source: Sophya/trunk/Cosmo/SimLSS/cmvobserv3d.cc@ 3350

Last change on this file since 3350 was 3349, checked in by cmv, 18 years ago
  • gros changements dans la structure de la classe GeneFluct3D (constructeur et logique d'aloocation memoire, init_fftw etc...)
  • suppression des valeurs de masse<0 mises a -999. directement mises a zero
  • suppression de TurnMass2HIMass qui fait maintenant la meme chose que TurnMass2MeanNumber
  • legere restructuration de cmvobserv3d.cc pour compat.

cmv 11/10/2007

File size: 23.7 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9#include "timing.h"
10#include "ntuple.h"
11#include "matharr.h"
12
13#include "constcosmo.h"
14#include "cosmocalc.h"
15#include "schechter.h"
16#include "geneutils.h"
17#include "genefluct3d.h"
18
19void usage(void);
20void usage(void)
21{
22 cout<<"cmvobserv3d [...options...]"<<endl
23 <<" -a : auto init random seed (needed for multiple simul)"<<endl
24 <<" -0 : use ComputeFourier0 method (defaut: no, use normal way)"<<endl
25 <<" -G typevol: compute Pk(z=0) and apply growth factor in real space"<<endl
26 <<" typevol=1 noise evolved with distance / observateur (def)"<<endl
27 <<" typevol=2 noise evolved with distance to middle of Z planes"<<endl
28 <<" (default: no, spectrum Pk(z=z_median) for all cube)"<<endl
29 <<" -F : filter spectrum by pixel shape (0=no 1=yes(default)"<<endl
30 <<" -U : do not poisson fluctuate with Ngal, convert directly to HI mass"<<endl
31 <<" -x nx,dx : size along x axis (npix,Mpc)"<<endl
32 <<" -y ny,dy : size along y axis (npix,Mpc)"<<endl
33 <<" if ny or dy <=0 take same value as for x"<<endl
34 <<" -z nz,dz : size along z axis (redshift axis, npix,Mpc)"<<endl
35 <<" -Z zref : redshift for the center of the simulation cube"<<endl
36 <<" -s snoise,typevol : gaussian noise sigma in equivalent Msol"<<endl
37 <<" typevol=0 no evolution (def)"<<endl
38 <<" typevol=1 noise evolved with distance / observateur"<<endl
39 <<" typevol=2 noise evolved with distance to middle of Z planes"<<endl
40 <<" -2 : compute also 2D spectrum (default: no)"<<endl
41 <<" -N scalecube,offsetcube: normalize cube before doing final spectrum (default: automatic)"<<endl
42 <<" -M schmin,schmax,nsch : min,max mass and nb points for schechter HI"<<endl
43 <<" If nsch<0 alors no,bre de points par decade"<<endl
44 <<" -Q naleagal : use quick method for turning ngal to mass"<<endl
45 <<" -R schmassdist.ppf : read mass distribution for trials from file"<<endl
46 <<" instead of computing it (ONLY if \"-Q\" option is activated)"<<endl
47 <<" -W : write cube in FITS format (complex cube is coded as real cube)"<<endl
48 <<" -P : write cube in PPF format"<<endl
49 <<" -S : write cube slices in PPF format"<<endl
50 <<" -V : compute variance from real space (for check, default: no)"<<endl
51 <<" -T nth : nombre de threads (si compil multi-thread, default: 0)"<<endl
52 <<endl;
53 ////<<" -A <log10(S_agn in Jy at 1.4 GHz)>,sigma,powlaw :"<<endl
54 ////<<" AGN mean and sigma gaussian equiv. distrib. for solid angle of centeral pixel"<<endl
55 ////<<" powlaw: apply S_agn evolution as (Nu/1.4)^powlaw"<<endl
56}
57
58int main(int narg,char *arg[])
59{
60 InitTim();
61
62 //-----------------------------------------------------------------
63 // *** Survey definition
