source: Sophya/trunk/Cosmo/SimLSS/cmvobserv3d.cc@ 3770

Last change on this file since 3770 was 3768, checked in by cmv, 15 years ago
  • refonte du code pour creer uniquement des conditions initiales
  • introduction du tirage des vitesse LOS pour les redshift-distortion

cmv 03/05/2010

File size: 28.0 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9#include "sophyainit.h"
10#include "timing.h"
11#include "ntuple.h"
12#include "matharr.h"
13#include "randfmt.h"
14//#include "randr48.h"
15#include "srandgen.h"
16
17#include "constcosmo.h"
18#include "cosmocalc.h"
19#include "geneutils.h"
20#include "genefluct3d.h"
21
22void usage(void);
23void usage(void)
24{
25 cout<<"cmvobserv3d [...options...]"<<endl
26 <<" -a : auto init random seed (needed for multiple simul)"<<endl
27 <<" -0 : use ComputeFourier0 method (defaut: no, use normal way)"<<endl
28 <<" -G typevol: compute Pk(z=0) and apply growth factor in real space"<<endl
29 <<" typevol=1 evolved with distance / observateur (def)"<<endl
30 <<" typevol=2 evolved with distance to middle of Z planes"<<endl
31 <<" else : no evol, spectrum Pk(z=z_median) for all cube (def)"<<endl
32 <<" -F : filter spectrum by pixel shape (0=no 1=yes(default)"<<endl
33 <<" -U typ =0 compute <NGal>, poisson fluctuate then convert to HI mass (def)"<<endl
34 <<" >0 compute directly <HI mass>, do NOT poisson fluctuate with <Ngal>"<<endl
35 <<" <0 just multiply dRho/Rho by mass_by_pixel (possible negative pixel values)"<<endl
36 <<" -x nx,dx : size along x axis (npix,Mpc)"<<endl
37 <<" -y ny,dy : size along y axis (npix,Mpc)"<<endl
38 <<" if ny or dy <=0 take same value as for x"<<endl
39 <<" -z nz,dz : size along z axis (redshift axis, npix,Mpc)"<<endl
40 <<" -Z zref : redshift for the center of the simulation cube"<<endl
41 <<" -s snoise,typevol : gaussian noise sigma in equivalent Msol"<<endl
42 <<" typevol=0 no evolution (def)"<<endl
43 <<" typevol=1 noise evolved with distance / observateur"<<endl
44 <<" typevol=2 noise evolved with distance to middle of Z planes"<<endl
45 <<" -2 : compute also 2D spectrum (default: no)"<<endl
46 <<" -N scalemass: facteur d\'unite pour la masse (default: -1)"<<endl
47 <<" ex: si on veut unites 10^8 Msol -> scalemass=1.e-8"<<endl
48 <<" si <0 alors facteur=-scalemass*Mpix"<<endl
49 <<" -M schmin,schmax,nsch : min,max mass and nb points for schechter HI"<<endl
50 <<" If nsch<0 alors no,bre de points par decade"<<endl
51 <<" -Q naleagal : use quick method for turning ngal to mass"<<endl
52 <<" -R schmassdist.ppf : read mass distribution for trials from file"<<endl
53 <<" instead of computing it (ONLY if \"-Q\" option is activated)"<<endl
54 <<" -8 sigmaR,R : normalisation du spectre de puissance, R en Mpc"<<endl
55 <<" (default sigmaR=1, R=8/h100 Mpc)"<<endl
56 <<" -W : write cube in FITS format (complex cube is coded as real cube)"<<endl
57 <<" -P : write cube in PPF format"<<endl
58 <<" -O a,b,c,d,e : tell what you want to write (with the -W and -P options)"<<endl
59 <<" a=1 : write generated fourier cube (_k0)"<<endl
60 <<" b=1 : write real space cube dRho/Rho at z (_r0)"<<endl
61 <<" c=1 : write real space cube conv to gal,poiss,mass etc... (_r)"<<endl
62 <<" d=1 : write previous real space cube + noise (_rf)"<<endl
63 <<" e=1 : write fourier transform of previous cube (_k)"<<endl
64 <<" -S : write cube slices in PPF format"<<endl
65 <<" -o root_name_out : root string for output file name (def: cmvobserv3d)"<<endl
66 <<" -V : compute variance from real space (for check, default: no)"<<endl
67 <<" -T nth : nombre de threads (si compil multi-thread, default: 0)"<<endl
68 <<endl;
69 ////<<" -A <log10(S_agn in Jy at 1.4 GHz)>,sigma,powlaw :"<<endl
70 ////<<" AGN mean and sigma gaussian equiv. distrib. for solid angle of centeral pixel"<<endl
