source: Sophya/trunk/Cosmo/SimLSS/cmvobserv3d.cc@ 3336

Last change on this file since 3336 was 3331, checked in by cmv, 18 years ago

mise en place evolution seulement sur distance au plan Z , cmv 02/10/2007

File size: 23.7 KB
RevLine 
[3115]1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9#include "timing.h"
10#include "ntuple.h"
11#include "matharr.h"
12
13#include "constcosmo.h"
[3157]14#include "cosmocalc.h"
[3115]15#include "schechter.h"
16#include "geneutils.h"
17#include "genefluct3d.h"
18
19void usage(void);
20void usage(void)
21{
[3182]22 cout<<"cmvobserv3d [...options...]"<<endl
[3200]23 <<" -a : auto init random seed (needed for multiple simul)"<<endl
24 <<" -0 : use ComputeFourier0 method (defaut: no, use normal way)"<<endl
[3331]25 <<" -G typevol: compute Pk(z=0) and apply growth factor in real space"<<endl
26 <<" typevol=1 noise evolved with distance / observateur (def)"<<endl
27 <<" typevol=2 noise evolved with distance to middle of Z planes"<<endl
[3200]28 <<" (default: no, spectrum Pk(z=z_median) for all cube)"<<endl
[3289]29 <<" -F : filter spectrum by pixel shape (0=no 1=yes(default)"<<endl
[3329]30 <<" -U : do not poisson fluctuate with Ngal, convert directly to HI mass"<<endl
[3200]31 <<" -x nx,dx : size along x axis (npix,Mpc)"<<endl
32 <<" -y ny,dy : size along y axis (npix,Mpc)"<<endl
33 <<" if ny or dy <=0 take same value as for x"<<endl
34 <<" -z nz,dz : size along z axis (redshift axis, npix,Mpc)"<<endl
35 <<" -Z zref : redshift for the center of the simulation cube"<<endl
[3331]36 <<" -s snoise,typevol : gaussian noise sigma in equivalent Msol"<<endl
37 <<" typevol=0 no evolution (def)"<<endl
38 <<" typevol=1 noise evolved with distance / observateur"<<endl
39 <<" typevol=2 noise evolved with distance to middle of Z planes"<<endl
[3200]40 <<" -2 : compute also 2D spectrum (default: no)"<<endl
[3322]41 <<" -N scalecube,offsetcube: normalize cube before doing final spectrum (default: automatic)"<<endl
[3193]42 <<" -M schmin,schmax,nsch : min,max mass and nb points for schechter HI"<<endl
[3322]43 <<" If nsch<0 alors no,bre de points par decade"<<endl
44 <<" -Q naleagal : use quick method for turning ngal to mass"<<endl
45 <<" -R schmassdist.ppf : read mass distribution for trials from file"<<endl
46 <<" instead of computing it (ONLY if \"-Q\" option is activated)"<<endl
[3200]47 <<" -A <log10(S_agn in Jy at 1.4 GHz)>,sigma,powlaw :"<<endl
48 <<" AGN mean and sigma gaussian equiv. distrib. for solid angle of centeral pixel"<<endl
49 <<" powlaw: apply S_agn evolution as (Nu/1.4)^powlaw"<<endl
50 <<" -W : write cube in FITS format (complex cube is coded as real cube)"<<endl
[3154]51 <<" -P : write cube in PPF format"<<endl
[3281]52 <<" -S : write cube slices in PPF format"<<endl
[3200]53 <<" -V : compute variance from real space (for check, default: no)"<<endl
[3281]54 <<" -T nth : nombre de threads (si compil multi-thread, default: 0)"<<endl
[3115]55 <<endl;
56}
57
58int main(int narg,char *arg[])
59{
60 InitTim();
61
62 //-----------------------------------------------------------------
63 // *** Survey definition
[3129]64 long nx=360, ny=-1, nz=64; double dx=1., dy=-1., dz=-1.;
65 //long nx=1000, ny=-1, nz=128; double dx=3., dy=-1., dz=6.;
66 //long nx=1200, ny=-1, nz=128; double dx=1., dy=-1., dz=3;
[3115]67
68 // *** Cosmography definition (WMAP)
[3157]69 unsigned short flat = 0;