64 long nx=360, ny=-1, nz=64; double dx=1., dy=-1., dz=-1.;
65 //long nx=1000, ny=-1, nz=128; double dx=3., dy=-1., dz=6.;
66 //long nx=1200, ny=-1, nz=128; double dx=1., dy=-1., dz=3;
67
68 // *** Cosmography definition (WMAP)
69 unsigned short flat = 0;
70 double ob0 = 0.0444356;
71 double h100=0.71, om0=0.267804, or0=7.9e-05, ol0=0.73,w0=-1.;
72 double zref = 0.5;
73 double perc=0.01,dzinc=-1.,dzmax=-1.; unsigned short glorder=4;
74
75 // *** Spectrum and variance definition
76 double ns = 1., as = 1.;
77 double R=8./h100, Rg=R/sqrt(5.);
78 double sigmaR = 1.;
79
80 double kmin=1e-5,kmax=1000.;
81 int npt = 10000;
82 double lkmin=log10(kmin), lkmax=log10(kmax);
83 double eps=1.e-3;
84
85 // *** Schechter mass function definition
86 double h75 = h100 / 0.75;
87 double nstar = 0.006*pow(h75,3.);
88 double mstar = pow(10.,9.8); // MSol
89 double alpha = -1.37;
90
91 double schmin=1.e7, schmax=1.e13;
92 int schnpt = -100;
93 bool use_schmassdist = false;
94 long naleagal = 100000;
95 bool recompute_schmassdist = true;
96 string schmassdistfile = "";
97 bool no_poisson = false;
98
99 // *** Niveau de bruit
100 double snoise= 0.; // en equivalent MSol
101 int noise_evol = 0;
102
103 //// *** AGN
104 ////bool do_agn = false;
105 ////double lfjy_agn=-99., lsigma_agn=0.; // en Jy
106 ////double powlaw_agn = 0.;
107
108 // *** type de generation
109 bool computefourier0=false;
110 int use_growth_factor = 0;
111 unsigned short nthread=0;
112 int filter_by_pixel = 1;
113
114 // *** What to do
115 bool comp2dspec = false;
116 bool wfits = false;
117 bool wppf = false;
118 bool wslice = false;
119 bool compvarreal = false;
120 double scalecube = -1., offsetcube = 0.;
121
122 // --- Decodage arguments
123 if(narg>0) {
124 cout<<"\n--- Arguments: "<<endl;
125 for(int i=0;i<narg;i++) cout<<arg[i]<<" ";
126 cout<<endl;
127 }
128
129 char c;
130 while((c = getopt(narg,arg,"ha0PWSV2UG:F:x:y:z:s:Z:M:A:T:N:Q:R:")) != -1) {
131 int nth = 0;
132 switch (c) {
133 case 'a' :
134 Auto_Ini_Ranf(5);
135 break;
136 case '0' :
137 computefourier0 = true;
138 break;
139 case 'G' :
140 sscanf(optarg,"%d",&use_growth_factor);
141 break;
142 case 'U' :
143 no_poisson = true;
144 break;
145 case 'F' :
146 sscanf(optarg,"%d",&filter_by_pixel);
147 break;
148 case 'x' :
149 sscanf(optarg,"%ld,%lf",&nx,&dx);
150 break;
151 case 'y' :
152 sscanf(optarg,"%ld,%lf",&ny,&dy);
153 break;
154 case 'z' :
155 sscanf(optarg,"%ld,%lf",&nz,&dz);
156 break;
157 case 's' :
158 sscanf(optarg,"%lf,%d",&snoise,&noise_evol);
159 break;
160 case 'Z' :
161 sscanf(optarg,"%lf",&zref);
162 break;
163 case '2' :
164 comp2dspec = true;
165 break;
166 case 'N' :
167 sscanf(optarg,"%lf,%lf",&scalecube,&offsetcube);
168 break;
169 case 'M' :
170 sscanf(optarg,"%lf,%lf,%d",&schmin,&schmax,&schnpt);
171 break;
172 case 'Q' :
173 use_schmassdist = true;
174 sscanf(optarg,"%ld",&naleagal);
175 break;
176 case 'R' :
177 schmassdistfile = optarg;
178 break;
179 //// case 'A' :
180 ////do_agn = true;
181 ////sscanf(optarg,"%lf,%lf,%lf",&lfjy_agn,&lsigma_agn,&powlaw_agn);
182 ////break;
183 case 'V' :
184 compvarreal = true;
185 break;
186 case 'W' :
187 wfits = true;
188 break;
189 case 'P' :
190 wppf = true;
191 break;
192 case 'S' :
193 wslice = true;
194 break;
195 case 'T' :
196 sscanf(optarg,"%d",&nth);