71 ////<<" powlaw: apply S_agn evolution as (Nu/1.4)^powlaw"<<endl
72}
73
74int main(int narg,char *arg[])
75{
76 SophyaInit();
77 InitTim();
78
79 //-----------------------------------------------------------------
80 // *** Survey definition
81 long nx=360, ny=-1, nz=64; double dx=1., dy=-1., dz=-1.;
82 //long nx=1000, ny=-1, nz=128; double dx=3., dy=-1., dz=6.;
83 //long nx=1200, ny=-1, nz=128; double dx=1., dy=-1., dz=3;
84
85 // *** Cosmography definition (WMAP)
86 unsigned short flat = 0;
87 double ob0 = 0.0444356;
88 double h100=0.71, om0=0.267804, or0=7.9e-05, ol0=0.73,w0=-1.;
89 double zref = 0.5;
90 double perc=0.01,dzinc=-1.,dzmax=-1.; unsigned short glorder=4;
91
92 // *** Spectrum and variance definition
93 double ns = 1., as = 1.;
94 double R=8./h100, Rg=R/sqrt(5.);
95 double sigmaR = 1.;
96
97 double kmin=1e-5,kmax=1000.;
98 int npt = 10000;
99 double lkmin=log10(kmin), lkmax=log10(kmax);
100 double eps=1.e-3;
101
102 // *** Schechter mass function definition
103 double h75 = h100 / 0.75;
104 double nstar = 0.006*pow(h75,3.);
105 double mstar = pow(10.,9.8); // MSol
106 double alpha = -1.37;
107
108 double schmin=1.e7, schmax=1.e13;
109 int schnpt = -100;
110 bool use_schmassdist = false;
111 long naleagal = 100000;
112 bool recompute_schmassdist = true;
113 string schmassdistfile = "";
114 int no_poisson_type = 0;
115
116 double scalemass = -1.;
117
118 // *** Niveau de bruit
119 double snoise= 0.; // en equivalent MSol
120 int noise_evol = 0;
121
122 //// *** AGN
123 ////bool do_agn = false;
124 ////double lfjy_agn=-99., lsigma_agn=0.; // en Jy
125 ////double powlaw_agn = 0.;
126
127 // *** type de generation
128 bool computefourier0=false;
129 int use_growth_factor = 0;
130 unsigned short nthread=0;
131 int filter_by_pixel = 1;
132
133 // *** What to do
134 bool comp2dspec = false;
135 bool wfits = false;
136 bool wppf = false;
137 bool wslice = false;
138 bool compvarreal = false;
139 unsigned short whattowrt[5] = {1,1,1,1,1};
140 string rootnameout = "cmvobserv3d";
141
142 // *** Number of entries in control NTuple
143 unsigned long ntnent = 10000; // 0 = do not fill NTuple
144
145 // --- Decodage arguments
146 if(narg>0) {
147 cout<<"\n--- Arguments: "<<endl;
148 for(int i=0;i<narg;i++) cout<<arg[i]<<" ";
149 cout<<endl;
150 }
151 system("date -u");
152
153 // --- Choix du generateur aleatoire (a faire ICI imperativement avant AutoInitRand)
154 FMTRandGen *RandGen = new FMTRandGen;
155 RandGen->SelectGaussianAlgo(C_Gaussian_RandLibSNorm);
156 RandGen->SelectPoissonAlgo(C_Poisson_Ahrens);
157 RandomGeneratorInterface::SetGlobalRandGenP(RandGen);
158
159 // --- Decodage des arguments
160 char c;
161 while((c = getopt(narg,arg,"ha0PWSV2U:G:F:x:y:z:s:Z:M:A:T:N:Q:R:8:O:o:")) != -1) {
162 int nth = 0;
163 switch (c) {
164 case 'a' :
165 AutoInitRand(5);
166 break;
167 case '0' :
168 computefourier0 = true;
169 break;
170 case 'G' :
171 sscanf(optarg,"%d",&use_growth_factor);
172 break;
173 case 'U' :
174 sscanf(optarg,"%d",&no_poisson_type);
175 break;
176 case 'F' :
177 sscanf(optarg,"%d",&filter_by_pixel);
178 break;
179 case 'x' :
180 sscanf(optarg,"%ld,%lf",&nx,&dx);
181 break;
182 case 'y' :
183 sscanf(optarg,"%ld,%lf",&ny,&dy);
184 break;
185 case 'z' :
186 sscanf(optarg,"%ld,%lf",&nz,&dz);
187 break;
188 case 's' :
189 sscanf(optarg,"%lf,%d",&snoise,&noise_evol);
190 break;
191 case 'Z' :
192 sscanf(optarg,"%lf",&zref);
193 break;
194 case '2' :
195 comp2dspec = true;
196 break;
197 case 'N' :
198 sscanf(optarg,"%lf",&scalemass);
199 if(scalemass==0.) scalemass = 1.;
200 break;
201 case 'M' :
202 sscanf(optarg,"%lf,%lf,%d",&schmin,&schmax,&schnpt);
203 break;
204 case 'Q' :
205 use_schmassdist = true;
206 sscanf(optarg,"%ld",&naleagal);