[3115]70 double ob0 = 0.0444356;
71 double h100=0.71, om0=0.267804, or0=7.9e-05, ol0=0.73,w0=-1.;
72 double zref = 0.5;
[3285]73 double perc=0.01,dzinc=-1.,dzmax=-1.; unsigned short glorder=4;
[3115]74
75 // *** Spectrum and variance definition
76 double ns = 1., as = 1.;
77 double R=8./h100, Rg=R/sqrt(5.);
78 double sigmaR = 1.;
79
80 double kmin=1e-5,kmax=1000.;
81 int npt = 10000;
82 double lkmin=log10(kmin), lkmax=log10(kmax);
83 double eps=1.e-3;
84
85 // *** Schechter mass function definition
[3193]86 double h75 = h100 / 0.75;
87 double nstar = 0.006*pow(h75,3.);
[3115]88 double mstar = pow(10.,9.8/(h75*h75)); // MSol
89 double alpha = -1.37;
90
[3322]91 double schmin=1e8, schmax=1e13;
92 int schnpt = -100;
93 bool use_schmassdist = false;
94 long naleagal = 100000;
95 bool recompute_schmassdist = true;
96 string schmassdistfile = "";
[3329]97 bool no_poisson = false;
[3115]98
99 // *** Niveau de bruit
100 double snoise= 0.; // en equivalent MSol
[3331]101 int noise_evol = 0;
[3115]102
[3196]103 // *** AGN
104 bool do_agn = false;
[3199]105 double lfjy_agn=-99., lsigma_agn=0.; // en Jy
106 double powlaw_agn = 0.;
[3196]107
[3115]108 // *** type de generation
109 bool computefourier0=false;
[3331]110 int use_growth_factor = 0;
[3281]111 unsigned short nthread=0;
[3289]112 int filter_by_pixel = 1;
[3115]113
[3154]114 // *** What to do
115 bool comp2dspec = false;
116 bool wfits = false;
117 bool wppf = false;
[3281]118 bool wslice = false;
[3154]119 bool compvarreal = false;
[3322]120 double scalecube = -1., offsetcube = 0.;
[3154]121
[3115]122 // --- Decodage arguments
[3262]123 if(narg>0) {
[3322]124 cout<<"\n--- Arguments: "<<endl;
[3262]125 for(int i=0;i<narg;i++) cout<<arg[i]<<" ";
126 cout<<endl;
127 }
[3115]128
129 char c;
[3331]130 while((c = getopt(narg,arg,"ha0PWSV2UG:F:x:y:z:s:Z:M:A:T:N:Q:R:")) != -1) {
[3281]131 int nth = 0;
[3115]132 switch (c) {
133 case 'a' :
134 Auto_Ini_Ranf(5);
135 break;
136 case '0' :
137 computefourier0 = true;
138 break;
[3157]139 case 'G' :
[3331]140 sscanf(optarg,"%d",&use_growth_factor);
[3157]141 break;
[3329]142 case 'U' :
143 no_poisson = true;
144 break;
[3289]145 case 'F' :
146 sscanf(optarg,"%d",&filter_by_pixel);
147 break;
[3115]148 case 'x' :
[3129]149 sscanf(optarg,"%ld,%lf",&nx,&dx);
[3115]150 break;
151 case 'y' :
[3129]152 sscanf(optarg,"%ld,%lf",&ny,&dy);
[3115]153 break;
154 case 'z' :
[3129]155 sscanf(optarg,"%ld,%lf",&nz,&dz);
[3115]156 break;
157 case 's' :
[3331]158 sscanf(optarg,"%lf,%d",&snoise,&noise_evol);
[3115]159 break;
160 case 'Z' :
161 sscanf(optarg,"%lf",&zref);
162 break;
[3154]163 case '2' :
164 comp2dspec = true;
165 break;
[3322]166 case 'N' :
167 sscanf(optarg,"%lf,%lf",&scalecube,&offsetcube);
168 break;
[3193]169 case 'M' :
170 sscanf(optarg,"%lf,%lf,%d",&schmin,&schmax,&schnpt);
171 break;
[3322]172 case 'Q' :
173 use_schmassdist = true;
174 sscanf(optarg,"%ld",&naleagal);
175 break;
176 case 'R' :
177 schmassdistfile = optarg;
178 break;
[3196]179 case 'A' :
180 do_agn = true;
[3199]181 sscanf(optarg,"%lf,%lf,%lf",&lfjy_agn,&lsigma_agn,&powlaw_agn);
[3196]182 break;
[3154]183 case 'V' :
184 compvarreal = true;
185 break;
186 case 'W' :
187 wfits = true;
188 break;
189 case 'P' :
190 wppf = true;
191 break;
[3281]192 case 'S' :
193 wslice = true;
194 break;
195 case 'T' :
196 sscanf(optarg,"%d",&nth);
197 nthread = (nth<1)? 0: nth;
198 break;
[3115]199 case 'h' :