197 nthread = (nth<1)? 0: nth;
198 break;
199 case 'h' :
200 default :
201 usage(); return -1;
202 }
203 }
204
205 double lschmin=log10(schmin), lschmax=log10(schmax);
206 if(schnpt<=0) { // alors c'est un nombre de points par decade
207 schnpt = long( (-schnpt)*(lschmax-lschmin+1.) + 0.5 );
208 if(schnpt<=2) schnpt = 1000;
209 }
210 if(naleagal<=2) naleagal = 100000;
211
212 cout<<"zref="<<zref<<endl;
213 cout<<"nx="<<nx<<" dx="<<dx<<" ny="<<ny<<" dy="<<dy<<" nz="<<nz<<" dz="<<dz<<endl;
214 cout<<"kmin="<<kmin<<" ("<<lkmin<<"), kmax="<<kmax<<" ("<<lkmax<<") Mpc^-1"
215 <<", npt="<<npt<<endl;
216 cout<<"Filter by pixel = "<<filter_by_pixel<<endl;
217 cout<<"R="<<R<<" Rg="<<Rg<<" Mpc, sigmaR="<<sigmaR<<endl;
218 cout<<"Use_growth_factor = "<<use_growth_factor<<endl;
219 cout<<"nstar= "<<nstar<<" mstar="<<mstar<<" alpha="<<alpha<<endl;
220 cout<<"schmin="<<schmin<<" ("<<lschmin
221 <<"), schmax="<<schmax<<" ("<<lschmax<<") Msol"
222 <<", schnpt="<<schnpt<<endl;
223 if(no_poisson) cout<<"No poisson fluctuation, direct conversion to HI mass"<<endl;
224 cout<<"snoise="<<snoise<<" equivalent Msol, evolution="<<noise_evol<<endl;
225 cout<<"scalecube="<<scalecube<<", offsetcube="<<offsetcube<<endl;
226 ////if(do_agn)
227 //// cout<<"AGN: <log10(Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
228 //// <<" , powlaw="<<powlaw_agn<<endl;
229
230 string tagobs = "cmvobserv3d.ppf";
231 POutPersist posobs(tagobs);
232
233 //-----------------------------------------------------------------
234 cout<<endl<<"\n--- Create Cosmology"<<endl;
235
236 CosmoCalc univ(flat,true,zref+1.);
237 univ.SetInteg(perc,dzinc,dzmax,glorder);
238 univ.SetDynParam(h100,om0,or0,ol0,w0);
239 univ.PrtInteg();
240 univ.Print();
241 double loscomref = univ.Dloscom(zref);
242 cout<<"\nzref = "<<zref<<" -> dloscom = "<<loscomref<<" Mpc"<<endl;
243 univ.Print(zref);
244
245 //-----------------------------------------------------------------
246 cout<<endl<<"\n--- Create Spectrum"<<endl;
247
248 InitialSpectrum pkini(ns,as);
249
250 TransfertEisenstein tf(h100,om0-ob0,ob0,T_CMB_Par,false);
251 //tf.SetNoOscEnv(2);
252
253 GrowthFactor growth(om0,ol0);
254 // GrowthFactor growth(1.,0.); // D(z) = 1/(1+z)
255 double growth_at_z = growth(zref);
256 cout<<"...Growth factor at z="<<zref<<" = "<<growth_at_z<<endl;
257
258 PkSpectrum0 pk0(pkini,tf);
259
260 PkSpectrumZ pkz(pk0,growth,zref);
261
262 //-----------------------------------------------------------------
263 pkz.SetZ(0.);
264 cout<<endl<<"\n--- Compute variance for top-hat R="<<R
265 <<" at z="<<pkz.GetZ()<<endl;
266 VarianceSpectrum varpk_th(pkz,R,VarianceSpectrum::TOPHAT);
267 double kfind_th = varpk_th.FindMaximum(kmin,kmax,eps);
268 double pkmax_th = varpk_th(kfind_th);
269 cout<<"kfind_th = "<<kfind_th<<" ("<<log10(kfind_th)<<"), integrand="<<pkmax_th<<endl;
270 double k1=kmin, k2=kmax;
271 int rc = varpk_th.FindLimits(pkmax_th/1.e4,k1,k2,eps);
272 cout<<"limit_th: rc="<<rc<<" : "<<k1<<" ("<<log10(k1)<<") , "
273 <<k2<<" ("<<log10(k2)<<")"<<endl;
274
275 double ldlk = (log10(k2)-log10(k1))/npt;
276 varpk_th.SetInteg(0.01,ldlk,-1.,4);
277 double sr2 = varpk_th.Variance(k1,k2);
278 cout<<"varpk_th="<<sr2<<" -> sigma="<<sqrt(sr2)<<endl;
279
280 double normpkz = sigmaR*sigmaR/sr2;
281 pkz.SetScale(normpkz);