207 break;
208 case 'R' :
209 schmassdistfile = optarg;
210 break;
211 //// case 'A' :
212 ////do_agn = true;
213 ////sscanf(optarg,"%lf,%lf,%lf",&lfjy_agn,&lsigma_agn,&powlaw_agn);
214 ////break;
215 case '8' :
216 sscanf(optarg,"%lf,%lf",&sigmaR,&R);
217 break;
218 case 'V' :
219 compvarreal = true;
220 break;
221 case 'W' :
222 wfits = true;
223 break;
224 case 'P' :
225 wppf = true;
226 break;
227 case 'O' :
228 sscanf(optarg,"%hu,%hu,%hu,%hu,%hu"
229 ,&whattowrt[0],&whattowrt[1],&whattowrt[2],&whattowrt[3],&whattowrt[4]);
230 break;
231 case 'S' :
232 wslice = true;
233 break;
234 case 'o' :
235 rootnameout = optarg;
236 break;
237 case 'T' :
238 sscanf(optarg,"%d",&nth);
239 nthread = (nth<1)? 0: nth;
240 break;
241 case 'h' :
242 default :
243 usage(); return -1;
244 }
245 }
246
247 //----TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH
248 try {
249 //----TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH
250
251 double lschmin=log10(schmin), lschmax=log10(schmax);
252 if(schnpt<=0) { // alors c'est un nombre de points par decade
253 schnpt = long( (-schnpt)*(lschmax-lschmin+1.) + 0.5 );
254 if(schnpt<=2) schnpt = 1000;
255 }
256 if(naleagal<=2) naleagal = 100000;
257
258 cout<<"zref="<<zref<<endl;
259 cout<<"nx="<<nx<<" dx="<<dx<<" ny="<<ny<<" dy="<<dy<<" nz="<<nz<<" dz="<<dz<<endl;
260 cout<<"kmin="<<kmin<<" ("<<lkmin<<"), kmax="<<kmax<<" ("<<lkmax<<") Mpc^-1"
261 <<", npt="<<npt<<endl;
262 cout<<"Filter by pixel = "<<filter_by_pixel<<endl;
263 cout<<"R="<<R<<" Rg="<<Rg<<" Mpc, sigmaR="<<sigmaR<<endl;
264 cout<<"Use_growth_factor = "<<use_growth_factor<<endl;
265 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
266 cout<<"schmin="<<schmin<<" ("<<lschmin
267 <<"), schmax="<<schmax<<" ("<<lschmax<<") Msol"
268 <<", schnpt="<<schnpt<<endl;
269 if(no_poisson_type!=0) cout<<"No poisson fluctuation, direct conversion to HI mass, typ="
270 <<no_poisson_type<<endl;
271 cout<<"snoise="<<snoise<<" equivalent Msol, evolution="<<noise_evol<<endl;
272 cout<<"scalemass="<<scalemass<<endl;
273 ////if(do_agn)
274 //// cout<<"AGN: <log10(Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
275 //// <<" , powlaw="<<powlaw_agn<<endl;
276 cout<<"wfits="<<wfits<<" wppf="<<wppf<<" wslice="<<wslice<<" what?="
277 <<whattowrt[0]<<","<<whattowrt[1]<<","<<whattowrt[2]<<","<<whattowrt[3]<<","
278 <<whattowrt[4]<<endl;
279 cout<<"rootnameout="<<rootnameout<<endl;
280 ShowRandom();
281 cout<<" First random is: "<<drand01()<<endl;
282
283 string tagobs = rootnameout + ".ppf";
284 POutPersist posobs(tagobs);
285
286 //-----------------------------------------------------------------
287 cout<<endl<<"\n--- Create Cosmology"<<endl;
288
289 CosmoCalc univ(flat,true,zref+1.);
290 univ.SetInteg(perc,dzinc,dzmax,glorder);
291 univ.SetDynParam(h100,om0,or0,ol0,w0);
292 univ.PrtInteg();
293 univ.Print();
294 double loscomref = univ.Dloscom(zref);
295 cout<<"\nzref = "<<zref<<" -> dloscom = "<<loscomref<<" Mpc"<<endl;
296 univ.Print(zref);
297
298 //-----------------------------------------------------------------
299 cout<<endl<<"\n--- Create Spectrum"<<endl;
300
301 InitialSpectrum pkini(ns,as);
302
303 TransfertEisenstein tf(h100,om0-ob0,ob0,T_CMB_Par,false);
304 //tf.SetNoOscEnv(2);
305
306 GrowthFactor growth(om0,ol0);
307 // GrowthFactor growth(1.,0.); // D(z) = 1/(1+z)
308 double growth_at_z = growth(zref);
309 cout<<"...Growth factor at z="<<zref<<" = "<<growth_at_z<<endl;
310
311 PkSpectrum0 pk0(pkini,tf);
312
313 PkSpectrumZ pkz(pk0,growth,zref);
314
315 //-----------------------------------------------------------------
316 pkz.SetZ(0.);
317 cout<<endl<<"\n--- Compute variance for top-hat R="<<R
318 <<" at z="<<pkz.GetZ()<<endl;
319 VarianceSpectrum varpk_th(pkz,R,VarianceSpectrum::TOPHAT);