200 default :
201 usage(); return -1;
202 }
203 }
204
[3322]205 double lschmin=log10(schmin), lschmax=log10(schmax);
206 if(schnpt<=0) { // alors c'est un nombre de points par decade
207 schnpt = long( (-schnpt)*(lschmax-lschmin+1.) + 0.5 );
208 if(schnpt<=2) schnpt = 1000;
209 }
210 if(naleagal<=2) naleagal = 100000;
[3193]211
[3115]212 cout<<"zref="<<zref<<endl;
213 cout<<"nx="<<nx<<" dx="<<dx<<" ny="<<ny<<" dy="<<dy<<" nz="<<nz<<" dz="<<dz<<endl;
214 cout<<"kmin="<<kmin<<" ("<<lkmin<<"), kmax="<<kmax<<" ("<<lkmax<<") Mpc^-1"
215 <<", npt="<<npt<<endl;
[3289]216 cout<<"Filter by pixel = "<<filter_by_pixel<<endl;
[3115]217 cout<<"R="<<R<<" Rg="<<Rg<<" Mpc, sigmaR="<<sigmaR<<endl;
[3331]218 cout<<"Use_growth_factor = "<<use_growth_factor<<endl;
[3246]219 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
[3115]220 cout<<"schmin="<<schmin<<" ("<<lschmin
221 <<"), schmax="<<schmax<<" ("<<lschmax<<") Msol"
222 <<", schnpt="<<schnpt<<endl;
[3329]223 if(no_poisson) cout<<"No poisson fluctuation, direct conversion to HI mass"<<endl;
[3331]224 cout<<"snoise="<<snoise<<" equivalent Msol, evolution="<<noise_evol<<endl;
[3322]225 cout<<"scalecube="<<scalecube<<", offsetcube="<<offsetcube<<endl;
[3199]226 if(do_agn)
227 cout<<"AGN: <log10(Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
228 <<" , powlaw="<<powlaw_agn<<endl;
[3115]229
[3322]230 string tagobs = "cmvobserv3d.ppf";
231 POutPersist posobs(tagobs);
232
[3115]233 //-----------------------------------------------------------------
[3157]234 cout<<endl<<"\n--- Create Cosmology"<<endl;
[3115]235
[3157]236 CosmoCalc univ(flat,true,zref+1.);
237 univ.SetInteg(perc,dzinc,dzmax,glorder);
238 univ.SetDynParam(h100,om0,or0,ol0,w0);
[3285]239 univ.PrtInteg();
[3157]240 univ.Print();
241 double loscomref = univ.Dloscom(zref);
[3193]242 cout<<"\nzref = "<<zref<<" -> dloscom = "<<loscomref<<" Mpc"<<endl;
243 univ.Print(zref);
[3157]244
245 //-----------------------------------------------------------------
[3193]246 cout<<endl<<"\n--- Create Spectrum"<<endl;
[3157]247
[3115]248 InitialSpectrum pkini(ns,as);
249
250 TransfertEisenstein tf(h100,om0-ob0,ob0,T_CMB_Par,false);
251 //tf.SetNoOscEnv(2);
252
[3157]253 GrowthFactor growth(om0,ol0);
[3193]254 // GrowthFactor growth(1.,0.); // D(z) = 1/(1+z)
[3283]255 double growth_at_z = growth(zref);
256 cout<<"...Growth factor at z="<<zref<<" = "<<growth_at_z<<endl;
[3115]257
258 PkSpectrum0 pk0(pkini,tf);
259
[3157]260 PkSpectrumZ pkz(pk0,growth,zref);
[3193]261
[3115]262 //-----------------------------------------------------------------
263 pkz.SetZ(0.);
264 cout<<endl<<"\n--- Compute variance for top-hat R="<<R
265 <<" at z="<<pkz.GetZ()<<endl;
266 VarianceSpectrum varpk_th(pkz,0);
267 double kfind_th = varpk_th.FindMaximum(R,kmin,kmax,eps);
268 double pkmax_th = varpk_th(kfind_th);
269 cout<<"kfind_th = "<<kfind_th<<" ("<<log10(kfind_th)<<"), integrand="<<pkmax_th<<endl;
270 double k1=kmin, k2=kmax;
271 int rc = varpk_th.FindLimits(R,pkmax_th/1.e4,k1,k2,eps);
272 cout<<"limit_th: rc="<<rc<<" : "<<k1<<" ("<<log10(k1)<<") , "
273 <<k2<<" ("<<log10(k2)<<")"<<endl;
274
275 double ldlk = (log10(k2)-log10(k1))/npt;
276 varpk_th.SetInteg(0.01,ldlk,-1.,4);
277 double sr2 = varpk_th.Variance(R,k1,k2);
278 cout<<"varpk_th="<<sr2<<" -> sigma="<<sqrt(sr2)<<endl;
279
280 double normpkz = sigmaR*sigmaR/sr2;
281 pkz.SetScale(normpkz);