282 cout<<"Spectrum normalisation = "<<pkz.GetScale()<<endl;
283
284 pkz.SetZ(zref);
285
286 Histo hpkz(lkmin,lkmax,npt); hpkz.ReCenterBin();
287 FuncToHisto(pkz,hpkz,true);
288 {
289 tagobs = "hpkz"; posobs.PutObject(hpkz,tagobs);
290 }
291
292 //-----------------------------------------------------------------
293 cout<<endl<<"\n--- Compute variance for Pk at z="<<pkz.GetZ()<<endl;
294 VarianceSpectrum varpk_int(pkz,R,VarianceSpectrum::NOFILTER);
295
296 double kfind_int = varpk_int.FindMaximum(kmin,kmax,eps);
297 double pkmax_int = varpk_int(kfind_int);
298 cout<<"kfind_int = "<<kfind_int<<" ("<<log10(kfind_int)<<"), integrand="<<pkmax_int<<endl;
299 double k1int=kmin, k2int=kmax;
300 int rcint = varpk_int.FindLimits(pkmax_int/1.e4,k1int,k2int,eps);
301 cout<<"limit_int: rc="<<rcint<<" : "<<k1int<<" ("<<log10(k1int)<<") , "
302 <<k2int<<" ("<<log10(k2int)<<")"<<endl;
303
304 double ldlkint = (log10(k2int)-log10(k1int))/npt;
305 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
306 double sr2int = varpk_int.Variance(k1int,k2int);
307 cout<<"varpk_int="<<sr2int<<" -> sigma="<<sqrt(sr2int)<<endl;
308
309 //-----------------------------------------------------------------
310 cout<<endl<<"\n--- Create mass function, compute number/mass density, init mass trials"<<endl;
311
312 Schechter sch(nstar,mstar,alpha);
313 sch.Print();
314
315 sch.SetOutValue(0);
316 cout<<"sch(mstar) = "<<sch(mstar)<<" /Mpc^3/Msol"<<endl;
317 double ngal_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
318 cout<<"Galaxy density number = "<<ngal_by_mpc3<<" /Mpc^3 between limits"<<endl;
319
320 sch.SetOutValue(1);
321 cout<<"mstar*sch(mstar) = "<<sch(mstar)<<" Msol/Mpc^3/Msol"<<endl;
322 double mass_by_mpc3 = sch.Integrate(schmin,schmax,schnpt);
323 cout<<"Galaxy mass density= "<<mass_by_mpc3<<" Msol/Mpc^3 between limits"<<endl;
324 cout<<"Omega_HI at z=0 is "<<mass_by_mpc3/(univ.Rhoc(0.)*GCm3toMsolMpc3_Cst)<<endl
325 <<" at z="<<zref<<" is "<<mass_by_mpc3/(univ.Rhoc(zref)*GCm3toMsolMpc3_Cst)<<endl;
326
327 SchechterMassDist schmdist(sch,schmin,schmax,schnpt);
328 if(use_schmassdist && schmassdistfile.size()>0) {
329 cout<<"\nSchechterMassDist read from "<<schmassdistfile<<endl;
330 schmdist.ReadPPF(schmassdistfile);
331 bool compsch = IsCompatible(sch,schmdist.GetSchechter());
332 double m1,m2; schmdist.GetMassLim(m1,m2);
333 if( !compsch || fabs(m1-schmin)>1e-4*schmin || fabs(m2-schmax)>1e-4*schmax) {
334 cout<<"FATAL_ERROR: INCONSISTENT SchechterMassDist file / Schechter or limits"<<endl;
335 cout<<"Schechter:"<<endl; sch.Print();
336 cout<<"schmin="<<schmin<<" schmax="<<schmax<<endl;
337 cout<<"SchechterMassDist:"<<endl; schmdist.Print();
338 return -10;
339 }
340 recompute_schmassdist = false;
341 }
342 schmdist.Print();
343 Histo hmdndm = schmdist.GetHmDnDm();
344 FunRan tirhmdndm = schmdist.GetTmDnDm();
345 {
346 tagobs = "hmdndm"; posobs.PutObject(hmdndm,tagobs);
347 Histo hdum1(tirhmdndm);
348 tagobs = "tirhmdndm"; posobs.PutObject(hdum1,tagobs);
349 }
350
351 PrtTim(">>>> End of definition");
352
353 //-----------------------------------------------------------------
354 // FFTW3 (p26): faster if sizes 2^a 3^b 5^c 7^d 11^e 13^f with e+f=0 ou 1
355 cout<<endl<<"\n--- Initialisation de GeneFluct3D"<<endl;
356
357 GeneFluct3D fluct3d(nx,ny,nz,dx,dy,dz,nthread,2);