320 double kfind_th = varpk_th.FindMaximum(kmin,kmax,eps);
321 double pkmax_th = varpk_th(kfind_th);
322 cout<<"kfind_th = "<<kfind_th<<" ("<<log10(kfind_th)<<"), integrand="<<pkmax_th<<endl;
323 double k1=kmin, k2=kmax;
324 int rc = varpk_th.FindLimits(pkmax_th/1.e4,k1,k2,eps);
325 cout<<"limit_th: rc="<<rc<<" : "<<k1<<" ("<<log10(k1)<<") , "
326 <<k2<<" ("<<log10(k2)<<")"<<endl;
327
328 double ldlk = (log10(k2)-log10(k1))/npt;
329 varpk_th.SetInteg(0.01,ldlk,-1.,4);
330 double sr2 = varpk_th.Variance(k1,k2);
331 cout<<"varpk_th="<<sr2<<" -> sigma="<<sqrt(sr2)<<endl;
332
333 double normpkz = sigmaR*sigmaR/sr2;
334 pkz.SetScale(normpkz);
335 cout<<"Spectrum normalisation = "<<pkz.GetScale()<<endl;
336
337 {
338 Histo hpkz0(lkmin,lkmax,npt); hpkz0.ReCenterBin();
339 FuncToHisto(pkz,hpkz0,true);
340 tagobs = "hpkz0"; posobs.PutObject(hpkz0,tagobs);
341 }
342
343 pkz.SetZ(zref);
344
345 {
346 Histo hpkz(lkmin,lkmax,npt); hpkz.ReCenterBin();
347 FuncToHisto(pkz,hpkz,true);
348 tagobs = "hpkz"; posobs.PutObject(hpkz,tagobs);
349 }
350
351 //-----------------------------------------------------------------
352 cout<<endl<<"\n--- Compute variance for Pk at z="<<pkz.GetZ()<<endl;
353 VarianceSpectrum varpk_int(pkz,R,VarianceSpectrum::NOFILTER);
354
355 double kfind_int = varpk_int.FindMaximum(kmin,kmax,eps);
356 double pkmax_int = varpk_int(kfind_int);
357 cout<<"kfind_int = "<<kfind_int<<" ("<<log10(kfind_int)<<"), integrand="<<pkmax_int<<endl;
358 double k1int=kmin, k2int=kmax;
359 int rcint = varpk_int.FindLimits(pkmax_int/1.e4,k1int,k2int,eps);
360 cout<<"limit_int: rc="<<rcint<<" : "<<k1int<<" ("<<log10(k1int)<<") , "
361 <<k2int<<" ("<<log10(k2int)<<")"<<endl;
362
363 double ldlkint = (log10(k2int)-log10(k1int))/npt;
364 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
365 double sr2int = varpk_int.Variance(k1int,k2int);
366 cout<<"varpk_int="<<sr2int<<" -> sigma="<<sqrt(sr2int)<<endl;
367
368 //-----------------------------------------------------------------
369 cout<<endl<<"\n--- Create mass function, compute number/mass density, init mass trials"<<endl;
370
371 Schechter sch(nstar,mstar,alpha);
372 sch.Print();
373
374 sch.SetOutValue(0);
375 cout<<"sch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
376 double ngal_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
377 cout<<"Galaxy density number = "<<ngal_by_mpc3<<" /Mpc^3 between limits"<<endl;
378
379 sch.SetOutValue(1);
380 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
381 double mass_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
382 cout<<"Galaxy mass density= "<<mass_by_mpc3<<" Msol/Mpc^3 between limits"<<endl;
383 cout<<"Omega_HI at z=0 is "<<mass_by_mpc3/(univ.Rhoc(0.)*GCm3toMsolMpc3_Cst)<<endl
384 <<" at z="<<zref<<" is "<<mass_by_mpc3/(univ.Rhoc(zref)*GCm3toMsolMpc3_Cst)<<endl;
385
386 SchechterMassDist schmdist(sch,schmin,schmax,schnpt);
387 if(use_schmassdist && schmassdistfile.size()>0) {
388 cout<<"\nSchechterMassDist read from "<<schmassdistfile<<endl;
389 schmdist.ReadPPF(schmassdistfile);
390 bool compsch = IsCompatible(sch,schmdist.GetSchechter());
391 double m1,m2; schmdist.GetMassLim(m1,m2);
392 if( !compsch || fabs(m1-schmin)>1e-4*schmin || fabs(m2-schmax)>1e-4*schmax) {
393 cout<<"FATAL_ERROR: INCONSISTENT SchechterMassDist file / Schechter or limits"<<endl;
394 cout<<"Schechter:"<<endl; sch.Print();
395 cout<<"schmin="<<schmin<<" schmax="<<schmax<<endl;
396 cout<<"SchechterMassDist:"<<endl; schmdist.Print();
397 return -10;
398 }
399 recompute_schmassdist = false;
400 }
401 schmdist.Print();
402 Histo hmdndm = schmdist.GetHmDnDm();
403 FunRan tirhmdndm = schmdist.GetTmDnDm();
404 {
405 tagobs = "hmdndm"; posobs.PutObject(hmdndm,tagobs);
406 Histo hdum1(tirhmdndm);