282 cout<<"Spectrum normalisation = "<<pkz.GetScale()<<endl;
283
284 pkz.SetZ(zref);
285
[3120]286 Histo hpkz(lkmin,lkmax,npt); hpkz.ReCenterBin();
[3115]287 FuncToHisto(pkz,hpkz,true);
288 {
289 tagobs = "hpkz"; posobs.PutObject(hpkz,tagobs);
290 }
291
292 //-----------------------------------------------------------------
293 cout<<endl<<"\n--- Compute variance for Pk at z="<<pkz.GetZ()<<endl;
294 VarianceSpectrum varpk_int(pkz,2);
295
296 double kfind_int = varpk_int.FindMaximum(R,kmin,kmax,eps);
297 double pkmax_int = varpk_int(kfind_int);
298 cout<<"kfind_int = "<<kfind_int<<" ("<<log10(kfind_int)<<"), integrand="<<pkmax_int<<endl;
299 double k1int=kmin, k2int=kmax;
300 int rcint = varpk_int.FindLimits(R,pkmax_int/1.e4,k1int,k2int,eps);
301 cout<<"limit_int: rc="<<rcint<<" : "<<k1int<<" ("<<log10(k1int)<<") , "
302 <<k2int<<" ("<<log10(k2int)<<")"<<endl;
303
304 double ldlkint = (log10(k2int)-log10(k1int))/npt;
305 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
306 double sr2int = varpk_int.Variance(R,k1int,k2int);
307 cout<<"varpk_int="<<sr2int<<" -> sigma="<<sqrt(sr2int)<<endl;
[3322]308
[3115]309 //-----------------------------------------------------------------
[3322]310 cout<<endl<<"\n--- Create mass function, compute number/mass density, init mass trials"<<endl;
[3115]311
[3322]312 Schechter sch(nstar,mstar,alpha);
313 sch.Print();
314
[3115]315 sch.SetOutValue(0);
316 cout<<"sch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
[3322]317 double ngal_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
[3115]318 cout<<"Galaxy density number = "<<ngal_by_mpc3<<" /Mpc^3 between limits"<<endl;
319
320 sch.SetOutValue(1);
321 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
[3322]322 double mass_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
[3115]323 cout<<"Galaxy mass density= "<<mass_by_mpc3<<" Msol/Mpc^3 between limits"<<endl;
[3193]324 cout<<"Omega_HI at z=0 is "<<mass_by_mpc3/(univ.Rhoc(0.)*GCm3toMsolMpc3_Cst)<<endl
325 <<" at z="<<zref<<" is "<<mass_by_mpc3/(univ.Rhoc(zref)*GCm3toMsolMpc3_Cst)<<endl;
[3115]326
[3322]327 SchechterMassDist schmdist(sch,schmin,schmax,schnpt);
328 if(use_schmassdist && schmassdistfile.size()>0) {
329 cout<<"\nWARNING: SchechterMassDist read from "<<schmassdistfile<<endl
330 <<" PLEASE CHECK CONSISTENCY WITH REQUESTED PARAMETERS"<<endl;
331 schmdist.ReadPPF(schmassdistfile);
[3323]332 recompute_schmassdist = false;
[3322]333 }
334 schmdist.Print();
335 Histo hmdndm = schmdist.GetHmDnDm();
336 FunRan tirhmdndm = schmdist.GetTmDnDm();
337 {
338 tagobs = "hmdndm"; posobs.PutObject(hmdndm,tagobs);
339 Histo hdum1(tirhmdndm);
340 tagobs = "tirhmdndm"; posobs.PutObject(hdum1,tagobs);
341 }
342
[3155]343 PrtTim(">>>> End of definition");
344
[3115]345 //-----------------------------------------------------------------
346 // FFTW3 (p26): faster if sizes 2^a 3^b 5^c 7^d 11^e 13^f with e+f=0 ou 1
[3155]347 cout<<endl<<"\n--- Initialisation de GeneFluct3D"<<endl;
[3115]348
349 TArray< complex<r_8> > pkgen;
[3141]350 GeneFluct3D fluct3d(pkgen);
[3155]351 fluct3d.SetPrtLevel(2);
[3115]352 fluct3d.SetNThread(nthread);
353 fluct3d.SetSize(nx,ny,nz,dx,dy,dz);
[3267]354 fluct3d.SetObservator(zref,-nz/2.);
[3157]355 fluct3d.SetCosmology(univ);
356 fluct3d.SetGrowthFactor(growth);
[3199]357 fluct3d.LosComRedshift(0.001,-1);
[3322]358 //TArray<r_8>& rgen = fluct3d.GetRealArray();
[3157]359 cout<<endl; fluct3d.Print();
