 {
336 tagobs = "hpkgenf"; posobs.PutObject(hpkgenf,tagobs);
337 }
[3155]338 PrtTim(">>>> End Checking realization spectra");
[3115]339 }
340
[3154]341 if(comp2dspec) {
[3141]342 cout<<"\n--- Checking realization 2D spectra after pixel shape convol."<<endl;
343 Histo2DErr hpkgenf2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
344 hpkgenf2.ReCenterBin(); hpkgenf2.Zero();
345 hpkgenf2.Show();
346 fluct3d.ComputeSpectrum2D(hpkgenf2);
347 {
348 tagobs = "hpkgenf2"; posobs.PutObject(hpkgenf2,tagobs);
349 }
[3155]350 PrtTim(">>>> End Checking realization 2D spectra");
[3115]351 }
352
[3157]353 //-----------------------------------------------------------------
[3115]354 cout<<"\n--- Computing a realization in real space"<<endl;
355 fluct3d.ComputeReal();
356 double rmin,rmax; rgen.MinMax(rmin,rmax);
357 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
[3157]358 PrtTim(">>>> End Computing a realization in real space");
[3115]359
[3157]360 if(use_growth_factor) {
361 cout<<"\n--- Apply Growth factor"<<endl;
362 cout<<"...D(z=0)="<<growth(0.)<<" D(z="<<zref<<")="<<growth(zref)<<endl;
363 fluct3d.ApplyGrowthFactor(-1);
364 rmin,rmax; rgen.MinMax(rmin,rmax);
365 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
366 PrtTim(">>>> End Applying growth factor");
367 }
368
[3155]369 if(wfits) {
370 fluct3d.WriteFits("!cmvobserv3d_r0.fits");
371 PrtTim(">>>> End WriteFits");
372 }
373 if(wppf) {
374 fluct3d.WritePPF("cmvobserv3d_r0.ppf",true);
375 PrtTim(">>>> End WritePPF");
376 }
[3115]377
[3141]378 int_8 nm;
379 double rm,rs2;
[3115]380 if(1) {
[3141]381 cout<<"\n--- Check mean and variance in real space"<<endl;
382 int_8 nlowone = fluct3d.NumberOfBad(-1.,1e+200);
383 nm = fluct3d.MeanSigma2(rm,rs2);
384 cout<<"rgen:("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
385 <<rs2<<" -> "<<sqrt(rs2)<<", n(<-1)="<<nlowone<<endl;
[3155]386 PrtTim(">>>> End Check mean and variance in real space");
[3141]387 }
388
[3154]389 if(compvarreal) {
[3115]390 cout<<"\n--- Check variance sigmaR in real space"<<endl;
391 double varr;
[3134]392 int_8 nvarr = fluct3d.VarianceFrReal(R,varr);
[3115]393 cout<<"R="<<R<<" : sigmaR^2="<<varr<<" -> "<<sqrt(varr)<<", n="<<nvarr<<endl;
[3155]394 PrtTim(">>>> End Check variance sigmaR in real space");
[3115]395 }
396
397 //-----------------------------------------------------------------
398 cout<<endl<<"\n--- Converting fluctuations into mass"<<endl;
399 fluct3d.TurnFluct2Mass();
400 nm = fluct3d.MeanSigma2(rm,rs2);
401 cout<<"1+rgen: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
402 <<rs2<<" -> "<<sqrt(rs2)<<endl;
[3155]403 PrtTim(">>>> End Converting fluctuations into mass");
[3115]404
405 cout<<"\n--- Converting mass into galaxy number"<<endl;
406 rm = fluct3d.TurnMass2MeanNumber(ngal_by_mpc3);
407 cout<<rm<<" galaxies put into survey"<<endl;
408 nm = fluct3d.MeanSigma2(rm,rs2,0.);
409 cout<<"galaxy: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
410 <<rs2<<" -> "<<sqrt(rs2)<<endl;
[3155]411 PrtTim(">>>> End Converting mass into galaxy number");
[3115]412
413 cout<<"\n--- Set negative pixels to BAD"<<endl;
414 nm = fluct3d.SetToVal(0.,1e+200,-999.);
415 cout<<nm<<" negative in survey set to BAD"<<endl;
416 nm = fluct3d.MeanSigma2(rm,rs2,-998.);
417 cout<<"galaxy: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
418 <<rs2<<" -> "<<sqrt(rs2)<<endl;
[3155]419 PrtTim(">>>> End Set negative pixels to BAD etc...");
[3115]420
[3154]421 cout<<"\n--- Apply poisson on galaxy number"<<endl;
[3115]422 nm = fluct3d.ApplyPoisson();
423 cout<<nm<<" galaxies into survey after poisson"<<endl;
424 nm = fluct3d.MeanSigma2(rm,rs2,-998.);
425 cout<<"galaxy: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
426 <<rs2<<" -> "<<sqrt(rs2)<<endl;
[3155]427 PrtTim(">>>> End Apply poisson on galaxy number");
[3115]428
[3154]429 cout<<"\n--- Convert Galaxy number to HI mass"<<endl;
[3129]430 long nhmdndm = long( (lschmax-lschmin+1.)*100. + 0.5);
[3115]431 Histo hmdndm(lschmin,lschmax,nhmdndm);
432 sch.SetOutValue(1);
433 FuncToHisto(sch,hmdndm,true);
434 FunRan tirhmdndm(hmdndm,true);
435 {
436 tagobs = "hmdndm"; posobs.PutObject(hmdndm,tagobs);
437 Histo hdum1(tirhmdndm);