407 tagobs = "tirhmdndm"; posobs.PutObject(hdum1,tagobs);
408 }
409
410 PrtTim(">>>> End of definition");
411
412 //-----------------------------------------------------------------
413 // FFTW3 (p26): faster if sizes 2^a 3^b 5^c 7^d 11^e 13^f with e+f=0 ou 1
414 cout<<endl<<"\n--- Initialisation de GeneFluct3D"<<endl;
415
416 GeneFluct3D fluct3d(nx,ny,nz,dx,dy,dz,nthread,2);
417 fluct3d.SetCosmology(univ);
418 fluct3d.SetGrowthFactor(growth);
419 fluct3d.SetObservator(zref,-nz/2.);
420 fluct3d.LosComRedshift(0.001,-1);
421 //TArray< complex<GEN3D_TYPE> >& pkgen = fluct3d.GetComplexArray();
422 //TArray<GEN3D_TYPE>& rgen = fluct3d.GetRealArray();
423 cout<<endl; fluct3d.Print();
424 cout<<"\nMean number of galaxies per pixel = "<<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
425 double mass_by_pixel = mass_by_mpc3 * fluct3d.GetDVol();
426 cout<<"Mean mass per pixel = "<<mass_by_pixel<<endl;
427
428 double dkmin = fluct3d.GetKincMin();
429 double knyqmax = fluct3d.GetKmax();
430 long nherr = long(knyqmax/dkmin+0.5);
431 cout<<"\nFor HistoErr: d="<<dkmin<<" max="<<knyqmax<<" n="<<nherr<<endl;
432
433 double dktmin = fluct3d.GetKTincMin();
434 double ktnyqmax = fluct3d.GetKTmax();
435 long nherrt = long(ktnyqmax/dktmin+0.5);
436 double dkzmin = fluct3d.GetKinc()[2];
437 double kznyqmax = fluct3d.GetKnyq()[2];
438 long nherrz = long(kznyqmax/dkzmin+0.5);
439 cout<<"For Histo2DErr: d="<<dktmin<<","<<dkzmin
440 <<" max="<<ktnyqmax<<","<<kznyqmax<<" n="<<nherrt<<","<<nherrz<<endl;
441
442 //-----------------------------------------------------------------
443 cout<<"\n--- Computing spectra variance up to Kmax at z="<<pkz.GetZ()<<endl;
444 // En fait on travaille sur un cube inscrit dans la sphere de rayon kmax:
445 // sphere: Vs = 4Pi/3 k^3 , cube inscrit (cote k*sqrt(2)): Vc = (k*sqrt(2))^3
446 // Vc/Vs = 0.675 -> keff = kmax * (0.675)^(1/3) = kmax * 0.877
447 double knyqmax_mod = 0.877*knyqmax;
448 ldlkint = (log10(knyqmax_mod)-log10(k1int))/npt;
449 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
450 double sr2int_kmax = varpk_int.Variance(k1int,knyqmax_mod);
451 cout<<"varpk_int(<"<<knyqmax_mod<<")="<<sr2int_kmax<<" -> sigma="<<sqrt(sr2int_kmax)<<endl;
452
453 PrtTim(">>>> End Initialisation de GeneFluct3D");
454
455 //-----------------------------------------------------------------
456 cout<<"\n--- Computing a realization in Fourier space"<<endl;
457 if(use_growth_factor>0) pkz.SetZ(0.); else pkz.SetZ(zref);
458 cout<<"Power spectrum set at redshift: "<<pkz.GetZ()<<endl;
459 if(computefourier0) fluct3d.ComputeFourier0(pkz);
460 else fluct3d.ComputeFourier(pkz);
461 fluct3d.NTupleCheck(posobs,string("ntpkgen"),ntnent);
462 PrtTim(">>>> End Computing a realization in Fourier space");
463
464 cout<<"\n--- Checking realization spectra"<<endl;
465 HistoErr hpkgen(0.,knyqmax,nherr);
466 hpkgen.ReCenterBin(); hpkgen.Zero();
467 hpkgen.Show();
468 fluct3d.ComputeSpectrum(hpkgen);
469 {
470 tagobs = "hpkgen"; posobs.PutObject(hpkgen,tagobs);
471 }
472 PrtTim(">>>> End Checking realization spectra");
473
474 if(comp2dspec) {
475 cout<<"\n--- Checking realization 2D spectra"<<endl;
476 Histo2DErr hpkgen2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
477 hpkgen2.ReCenterBin(); hpkgen2.Zero();
478 hpkgen2.Show();
479 fluct3d.ComputeSpectrum2D(hpkgen2);
480 {
481 tagobs = "hpkgen2"; posobs.PutObject(hpkgen2,tagobs);
482 }
483 PrtTim(">>>> End Checking realization 2D spectra");
484 }
485
486 if(filter_by_pixel!=0) {
487 cout<<"\n--- Computing convolution by pixel shape"<<endl;
488 fluct3d.FilterByPixel();
489 fluct3d.NTupleCheck(posobs,string("ntpkgenf"),ntnent);
490 PrtTim(">>>> End Computing convolution by pixel shape");
491