[3322]360 cout<<"\nMean number of galaxies per pixel = "<<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
361 cout<<"Mean mass per pixel = "<<mass_by_mpc3*fluct3d.GetDVol()<<endl;
[3141]362
363 double dkmin = fluct3d.GetKincMin();
[3115]364 double knyqmax = fluct3d.GetKmax();
[3141]365 long nherr = long(knyqmax/dkmin+0.5);
[3322]366 cout<<"\nFor HistoErr: d="<<dkmin<<" max="<<knyqmax<<" n="<<nherr<<endl;
[3115]367
[3141]368 double dktmin = fluct3d.GetKTincMin();
369 double ktnyqmax = fluct3d.GetKTmax();
370 long nherrt = long(ktnyqmax/dktmin+0.5);
371 double dkzmin = fluct3d.GetKinc()[2];
372 double kznyqmax = fluct3d.GetKnyq()[2];
373 long nherrz = long(kznyqmax/dkzmin+0.5);
374 cout<<"For Histo2DErr: d="<<dktmin<<","<<dkzmin
375 <<" max="<<ktnyqmax<<","<<kznyqmax<<" n="<<nherrt<<","<<nherrz<<endl;
376
[3157]377 //-----------------------------------------------------------------
[3115]378 cout<<"\n--- Computing spectra variance up to Kmax at z="<<pkz.GetZ()<<endl;
379 // En fait on travaille sur un cube inscrit dans la sphere de rayon kmax:
380 // sphere: Vs = 4Pi/3 k^3 , cube inscrit (cote k*sqrt(2)): Vc = (k*sqrt(2))^3
381 // Vc/Vs = 0.675 -> keff = kmax * (0.675)^(1/3) = kmax * 0.877
[3141]382 double knyqmax_mod = 0.877*knyqmax;
383 ldlkint = (log10(knyqmax_mod)-log10(k1int))/npt;
[3115]384 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
[3141]385 double sr2int_kmax = varpk_int.Variance(R,k1int,knyqmax_mod);
386 cout<<"varpk_int(<"<<knyqmax_mod<<")="<<sr2int_kmax<<" -> sigma="<<sqrt(sr2int_kmax)<<endl;
[3115]387
[3155]388 PrtTim(">>>> End Initialisation de GeneFluct3D");
389
[3157]390 //-----------------------------------------------------------------
[3115]391 cout<<"\n--- Computing a realization in Fourier space"<<endl;
[3331]392 if(use_growth_factor>0) pkz.SetZ(0.); else pkz.SetZ(zref);
[3157]393 cout<<"Power spectrum set at redshift: "<<pkz.GetZ()<<endl;
[3141]394 if(computefourier0) fluct3d.ComputeFourier0(pkz);
395 else fluct3d.ComputeFourier(pkz);
[3155]396 PrtTim(">>>> End Computing a realization in Fourier space");
[3115]397
[3289]398 cout<<"\n--- Checking realization spectra"<<endl;
399 HistoErr hpkgen(0.,knyqmax,nherr);
400 hpkgen.ReCenterBin(); hpkgen.Zero();
401 hpkgen.Show();
402 fluct3d.ComputeSpectrum(hpkgen);
403 {
404 tagobs = "hpkgen"; posobs.PutObject(hpkgen,tagobs);
[3115]405 }
[3289]406 PrtTim(">>>> End Checking realization spectra");
[3115]407
[3154]408 if(comp2dspec) {
[3141]409 cout<<"\n--- Checking realization 2D spectra"<<endl;
410 Histo2DErr hpkgen2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
411 hpkgen2.ReCenterBin(); hpkgen2.Zero();
412 hpkgen2.Show();
413 fluct3d.ComputeSpectrum2D(hpkgen2);
414 {
415 tagobs = "hpkgen2"; posobs.PutObject(hpkgen2,tagobs);
416 }
[3155]417 PrtTim(">>>> End Checking realization 2D spectra");
[3141]418 }
419
[3289]420 if(filter_by_pixel!=0) {
[3115]421 cout<<"\n--- Computing convolution by pixel shape"<<endl;
422 fluct3d.FilterByPixel();
[3155]423 PrtTim(">>>> End Computing convolution by pixel shape");
[3115]424
425 cout<<"\n--- Checking realization spectra after pixel shape convol."<<endl;
[3330]426 HistoErr hpkgenfb(0.,knyqmax,nherr);
427 hpkgenfb.ReCenterBin(); hpkgenfb.Zero();
428 hpkgenfb.Show();
429 fluct3d.ComputeSpectrum(hpkgenfb);
[3115]430 {
[3330]431 tagobs = "hpkgenfb"; posobs.PutObject(hpkgenfb,tagobs);
[3115]432 }