358 fluct3d.SetObservator(zref,-nz/2.);
359 fluct3d.SetCosmology(univ);
360 fluct3d.SetGrowthFactor(growth);
361 fluct3d.LosComRedshift(0.001,-1);
362 TArray< complex<r_8> >& pkgen = fluct3d.GetComplexArray();
363 TArray<r_8>& rgen = fluct3d.GetRealArray();
364 cout<<endl; fluct3d.Print();
365 cout<<"\nMean number of galaxies per pixel = "<<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
366 cout<<"Mean mass per pixel = "<<mass_by_mpc3*fluct3d.GetDVol()<<endl;
367
368 double dkmin = fluct3d.GetKincMin();
369 double knyqmax = fluct3d.GetKmax();
370 long nherr = long(knyqmax/dkmin+0.5);
371 cout<<"\nFor HistoErr: d="<<dkmin<<" max="<<knyqmax<<" n="<<nherr<<endl;
372
373 double dktmin = fluct3d.GetKTincMin();
374 double ktnyqmax = fluct3d.GetKTmax();
375 long nherrt = long(ktnyqmax/dktmin+0.5);
376 double dkzmin = fluct3d.GetKinc()[2];
377 double kznyqmax = fluct3d.GetKnyq()[2];
378 long nherrz = long(kznyqmax/dkzmin+0.5);
379 cout<<"For Histo2DErr: d="<<dktmin<<","<<dkzmin
380 <<" max="<<ktnyqmax<<","<<kznyqmax<<" n="<<nherrt<<","<<nherrz<<endl;
381
382 //-----------------------------------------------------------------
383 cout<<"\n--- Computing spectra variance up to Kmax at z="<<pkz.GetZ()<<endl;
384 // En fait on travaille sur un cube inscrit dans la sphere de rayon kmax:
385 // sphere: Vs = 4Pi/3 k^3 , cube inscrit (cote k*sqrt(2)): Vc = (k*sqrt(2))^3
386 // Vc/Vs = 0.675 -> keff = kmax * (0.675)^(1/3) = kmax * 0.877
387 double knyqmax_mod = 0.877*knyqmax;
388 ldlkint = (log10(knyqmax_mod)-log10(k1int))/npt;
389 varpk_int.SetInteg(0.01,ldlkint,-1.,4);
390 double sr2int_kmax = varpk_int.Variance(k1int,knyqmax_mod);
391 cout<<"varpk_int(<"<<knyqmax_mod<<")="<<sr2int_kmax<<" -> sigma="<<sqrt(sr2int_kmax)<<endl;
392
393 PrtTim(">>>> End Initialisation de GeneFluct3D");
394
395 //-----------------------------------------------------------------
396 cout<<"\n--- Computing a realization in Fourier space"<<endl;
397 if(use_growth_factor>0) pkz.SetZ(0.); else pkz.SetZ(zref);
398 cout<<"Power spectrum set at redshift: "<<pkz.GetZ()<<endl;
399 if(computefourier0) fluct3d.ComputeFourier0(pkz);
400 else fluct3d.ComputeFourier(pkz);
401 PrtTim(">>>> End Computing a realization in Fourier space");
402
403 cout<<"\n--- Checking realization spectra"<<endl;
404 HistoErr hpkgen(0.,knyqmax,nherr);
405 hpkgen.ReCenterBin(); hpkgen.Zero();
406 hpkgen.Show();
407 fluct3d.ComputeSpectrum(hpkgen);
408 {
409 tagobs = "hpkgen"; posobs.PutObject(hpkgen,tagobs);
410 }
411 PrtTim(">>>> End Checking realization spectra");
412
413 if(comp2dspec) {
414 cout<<"\n--- Checking realization 2D spectra"<<endl;
415 Histo2DErr hpkgen2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
416 hpkgen2.ReCenterBin(); hpkgen2.Zero();
417 hpkgen2.Show();
418 fluct3d.ComputeSpectrum2D(hpkgen2);
419 {
420 tagobs = "hpkgen2"; posobs.PutObject(hpkgen2,tagobs);
421 }
422 PrtTim(">>>> End Checking realization 2D spectra");
423 }
424
425 if(filter_by_pixel!=0) {
426 cout<<"\n--- Computing convolution by pixel shape"<<endl;
427 fluct3d.FilterByPixel();
428 PrtTim(">>>> End Computing convolution by pixel shape");
429
430 cout<<"\n--- Checking realization spectra after pixel shape convol."<<endl;
431 HistoErr hpkgenfb(0.,knyqmax,nherr);
432 hpkgenfb.ReCenterBin(); hpkgenfb.Zero();
433 hpkgenfb.Show();