492 cout<<"\n--- Checking realization spectra after pixel shape convol."<<endl;
493 HistoErr hpkgenfb(0.,knyqmax,nherr);
494 hpkgenfb.ReCenterBin(); hpkgenfb.Zero();
495 hpkgenfb.Show();
496 fluct3d.ComputeSpectrum(hpkgenfb);
497 {
498 tagobs = "hpkgenfb"; posobs.PutObject(hpkgenfb,tagobs);
499 }
500 PrtTim(">>>> End Checking realization spectra");
501
502 cout<<"\n--- Checking realization spectra after pixel shape convol. with pixel correc."<<endl;
503 HistoErr hpkgenf(hpkgenfb); hpkgenf.Zero();
504 fluct3d.ComputeSpectrum(hpkgenf,0.,filter_by_pixel);
505 {
506 tagobs = "hpkgenf"; posobs.PutObject(hpkgenf,tagobs);
507 }
508 PrtTim(">>>> End Checking realization spectra with pixel correc.");
509
510 if(comp2dspec) {
511 cout<<"\n--- Checking realization 2D spectra after pixel shape convol."<<endl;
512 Histo2DErr hpkgenfb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
513 hpkgenfb2.ReCenterBin(); hpkgenfb2.Zero();
514 hpkgenfb2.Show();
515 fluct3d.ComputeSpectrum2D(hpkgenfb2);
516 {
517 tagobs = "hpkgenfb2"; posobs.PutObject(hpkgenfb2,tagobs);
518 }
519 PrtTim(">>>> End Checking realization 2D spectra");
520
521 cout<<"\n--- Checking realization 2D spectra after pixel shape convol. with pixel correc."<<endl;
522 Histo2DErr hpkgenf2(hpkgenfb2); hpkgenf2.Zero();
523 fluct3d.ComputeSpectrum2D(hpkgenf2,0.,filter_by_pixel);
524 {
525 tagobs = "hpkgenf2"; posobs.PutObject(hpkgenf2,tagobs);
526 }
527 PrtTim(">>>> End Checking realization 2D spectra with pixel correc.");
528 }
529 }
530
531 if(whattowrt[0]==1) {
532 if(wfits) {
533 tagobs = "!" + rootnameout + "_k0.fits";
534 fluct3d.WriteFits(tagobs);
535 PrtTim(">>>> End WriteFits");
536 }
537 if(wppf) {
538 tagobs = rootnameout + "_k0.ppf";
539 fluct3d.WritePPF(tagobs,false);
540 PrtTim(">>>> End WritePPF");
541 }
542 }
543
544 //-----------------------------------------------------------------
545 cout<<"\n--- Computing a realization in real space"<<endl;
546 fluct3d.ComputeReal();
547 double rmin,rmax; fluct3d.MinMax(rmin,rmax);
548 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
549 fluct3d.NTupleCheck(posobs,string("ntreal"),ntnent);
550 PrtTim(">>>> End Computing a realization in real space");
551
552 if(use_growth_factor>0) {
553 cout<<"\n--- Apply Growth factor"<<endl;
554 cout<<"...D(z=0)="<<growth(0.)<<" D(z="<<zref<<")="<<growth(zref)<<endl;
555 fluct3d.ApplyGrowthFactor(use_growth_factor);
556 fluct3d.MinMax(rmin,rmax);
557 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
558 fluct3d.NTupleCheck(posobs,string("ntgrow"),ntnent);
559 PrtTim(">>>> End Applying growth factor");
560 }
561
562 int_8 nm;
563 double rmref,rs2ref;
564 cout<<"\n--- Computing reference variance in real space"<<endl;
565 nm = fluct3d.MeanSigma2(rmref,rs2ref);
566 cout<<" rs2ref= "<<rs2ref<<" , rmref="<<rmref<<" ("<<nm<<")"<<endl;
567 PrtTim(">>>> End Computing reference variance in real space");
568
569 if(whattowrt[1]==1) {
570 if(wfits) {
571 tagobs = "!" + rootnameout + "_r0.fits";
572 fluct3d.WriteFits(tagobs);
573 PrtTim(">>>> End WriteFits");
574 }
575 if(wppf) {
576 tagobs = rootnameout + "_r0.ppf";
577 fluct3d.WritePPF(tagobs,true);
578 PrtTim(">>>> End WritePPF");
579 }
580 if(wslice) {
581 tagobs = rootnameout + "_s_r0.ppf";
582 fluct3d.WriteSlicePPF(tagobs);
583 PrtTim(">>>> End WriteSlicePPF");
584 }
585 }
586
587 cout<<"\n--- Check mean and variance in real space"<<endl;
588 fluct3d.NumberOfBad(-1.,1e+200);
589 double rm,rs2;
590 nm = fluct3d.MeanSigma2(rm,rs2);
591 PrtTim(">>>> End Check mean and variance in real space");
592
593 if(compvarreal) {
594 cout<<"\n--- Check variance sigmaR in real space"<<endl;
595 double varr;
596 fluct3d.VarianceFrReal(R,varr);
597 cout<<"...Computed variance = "<<varr
598 <<" , Theorical variance at (z=0) = "<<pow(sigmaR,2.)