[3155]433 PrtTim(">>>> End Checking realization spectra");
[3115]434
[3330]435 cout<<"\n--- Checking realization spectra after pixel shape convol. with pixel correc."<<endl;
436 HistoErr hpkgenf(hpkgenfb); hpkgenf.Zero();
437 fluct3d.ComputeSpectrum(hpkgenf,0.,filter_by_pixel);
438 {
439 tagobs = "hpkgenf"; posobs.PutObject(hpkgenf,tagobs);
440 }
441 PrtTim(">>>> End Checking realization spectra with pixel correc.");
442
[3289]443 if(comp2dspec) {
444 cout<<"\n--- Checking realization 2D spectra after pixel shape convol."<<endl;
[3330]445 Histo2DErr hpkgenfb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
446 hpkgenfb2.ReCenterBin(); hpkgenfb2.Zero();
447 hpkgenfb2.Show();
448 fluct3d.ComputeSpectrum2D(hpkgenfb2);
[3289]449 {
[3330]450 tagobs = "hpkgenfb2"; posobs.PutObject(hpkgenfb2,tagobs);
451 }
452 PrtTim(">>>> End Checking realization 2D spectra");
453
454 cout<<"\n--- Checking realization 2D spectra after pixel shape convol. with pixel correc."<<endl;
455 Histo2DErr hpkgenf2(hpkgenfb2); hpkgenf2.Zero();
456 fluct3d.ComputeSpectrum2D(hpkgenf2,0.,filter_by_pixel);
457 {
[3289]458 tagobs = "hpkgenf2"; posobs.PutObject(hpkgenf2,tagobs);
459 }
[3330]460 PrtTim(">>>> End Checking realization 2D spectra with pixel correc.");
[3141]461 }
[3115]462 }
463
[3289]464 if(wfits) {
465 fluct3d.WriteFits("!cmvobserv3d_k0.fits");
466 PrtTim(">>>> End WriteFits");
467 }
468 if(wppf) {
469 fluct3d.WritePPF("cmvobserv3d_k0.ppf",false);
470 PrtTim(">>>> End WritePPF");
471 }
472
[3157]473 //-----------------------------------------------------------------
[3115]474 cout<<"\n--- Computing a realization in real space"<<endl;
475 fluct3d.ComputeReal();
[3322]476 double rmin,rmax; fluct3d.MinMax(rmin,rmax);
[3115]477 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
[3157]478 PrtTim(">>>> End Computing a realization in real space");
[3115]479
[3331]480 if(use_growth_factor>0) {
[3157]481 cout<<"\n--- Apply Growth factor"<<endl;
482 cout<<"...D(z=0)="<<growth(0.)<<" D(z="<<zref<<")="<<growth(zref)<<endl;
[3331]483 fluct3d.ApplyGrowthFactor(use_growth_factor);
[3322]484 fluct3d.MinMax(rmin,rmax);
[3157]485 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
486 PrtTim(">>>> End Applying growth factor");
487 }
488
[3322]489 int_8 nm;
490 double rmref,rs2ref;
491 cout<<"\n--- Computing reference variance in real space"<<endl;
492 nm = fluct3d.MeanSigma2(rmref,rs2ref);
493 cout<<" rs2ref= "<<rs2ref<<" , rmref="<<rmref<<" ("<<nm<<")"<<endl;
494 PrtTim(">>>> End Computing reference variance in real space");
[3289]495
[3155]496 if(wfits) {
497 fluct3d.WriteFits("!cmvobserv3d_r0.fits");
498 PrtTim(">>>> End WriteFits");
499 }
500 if(wppf) {
501 fluct3d.WritePPF("cmvobserv3d_r0.ppf",true);
502 PrtTim(">>>> End WritePPF");
503 }
[3281]504 if(wslice) {
505 fluct3d.WriteSlicePPF("cmvobserv3d_s_r0.ppf");
506 PrtTim(">>>> End WriteSlicePPF");
507 }
[3115]508
[3289]509 cout<<"\n--- Check mean and variance in real space"<<endl;
510 fluct3d.NumberOfBad(-1.,1e+200);
[3322]511 double rm,rs2;
[3289]512 nm = fluct3d.MeanSigma2(rm,rs2);
513 PrtTim(">>>> End Check mean and variance in real space");
[3141]514
[3154]515 if(compvarreal) {
[3115]516 cout<<"\n--- Check variance sigmaR in real space"<<endl;
517 double varr;
[3262]518 fluct3d.VarianceFrReal(R,varr);
[3283]519 cout<<"...Computed variance = "<<varr
520 <<" , Theorical variance at (z=0) = "<<pow(sigmaR,1.)