434 fluct3d.ComputeSpectrum(hpkgenfb);
435 {
436 tagobs = "hpkgenfb"; posobs.PutObject(hpkgenfb,tagobs);
437 }
438 PrtTim(">>>> End Checking realization spectra");
439
440 cout<<"\n--- Checking realization spectra after pixel shape convol. with pixel correc."<<endl;
441 HistoErr hpkgenf(hpkgenfb); hpkgenf.Zero();
442 fluct3d.ComputeSpectrum(hpkgenf,0.,filter_by_pixel);
443 {
444 tagobs = "hpkgenf"; posobs.PutObject(hpkgenf,tagobs);
445 }
446 PrtTim(">>>> End Checking realization spectra with pixel correc.");
447
448 if(comp2dspec) {
449 cout<<"\n--- Checking realization 2D spectra after pixel shape convol."<<endl;
450 Histo2DErr hpkgenfb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
451 hpkgenfb2.ReCenterBin(); hpkgenfb2.Zero();
452 hpkgenfb2.Show();
453 fluct3d.ComputeSpectrum2D(hpkgenfb2);
454 {
455 tagobs = "hpkgenfb2"; posobs.PutObject(hpkgenfb2,tagobs);
456 }
457 PrtTim(">>>> End Checking realization 2D spectra");
458
459 cout<<"\n--- Checking realization 2D spectra after pixel shape convol. with pixel correc."<<endl;
460 Histo2DErr hpkgenf2(hpkgenfb2); hpkgenf2.Zero();
461 fluct3d.ComputeSpectrum2D(hpkgenf2,0.,filter_by_pixel);
462 {
463 tagobs = "hpkgenf2"; posobs.PutObject(hpkgenf2,tagobs);
464 }
465 PrtTim(">>>> End Checking realization 2D spectra with pixel correc.");
466 }
467 }
468
469 if(wfits) {
470 fluct3d.WriteFits("!cmvobserv3d_k0.fits");
471 PrtTim(">>>> End WriteFits");
472 }
473 if(wppf) {
474 fluct3d.WritePPF("cmvobserv3d_k0.ppf",false);
475 PrtTim(">>>> End WritePPF");
476 }
477
478 //-----------------------------------------------------------------
479 cout<<"\n--- Computing a realization in real space"<<endl;
480 fluct3d.ComputeReal();
481 double rmin,rmax; fluct3d.MinMax(rmin,rmax);
482 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
483 PrtTim(">>>> End Computing a realization in real space");
484
485 if(use_growth_factor>0) {
486 cout<<"\n--- Apply Growth factor"<<endl;
487 cout<<"...D(z=0)="<<growth(0.)<<" D(z="<<zref<<")="<<growth(zref)<<endl;
488 fluct3d.ApplyGrowthFactor(use_growth_factor);
489 fluct3d.MinMax(rmin,rmax);
490 cout<<"rgen.Min = "<<rmin<<" , Max="<<rmax<<endl;
491 PrtTim(">>>> End Applying growth factor");
492 }
493
494 int_8 nm;
495 double rmref,rs2ref;
496 cout<<"\n--- Computing reference variance in real space"<<endl;
497 nm = fluct3d.MeanSigma2(rmref,rs2ref);
498 cout<<" rs2ref= "<<rs2ref<<" , rmref="<<rmref<<" ("<<nm<<")"<<endl;
499 PrtTim(">>>> End Computing reference variance in real space");
500
501 if(wfits) {
502 fluct3d.WriteFits("!cmvobserv3d_r0.fits");
503 PrtTim(">>>> End WriteFits");
504 }
505 if(wppf) {
506 fluct3d.WritePPF("cmvobserv3d_r0.ppf",true);
507 PrtTim(">>>> End WritePPF");
508 }
509 if(wslice) {
510 fluct3d.WriteSlicePPF("cmvobserv3d_s_r0.ppf");
511 PrtTim(">>>> End WriteSlicePPF");
512 }
513
514 cout<<"\n--- Check mean and variance in real space"<<endl;
515 fluct3d.NumberOfBad(-1.,1e+200);
516 double rm,rs2;
517 nm = fluct3d.MeanSigma2(rm,rs2);
518 PrtTim(">>>> End Check mean and variance in real space");
519
520 if(compvarreal) {
521 cout<<"\n--- Check variance sigmaR in real space"<<endl;
522 double varr;
523 fluct3d.VarianceFrReal(R,varr);
524 cout<<"...Computed variance = "<<varr
525 <<" , Theorical variance at (z=0) = "<<pow(sigmaR,1.)