599 <<" , at (z="<<zref<<") = "<<pow(sigmaR*growth_at_z,2.)<<endl;
600 PrtTim(">>>> End Check variance sigmaR in real space");
601 }
602
603 //-----------------------------------------------------------------
604 if(no_poisson_type!=0) {
605 cout<<"\n--- Converting !!!DIRECTLY!!! mass into HI mass: mass per pixel ="
606 <<mass_by_pixel<<endl;
607 if(no_poisson_type<0) {
608 cout<<"!!!WARNING!!! dRho/Rho is just multiplied by "<<mass_by_pixel<<endl;
609 fluct3d.ScaleOffset(mass_by_pixel);
610 } else {
611 rm = fluct3d.TurnFluct2MeanNumber(mass_by_mpc3); // ici on doit donner Msol/Mpc^3
612 }
613 fluct3d.NTupleCheck(posobs,string("ntmhi"),ntnent);
614 } else {
615 cout<<"\n--- Converting mass into galaxy number: gal per pixel ="
616 <<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
617 rm = fluct3d.TurnFluct2MeanNumber(ngal_by_mpc3); // ici on doit donner Ngal/Mpc^3
618 fluct3d.NTupleCheck(posobs,string("ntmeang"),ntnent);
619 }
620 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
621 nm = fluct3d.MeanSigma2(rm,rs2);
622 if(rm>0.) cout<<"normalised sigma(dM/M) is "<<sqrt(rs2)/rm<<endl;
623 PrtTim(">>>> End Converting mass into galaxy number or mass");
624
625 if( no_poisson_type==0 ) {
626
627 cout<<"\n--- Apply poisson on galaxy number"<<endl;
628 fluct3d.ApplyPoisson();
629 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
630 nm = fluct3d.MeanSigma2(rm,rs2);
631 double xgalmin,xgalmax; fluct3d.MinMax(xgalmin,xgalmax,0.1,1.e50);
632 fluct3d.NTupleCheck(posobs,string("ntpois"),ntnent);
633 PrtTim(">>>> End Apply poisson on galaxy number");
634 if(wslice) {
635 tagobs = rootnameout + "_s_rn.ppf";
636 fluct3d.WriteSlicePPF(tagobs);
637 PrtTim(">>>> End WriteSlicePPF");
638 }
639
640 cout<<"\n--- Convert Galaxy number to HI mass"<<endl;
641 double mhi = 0.;
642 if(use_schmassdist) {
643 if(recompute_schmassdist) {
644 int ngalmax = int(xgalmax+0.5);
645 schmdist.SetNgalLim(ngalmax,1,naleagal);
646 PrtTim(">>>> End creating tabulated histograms for trials");
647 }
648 mhi = fluct3d.TurnNGal2MassQuick(schmdist);
649 schmdist.PrintStatus();
650 } else {
651 mhi = fluct3d.TurnNGal2Mass(tirhmdndm,true);
652 }
653 cout<<mhi<<" MSol in survey / "<<mass_by_mpc3*fluct3d.GetVol()<<endl;
654 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
655 cout<<"Equivalent: "<<rm*nm/fluct3d.NPix()<<" Msol / pixels"<<endl;
656 nm = fluct3d.MeanSigma2(rm,rs2);
657 fluct3d.NTupleCheck(posobs,string("ntmhi"),ntnent);
658 PrtTim(">>>> End Convert Galaxy number to HI mass");
659
660 }
661
662 //-----------------------------------------------------------------
663 if(whattowrt[2]==1) {
664 if(wfits) {
665 tagobs = "!" + rootnameout + "_r.fits";
666 fluct3d.WriteFits(tagobs);
667 PrtTim(">>>> End WriteFits");
668 }
669 if(wppf) {
670 tagobs = rootnameout + "_r.ppf";
671 fluct3d.WritePPF(tagobs,true);
672 PrtTim(">>>> End WritePPF");
673 }
674 if(wslice) {
675 tagobs = rootnameout + "_s_r.ppf";
676 fluct3d.WriteSlicePPF(tagobs);
677 PrtTim(">>>> End WriteSlicePPF");
678 }
679 }
680
681 //-----------------------------------------------------------------
682 ////if(do_agn) {
683 //// cout<<"\n--- Add AGN: <log10(S Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
684 //// <<" , powlaw="<<powlaw_agn<<endl;
685 //// fluct3d.AddAGN(lfjy_agn,lsigma_agn,powlaw_agn);
686 //// nm = fluct3d.MeanSigma2(rm,rs2);
687 //// fluct3d.NTupleCheck(posobs,string("ntagn"),ntnent);
688 //// PrtTim(">>>> End Add AGN");
689 ////}
690
691 //-----------------------------------------------------------------
692 double snoisesave = 0.;
693 if(snoise>0.) {
694 cout<<"\n--- Add noise to HI Flux snoise="<<snoise<<", evolution="<<noise_evol<<endl;
695 fluct3d.AddNoise2Real(snoise,noise_evol);
696 snoisesave = snoise;
697 nm = fluct3d.MeanSigma2(rm,rs2);
698 fluct3d.NTupleCheck(posobs,string("ntnois"),ntnent);