438 tagobs = "tirhmdndm"; posobs.PutObject(hdum1,tagobs);
439 }
440 double mhi = fluct3d.TurnNGal2Mass(tirhmdndm,true);
441 cout<<mhi<<" MSol in survey / "<<mass_by_mpc3*fluct3d.GetVol()<<endl;
442 nm = fluct3d.MeanSigma2(rm,rs2,0.);
443 cout<<"HI mass: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
444 <<rs2<<" -> "<<sqrt(rs2)<<endl;
445 cout<<"Equivalent: "<<rm*nm/fluct3d.NPix()<<" Msol / pixels"<<endl;
[3155]446 PrtTim(">>>> End Convert Galaxy number to HI mass");
[3115]447
448 cout<<"\n--- Set BAD pixels to Zero"<<endl;
449 nm = fluct3d.SetToVal(-998.,1e+200,0.);
450 cout<<nm<<" BAD in survey set to zero"<<endl;
451 nm = fluct3d.MeanSigma2(rm,rs2);
452 cout<<"galaxy: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
453 <<rs2<<" -> "<<sqrt(rs2)<<endl;
[3155]454 PrtTim(">>>> End Set BAD pixels to Zero etc...");
[3115]455
[3155]456 if(wfits) {
457 fluct3d.WriteFits("!cmvobserv3d_r.fits");
458 PrtTim(">>>> End WriteFits");
459 }
460 if(wppf) {
461 fluct3d.WritePPF("cmvobserv3d_r.ppf",true);
462 PrtTim(">>>> End WritePPF");
463 }
[3120]464
[3115]465 cout<<"\n--- Add noise to HI Flux snoise="<<snoise<<endl;
466 fluct3d.AddNoise2Real(snoise);
467 nm = fluct3d.MeanSigma2(rm,rs2);
468 cout<<"HI mass with noise: ("<<nm<<") Mean = "<<rm<<", Sigma^2 = "
469 <<rs2<<" -> "<<sqrt(rs2)<<endl;
[3155]470 PrtTim(">>>> End Add noise");
[3115]471
472 //-----------------------------------------------------------------
473 // -- NE PAS FAIRE CA SI ON VEUT CONTINUER LA SIMULATION -> d_rho/rho ecrase
[3141]474
[3115]475 if(1) {
476 cout<<endl<<"\n--- ReComputing spectrum from real space"<<endl;
477 fluct3d.ReComputeFourier();
[3155]478 PrtTim(">>>> End ReComputing spectrum");
[3141]479 }
480
[3155]481 if(wfits) {
482 fluct3d.WriteFits("!cmvobserv3d_k.fits");
483 PrtTim(">>>> End WriteFits");
484 }
485 if(wppf) {
486 fluct3d.WritePPF("cmvobserv3d_k.ppf",false);
487 PrtTim(">>>> End WritePPF");
488 }
[3154]489
[3141]490 if(1) {
491 cout<<endl<<"\n--- Computing final spectrum"<<endl;
492 HistoErr hpkrec(0.,knyqmax,nherr);
[3115]493 hpkrec.ReCenterBin();
[3141]494 hpkrec.Show();
[3115]495 fluct3d.ComputeSpectrum(hpkrec);
496 tagobs = "hpkrec"; posobs.PutObject(hpkrec,tagobs);
[3155]497 PrtTim(">>>> End Computing final spectrum");
[3115]498 }
499
[3154]500 if(comp2dspec) {
[3141]501 cout<<"\n--- Computing final 2D spectrum"<<endl;
502 Histo2DErr hpkrec2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
503 hpkrec2.ReCenterBin(); hpkrec2.Zero();
504 hpkrec2.Show();
505 fluct3d.ComputeSpectrum2D(hpkrec2);
506 {
507 tagobs = "hpkrec2"; posobs.PutObject(hpkrec2,tagobs);
508 }
[3155]509 PrtTim(">>>> End Computing final 2D spectrum");
[3141]510 }
511
[3155]512 PrtTim(">>>> End Of Job");
[3115]513 return 0;
514}
515
516/*
[3141]517######################################################
[3154]518readfits cmvobserv3d_k0.fits
[3141]519readfits cmvobserv3d_k.fits
520readfits cmvobserv3d_r0.fits
521readfits cmvobserv3d_r.fits
522
[3154]523openppf cmvobserv3d_k0.ppf
[3141]524openppf cmvobserv3d_k.ppf
525openppf cmvobserv3d_r0.ppf
526openppf cmvobserv3d_r.ppf
527
528# pour le plot 2D d'une slice en Z du 3D: to2d nom_obj3D num_slice
529defscript to2d
530 objaoper $1 sliceyz $2
531 mv sliceyz_${2} ${1}_$2
532 disp ${1}_$2
533 echo display slice $2 of $1
534endscript
535
536to2d $cobj 0
537
538######################################################
[3115]539openppf cmvobserv3d.ppf
540
[3141]541zone
[3150]542set k pow(10.,x)
543n/plot hpkz.val*$k*$k/(2*M_PI*M_PI)%x ! "connectpoints"
544
545zone
[3120]546n/plot hpkz.val%x ! ! "nsta connectpoints"
547n/plot hpkgen.val%log10(x) x>0 ! "nsta same red connectpoints"
548n/plot hpkgenf.val%log10(x) x>0 ! "nsta same orange connectpoints"
549n/plot hpkrec.val%log10(x) x>0 ! "nsta same blue connectpoints"
[3115]550
[3150]551disp hpkgen "hbincont err"
552disp hpkgenf "hbincont err"
553disp hpkrec "hbincont err"
[3115]554
[3141]555zone 2 2
556imag hpkgen2
557imag hpkgenf2
558imag hpkrec2
[3115]559
[3150]560zone 2 1
561disp hmdndm "nsta"
562disp tirhmdndm "nsta"
[3120]563addline 0 1 20 1 "red"
564
[3115]565 */
Note: See TracBrowser for help on using the repository browser.