526 <<" , at (z="<<zref<<") = "<<pow(sigmaR*growth_at_z,1.)<<endl;
527 PrtTim(">>>> End Check variance sigmaR in real space");
528 }
529
530 //-----------------------------------------------------------------
531 cout<<endl<<"\n--- Converting fluctuations into mass"<<endl;
532 fluct3d.TurnFluct2Mass();
533 nm = fluct3d.MeanSigma2(rm,rs2);
534 PrtTim(">>>> End Converting fluctuations into mass");
535
536 if(no_poisson) {
537 cout<<"\n--- Converting !!!DIRECTLY!!! mass into HI mass: mass per pixel ="
538 <<mass_by_mpc3*fluct3d.GetDVol()<<endl;
539 rm = fluct3d.TurnMass2MeanNumber(mass_by_mpc3);
540 } else {
541 cout<<"\n--- Converting mass into galaxy number: gal per pixel ="
542 <<ngal_by_mpc3*fluct3d.GetDVol()<<endl;
543 rm = fluct3d.TurnMass2MeanNumber(ngal_by_mpc3);
544 }
545 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
546 nm = fluct3d.MeanSigma2(rm,rs2);
547 PrtTim(">>>> End Converting mass into galaxy number or mass");
548
549 if( !no_poisson ) {
550
551 cout<<"\n--- Apply poisson on galaxy number"<<endl;
552 fluct3d.ApplyPoisson();
553 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
554 nm = fluct3d.MeanSigma2(rm,rs2);
555 double xgalmin,xgalmax; fluct3d.MinMax(xgalmin,xgalmax,0.1,1.e50);
556 PrtTim(">>>> End Apply poisson on galaxy number");
557 if(wslice) {
558 fluct3d.WriteSlicePPF("cmvobserv3d_s_rn.ppf");
559 PrtTim(">>>> End WriteSlicePPF");
560 }
561
562 cout<<"\n--- Convert Galaxy number to HI mass"<<endl;
563 double mhi = 0.;
564 if(use_schmassdist) {
565 if(recompute_schmassdist) {
566 int ngalmax = int(xgalmax+0.5);
567 schmdist.SetNgalLim(ngalmax,1,naleagal);
568 PrtTim(">>>> End creating tabulated histograms for trials");
569 }
570 mhi = fluct3d.TurnNGal2MassQuick(schmdist);
571 schmdist.PrintStatus();
572 } else {
573 mhi = fluct3d.TurnNGal2Mass(tirhmdndm,true);
574 }
575 cout<<mhi<<" MSol in survey / "<<mass_by_mpc3*fluct3d.GetVol()<<endl;
576 nm = fluct3d.MeanSigma2(rm,rs2,0.,1e200);
577 cout<<"Equivalent: "<<rm*nm/fluct3d.NPix()<<" Msol / pixels"<<endl;
578 nm = fluct3d.MeanSigma2(rm,rs2);
579 PrtTim(">>>> End Convert Galaxy number to HI mass");
580
581 }
582
583 if(wfits) {
584 fluct3d.WriteFits("!cmvobserv3d_r.fits");
585 PrtTim(">>>> End WriteFits");
586 }
587 if(wppf) {
588 fluct3d.WritePPF("cmvobserv3d_r.ppf",true);
589 PrtTim(">>>> End WritePPF");
590 }
591 if(wslice) {
592 fluct3d.WriteSlicePPF("cmvobserv3d_s_r.ppf");
593 PrtTim(">>>> End WriteSlicePPF");
594 }
595
596 //-----------------------------------------------------------------
597 ////if(do_agn) {
598 //// cout<<"\n--- Add AGN: <log10(S Jy)>="<<lfjy_agn<<" , sigma="<<lsigma_agn
599 //// <<" , powlaw="<<powlaw_agn<<endl;
600 //// fluct3d.AddAGN(lfjy_agn,lsigma_agn,powlaw_agn);
601 //// nm = fluct3d.MeanSigma2(rm,rs2);
602 //// PrtTim(">>>> End Add AGN");
603 ////}
604
605 //-----------------------------------------------------------------
606 double snoisesave = 0.;
607 if(snoise>0.) {
608 cout<<"\n--- Add noise to HI Flux snoise="<<snoise<<", evolution="<<noise_evol<<endl;