699 PrtTim(">>>> End Add noise");
700 }
701
702 //-----------------------------------------------------------------
703 if(scalemass!=0. && scalemass!=1.) { // Si scalemass==0 pas de normalisation
704 if(scalemass<0.) scalemass = 1. / (-scalemass * mass_by_pixel);
705 cout<<"\n--- Scale cube scale="<<scalemass<<endl;
706 fluct3d.ScaleOffset(scalemass);
707 snoisesave *= scalemass;
708 nm = fluct3d.MeanSigma2(rm,rs2);
709 PrtTim(">>>> End Scale cube");
710 }
711 fluct3d.NTupleCheck(posobs,string("ntfin"),ntnent);
712
713 //-----------------------------------------------------------------
714 if(whattowrt[3]==1) {
715 if(wfits) {
716 tagobs = "!" + rootnameout + "_rf.fits";
717 fluct3d.WriteFits(tagobs);
718 PrtTim(">>>> End WriteFits");
719 }
720 if(wppf) {
721 tagobs = rootnameout + "_rf.ppf";
722 fluct3d.WritePPF(tagobs,true);
723 PrtTim(">>>> End WritePPF");
724 }
725 if(wslice) {
726 tagobs = rootnameout + "_s_rf.ppf";
727 fluct3d.WriteSlicePPF(tagobs);
728 PrtTim(">>>> End WriteSlicePPF");
729 }
730 }
731
732 //-----------------------------------------------------------------
733 // -- NE PAS FAIRE CA SI ON VEUT CONTINUER LA SIMULATION -> d_rho/rho ecrase
734
735 cout<<endl<<"\n--- ReComputing spectrum from real space"<<endl;
736 fluct3d.ReComputeFourier();
737 fluct3d.NTupleCheck(posobs,string("ntpkrec"),ntnent);
738 PrtTim(">>>> End ReComputing spectrum");
739
740 if(whattowrt[4]==1) {
741 if(wfits) {
742 tagobs = "!" + rootnameout + "_k.fits";
743 fluct3d.WriteFits(tagobs);
744 PrtTim(">>>> End WriteFits");
745 }
746 if(wppf) {
747 tagobs = rootnameout + "_k.ppf";
748 fluct3d.WritePPF(tagobs,false);
749 PrtTim(">>>> End WritePPF");
750 }
751 }
752
753 cout<<endl<<"\n--- Computing final spectrum"<<endl;
754 HistoErr hpkrecb(0.,knyqmax,nherr); hpkrecb.Zero();
755 hpkrecb.ReCenterBin();
756 hpkrecb.Show();
757 fluct3d.ComputeSpectrum(hpkrecb);
758 {
759 tagobs = "hpkrecb"; posobs.PutObject(hpkrecb,tagobs);
760 }
761 PrtTim(">>>> End Computing final spectrum");
762
763 cout<<endl<<"\n--- Computing final spectrum with pixel deconv."<<endl;
764 HistoErr hpkrec(hpkrecb); hpkrec.Zero();
765 fluct3d.ComputeSpectrum(hpkrec,snoisesave,filter_by_pixel);
766 {
767 tagobs = "hpkrec"; posobs.PutObject(hpkrec,tagobs);
768 }
769 PrtTim(">>>> End Computing final spectrum with pixel deconv.");
770
771 if(comp2dspec) {
772 cout<<"\n--- Computing final 2D spectrum"<<endl;
773 Histo2DErr hpkrecb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
774 hpkrecb2.ReCenterBin(); hpkrecb2.Zero();
775 hpkrecb2.Show();
776 fluct3d.ComputeSpectrum2D(hpkrecb2);
777 {
778 tagobs = "hpkrecb2"; posobs.PutObject(hpkrecb2,tagobs);
779 }
780 PrtTim(">>>> End Computing final 2D spectrum");
781
782 cout<<"\n--- Computing final 2D spectrum with pixel deconv."<<endl;
783 Histo2DErr hpkrec2(hpkrecb2); hpkrec2.Zero();
784 fluct3d.ComputeSpectrum2D(hpkrec2,snoisesave,filter_by_pixel);
785 {
786 tagobs = "hpkrec2"; posobs.PutObject(hpkrec2,tagobs);
787 }
788 PrtTim(">>>> End Computing final 2D spectrum with pixel deconv.");
789
790 }
791
792 //-----------------------------------------------------------------
793 delete RandGen;
794 PrtTim(">>>> End Of Job");
795
796 //----TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH
797 } catch (PException& exc) {
798 cerr<<"cmvobserv3d.cc catched PException"<<exc.Msg()<<endl;
799 return 77;
800 } catch (std::exception& sex) {
801 cerr << "cmvobserv3d.cc std::exception :"
802 << (string)typeid(sex).name() << "\n msg= "
803 << sex.what() << endl;
804 return 78;
805 } catch (...) {
806 cerr << "cmvobserv3d.cc catched unknown (...) exception " << endl;
807 return 79;
808 }
809 //----TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH-TRY-CATCH
810
811 return 0;
812}
813
Note: See TracBrowser for help on using the repository browser.