521 <<" , at (z="<<zref<<") = "<<pow(sigmaR*growth_at_z,1.)<<endl;
[3155]522 PrtTim(">>>> End Check variance sigmaR in real space");
[3115]523 }
524
525 //-----------------------------------------------------------------
526 cout<<endl<<"\n--- Converting fluctuations into mass"<<endl;
527 fluct3d.TurnFluct2Mass();
[3262]528 nm = fluct3d.MeanSigma2(rm,rs2);
[3155]529 PrtTim(">>>> End Converting fluctuations into mass");
[3115]530
[3329]531 if(no_poisson) {
[3115]532
[3329]533 cout<<"\n--- Converting !!!DIRECTLY!!! mass into HI mass: mass per pixel ="
534 <<mass_by_mpc3*fluct3d.GetDVol()<<endl;
535 rm = fluct3d.TurnMass2HIMass(mass_by_mpc3);
536 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
537 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200,true,0.);
538 PrtTim(">>>> End Converting !!!DIRECTLY!!! mass into HI mass");
[3115]539
[3329]540 } else {
[3115]541
[3329]542 cout<<"\n--- Converting mass into galaxy number: gal per pixel ="
543 <<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
544 rm = fluct3d.TurnMass2MeanNumber(ngal_by_mpc3);
545 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
546 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200,true,0.);
547 PrtTim(">>>> End Converting mass into galaxy number");
548
549 cout<<"\n--- Set negative and null pixels to BAD"<<endl;
550 nm = fluct3d.SetToVal(0.,1e+200,-999.);
551 PrtTim(">>>> End Set negative pixels to BAD etc...");
552
553 cout<<"\n--- Apply poisson on galaxy number"<<endl;
554 fluct3d.ApplyPoisson();
555 nm = fluct3d.MeanSigma2(rm,rs2,-998.,1e200);
556 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200,true,0.);
557 double xgalmin,xgalmax; fluct3d.MinMax(xgalmin,xgalmax,0.1,1.e50);
558 PrtTim(">>>> End Apply poisson on galaxy number");
559 if(wslice) {
560 fluct3d.WriteSlicePPF("cmvobserv3d_s_rn.ppf");
561 PrtTim(">>>> End WriteSlicePPF");
[3322]562 }
[3329]563
564 cout<<"\n--- Convert Galaxy number to HI mass"<<endl;
565 double mhi = 0.;
566 if(use_schmassdist) {
567 if(recompute_schmassdist) {
568 int ngalmax = int(xgalmax+0.5);
569 schmdist.SetNgalLim(ngalmax,1,naleagal);
570 PrtTim(">>>> End creating tabulated histograms for trials");
571 }
572 mhi = fluct3d.TurnNGal2MassQuick(schmdist);
573 schmdist.PrintStatus();
574 } else {
575 mhi = fluct3d.TurnNGal2Mass(tirhmdndm,true);
576 }
577 cout<<mhi<<" MSol in survey / "<<mass_by_mpc3*fluct3d.GetVol()<<endl;
578 nm = fluct3d.MeanSigma2(rm,rs2,-998.,1e200);
579 cout<<"Equivalent: "<<rm*nm/fluct3d.NPix()<<" Msol / pixels"<<endl;
580 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200,true,0.);
581 PrtTim(">>>> End Convert Galaxy number to HI mass");
582
583 cout<<"\n--- Set BAD pixels to Zero"<<endl;
584 nm = fluct3d.SetToVal(-998.,1e+200,0.);
585 PrtTim(">>>> End Set BAD pixels to Zero etc...");
586
[3115]587 }
588
[3155]589 if(wfits) {
590 fluct3d.WriteFits("!cmvobserv3d_r.fits");
591 PrtTim(">>>> End WriteFits");
592 }
593 if(wppf) {
594 fluct3d.WritePPF("cmvobserv3d_r.ppf",true);
595 PrtTim(">>>> End WritePPF");
596 }
[3281]597 if(wslice) {
598 fluct3d.WriteSlicePPF("cmvobserv3d_s_r.ppf");
599 PrtTim(">>>> End WriteSlicePPF");
600 }
[3120]601
[3329]602 //-----------------------------------------------------------------
[3196]603 if(do_agn) {
[3199]604 cout<<"\n--- Add AGN: <log10(S Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
605 <<" , powlaw="<<powlaw_agn<<endl;
606 fluct3d.AddAGN(lfjy_agn,lsigma_agn,powlaw_agn);
[3262]607 nm = fluct3d.MeanSigma2(rm,rs2);