609 fluct3d.AddNoise2Real(snoise,noise_evol);
610 snoisesave = snoise;
611 nm = fluct3d.MeanSigma2(rm,rs2);
612 PrtTim(">>>> End Add noise");
613 }
614
615
616 //-----------------------------------------------------------------
617 if(scalecube!=0.) { // Si scalecube==0 pas de normalisation
618 cout<<"\n--- Scale cube rs2ref="<<rs2ref<<endl;
619 if(scalecube<0. && rs2ref>0.) { // si negatif on scale automatiquement
620 nm = fluct3d.MeanSigma2(rm,rs2);
621 if(rs2>0.) {scalecube=sqrt(rs2ref)/sqrt(rs2); offsetcube=-rm;}
622 }
623 cout<<"...scale="<<scalecube<<" offset="<<offsetcube<<endl;
624 if(scalecube>0.) {
625 fluct3d.ScaleOffset(scalecube,offsetcube);
626 snoisesave *= scalecube;
627 }
628 PrtTim(">>>> End Scale cube");
629 }
630
631 if(wfits) {
632 fluct3d.WriteFits("!cmvobserv3d_rf.fits");
633 PrtTim(">>>> End WriteFits");
634 }
635 if(wppf) {
636 fluct3d.WritePPF("cmvobserv3d_rf.ppf",true);
637 PrtTim(">>>> End WritePPF");
638 }
639 if(wslice) {
640 fluct3d.WriteSlicePPF("cmvobserv3d_s_rf.ppf");
641 PrtTim(">>>> End WriteSlicePPF");
642 }
643
644 //-----------------------------------------------------------------
645 // -- NE PAS FAIRE CA SI ON VEUT CONTINUER LA SIMULATION -> d_rho/rho ecrase
646
647 cout<<endl<<"\n--- ReComputing spectrum from real space"<<endl;
648 fluct3d.ReComputeFourier();
649 PrtTim(">>>> End ReComputing spectrum");
650
651 if(wfits) {
652 fluct3d.WriteFits("!cmvobserv3d_k.fits");
653 PrtTim(">>>> End WriteFits");
654 }
655 if(wppf) {
656 fluct3d.WritePPF("cmvobserv3d_k.ppf",false);
657 PrtTim(">>>> End WritePPF");
658 }
659
660 cout<<endl<<"\n--- Computing final spectrum"<<endl;
661 HistoErr hpkrecb(0.,knyqmax,nherr); hpkrecb.Zero();
662 hpkrecb.ReCenterBin();
663 hpkrecb.Show();
664 fluct3d.ComputeSpectrum(hpkrecb);
665 {
666 tagobs = "hpkrecb"; posobs.PutObject(hpkrecb,tagobs);
667 }
668 PrtTim(">>>> End Computing final spectrum");
669
670 cout<<endl<<"\n--- Computing final spectrum with pixel deconv."<<endl;
671 HistoErr hpkrec(hpkrecb); hpkrec.Zero();
672 fluct3d.ComputeSpectrum(hpkrec,snoisesave,filter_by_pixel);
673 {
674 tagobs = "hpkrec"; posobs.PutObject(hpkrec,tagobs);
675 }
676 PrtTim(">>>> End Computing final spectrum with pixel deconv.");
677
678 if(comp2dspec) {
679 cout<<"\n--- Computing final 2D spectrum"<<endl;
680 Histo2DErr hpkrecb2(0.,ktnyqmax,nherrt,0.,kznyqmax,nherrz);
681 hpkrecb2.ReCenterBin(); hpkrecb2.Zero();
682 hpkrecb2.Show();
683 fluct3d.ComputeSpectrum2D(hpkrecb2);
684 {
685 tagobs = "hpkrecb2"; posobs.PutObject(hpkrecb2,tagobs);
686 }
687 PrtTim(">>>> End Computing final 2D spectrum");
688
689 cout<<"\n--- Computing final 2D spectrum with pixel deconv."<<endl;
690 Histo2DErr hpkrec2(hpkrecb2); hpkrec2.Zero();
691 fluct3d.ComputeSpectrum2D(hpkrec2,snoisesave,filter_by_pixel);
692 {
693 tagobs = "hpkrec2"; posobs.PutObject(hpkrec2,tagobs);
694 }
695 PrtTim(">>>> End Computing final 2D spectrum with pixel deconv.");
696
697 }
698
699 PrtTim(">>>> End Of Job");
700 return 0;
701}
702
Note: See TracBrowser for help on using the repository browser.