[3196]608 PrtTim(">>>> End Add AGN");
609 }
610
[3329]611 //-----------------------------------------------------------------
[3330]612 double snoisesave = 0.;
[3193]613 if(snoise>0.) {
[3331]614 cout<<"\n--- Add noise to HI Flux snoise="<<snoise<<", evolution="<<noise_evol<<endl;
615 fluct3d.AddNoise2Real(snoise,noise_evol);
[3330]616 snoisesave = snoise;
[3262]617 nm = fluct3d.MeanSigma2(rm,rs2);
[3193]618 PrtTim(">>>> End Add noise");
619 }
[3115]620
[3322]621 if(scalecube!=0.) { // Si scalecube==0 pas de normalisation
622 cout<<"\n--- Scale cube rs2ref="<<rs2ref<<endl;
623 if(scalecube<0. && rs2ref>0.) { // si negatif on scale automatiquement
624 nm = fluct3d.MeanSigma2(rm,rs2);
625 if(rs2>0.) {scalecube=sqrt(rs2ref)/sqrt(rs2); offsetcube=-rm;}
626 }
627 cout<<"...scale="<<scalecube<<" offset="<<offsetcube<<endl;
[3330]628 if(scalecube>0.) {
629 fluct3d.ScaleOffset(scalecube,offsetcube);
630 snoisesave *= scalecube;
631 }
[3322]632 PrtTim(">>>> End Scale cube");
[3283]633 }
634
[3199]635 if(wfits) {
636 fluct3d.WriteFits("!cmvobserv3d_rf.fits");
637 PrtTim(">>>> End WriteFits");
638 }
639 if(wppf) {
640 fluct3d.WritePPF("cmvobserv3d_rf.ppf",true);
641 PrtTim(">>>> End WritePPF");
642 }
[3281]643 if(wslice) {
644 fluct3d.WriteSlicePPF("cmvobserv3d_s_rf.ppf");
645 PrtTim(">>>> End WriteSlicePPF");
646 }
[3199]647
[3115]648 //-----------------------------------------------------------------
649 // -- NE PAS FAIRE CA SI ON VEUT CONTINUER LA SIMULATION -> d_rho/rho ecrase
[3141]650
[3289]651 cout<<endl<<"\n--- ReComputing spectrum from real space"<<endl;
652 fluct3d.ReComputeFourier();
653 PrtTim(">>>> End ReComputing spectrum");
[3141]654
[3155]655 if(wfits) {
656 fluct3d.WriteFits("!cmvobserv3d_k.fits");
657 PrtTim(">>>> End WriteFits");
658 }
659 if(wppf) {
660 fluct3d.WritePPF("cmvobserv3d_k.ppf",false);
661 PrtTim(">>>> End WritePPF");
662 }
[3154]663
[3289]664 cout<<endl<<"\n--- Computing final spectrum"<<endl;
[3330]665 HistoErr hpkrecb(0.,knyqmax,nherr); hpkrecb.Zero();
666 hpkrecb.ReCenterBin();
667 hpkrecb.Show();
668 fluct3d.ComputeSpectrum(hpkrecb);
669 {
670 tagobs = "hpkrecb"; posobs.PutObject(hpkrecb,tagobs);
671 }
[3289]672 PrtTim(">>>> End Computing final spectrum");
[3115]673
[3330]674 cout<<endl<<"\n--- Computing final spectrum with pixel deconv."<<endl;
675 HistoErr hpkrec(hpkrecb); hpkrec.Zero();
676 fluct3d.ComputeSpectrum(hpkrec,snoisesave,filter_by_pixel);
677 {
678 tagobs = "hpkrec"; posobs.PutObject(hpkrec,tagobs);
679 }
680 PrtTim(">>>> End Computing final spectrum with pixel deconv.");
681
[3154]682 if(comp2dspec) {
[3141]683 cout<<"\n--- Computing final 2D spectrum"<<endl;
[3330]684 Histo2DErr hpkrecb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
685 hpkrecb2.ReCenterBin(); hpkrecb2.Zero();
686 hpkrecb2.Show();
687 fluct3d.ComputeSpectrum2D(hpkrecb2);
[3141]688 {
[3330]689 tagobs = "hpkrecb2"; posobs.PutObject(hpkrecb2,tagobs);
690 }
691 PrtTim(">>>> End Computing final 2D spectrum");
692
693 cout<<"\n--- Computing final 2D spectrum with pixel deconv."<<endl;
694 Histo2DErr hpkrec2(hpkrecb2); hpkrec2.Zero();
695 fluct3d.ComputeSpectrum2D(hpkrec2,snoisesave,filter_by_pixel);
696 {
[3141]697 tagobs = "hpkrec2"; posobs.PutObject(hpkrec2,tagobs);
698 }
[3330]699 PrtTim(">>>> End Computing final 2D spectrum with pixel deconv.");
700
[3141]701 }
702
[3155]703 PrtTim(">>>> End Of Job");
[3115]704 return 0;
705}
706
Note: See TracBrowser for help on using the repository browser.