[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "timing.h"
|
---|
| 11 | #include "tarray.h"
|
---|
| 12 | #include "pexceptions.h"
|
---|
| 13 | #include "perandom.h"
|
---|
| 14 | #include "srandgen.h"
|
---|
| 15 |
|
---|
[3141] | 16 | #include "fabtcolread.h"
|
---|
| 17 | #include "fabtwriter.h"
|
---|
| 18 | #include "fioarr.h"
|
---|
| 19 |
|
---|
| 20 | #include "arrctcast.h"
|
---|
| 21 |
|
---|
[3115] | 22 | #include "constcosmo.h"
|
---|
| 23 | #include "integfunc.h"
|
---|
| 24 | #include "geneutils.h"
|
---|
| 25 |
|
---|
| 26 | #include "genefluct3d.h"
|
---|
| 27 |
|
---|
| 28 | //#define FFTW_THREAD
|
---|
| 29 |
|
---|
| 30 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 31 |
|
---|
| 32 | //-------------------------------------------------------
|
---|
[3141] | 33 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T)
|
---|
[3150] | 34 | : T_(T) , array_allocated_(false) , lp_(0)
|
---|
[3115] | 35 | {
|
---|
| 36 | SetNThread();
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | GeneFluct3D::~GeneFluct3D(void)
|
---|
| 40 | {
|
---|
| 41 | fftw_destroy_plan(pf_);
|
---|
| 42 | fftw_destroy_plan(pb_);
|
---|
| 43 | #ifdef FFTW_THREAD
|
---|
| 44 | if(nthread_>0) fftw_cleanup_threads();
|
---|
| 45 | #endif
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | //-------------------------------------------------------
|
---|
[3129] | 49 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
[3115] | 50 | {
|
---|
[3141] | 51 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 52 | setalloc();
|
---|
| 53 | setpointers(false);
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 57 | {
|
---|
| 58 | if(nx<=0 || dx<=0.) {
|
---|
[3115] | 59 | cout<<"GeneFluct3D::SetSize_Error: bad value(s)"<<endl;
|
---|
| 60 | throw ParmError("GeneFluct3D::SetSize_Error: bad value(s)");
|
---|
| 61 | }
|
---|
| 62 |
|
---|
[3141] | 63 | // Les tailles des tableaux
|
---|
[3115] | 64 | Nx_ = nx;
|
---|
| 65 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 66 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 67 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3115] | 68 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 69 | NCz_ = Nz_/2 +1;
|
---|
| 70 | NTz_ = 2*NCz_;
|
---|
| 71 |
|
---|
| 72 | // le pas dans l'espace (Mpc)
|
---|
| 73 | Dx_ = dx;
|
---|
| 74 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 75 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 76 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 77 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 78 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 79 |
|
---|
| 80 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 81 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 82 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 83 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 84 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 85 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 86 |
|
---|
| 87 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 88 | Knyqx_ = M_PI/Dx_;
|
---|
| 89 | Knyqy_ = M_PI/Dy_;
|
---|
| 90 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 91 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 92 | }
|
---|
[3115] | 93 |
|
---|
[3141] | 94 | void GeneFluct3D::setalloc(void)
|
---|
| 95 | {
|
---|
| 96 | // Dimensionnement du tableau complex<r_8>
|
---|
| 97 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 98 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 99 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 100 | try {
|
---|
| 101 | T_.ReSize(3,SzK_);
|
---|
| 102 | array_allocated_ = true;
|
---|
| 103 | } catch (...) {
|
---|
| 104 | cout<<"GeneFluct3D::SetSize_Error: Problem allocating T_"<<endl;
|
---|
| 105 | }
|
---|
| 106 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
[3115] | 107 | }
|
---|
| 108 |
|
---|
[3141] | 109 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 110 | {
|
---|
| 111 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 112 | else R_ = ArrCastC2R(T_);
|
---|
| 113 | // On remplit les pointeurs
|
---|
| 114 | fdata_ = (fftw_complex *) (&T_(0,0,0));
|
---|
| 115 | data_ = (double *) (&R_(0,0,0));
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 119 | // Pour tester si le tableau T_ est alloue
|
---|
| 120 | {
|
---|
| 121 | if(array_allocated_) return;
|
---|
| 122 | char bla[90];
|
---|
| 123 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
| 124 | cout<<bla<<endl;
|
---|
| 125 | throw ParmError(bla);
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 |
|
---|
[3115] | 129 | //-------------------------------------------------------
|
---|
[3141] | 130 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 131 | {
|
---|
| 132 | cout<<"GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
| 133 | try {
|
---|
| 134 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
| 135 | fwrt.WriteKey("NX",Nx_," axe transverse 1");
|
---|
| 136 | fwrt.WriteKey("NY",Ny_," axe transverse 2");
|
---|
| 137 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
|
---|
| 138 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 139 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 140 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 141 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 142 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 143 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
| 144 | fwrt.Write(R_);
|
---|
| 145 | } catch (PThrowable & exc) {
|
---|
| 146 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 147 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 148 | return;
|
---|
| 149 | } catch (...) {
|
---|
| 150 | cout<<" some other exception was caught !"<<endl;
|
---|
| 151 | return;
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 |
|
---|
| 155 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 156 | {
|
---|
| 157 | cout<<"GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
| 158 | try {
|
---|
| 159 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 160 | fimg.Read(R_);
|
---|
| 161 | long nx = fimg.ReadKeyL("NX");
|
---|
| 162 | long ny = fimg.ReadKeyL("NY");
|
---|
| 163 | long nz = fimg.ReadKeyL("NZ");
|
---|
| 164 | double dx = fimg.ReadKey("DX");
|
---|
| 165 | double dy = fimg.ReadKey("DY");
|
---|
| 166 | double dz = fimg.ReadKey("DZ");
|
---|
| 167 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 168 | setpointers(true);
|
---|
| 169 | } catch (PThrowable & exc) {
|
---|
| 170 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 171 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 172 | return;
|
---|
| 173 | } catch (...) {
|
---|
| 174 | cout<<" some other exception was caught !"<<endl;
|
---|
| 175 | return;
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 180 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 181 | {
|
---|
| 182 | cout<<"GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
| 183 | try {
|
---|
| 184 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 185 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 186 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 187 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 188 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 189 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
| 190 | POutPersist pos(cfname.c_str());
|
---|
| 191 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 192 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 193 | } catch (PThrowable & exc) {
|
---|
| 194 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 195 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 196 | return;
|
---|
| 197 | } catch (...) {
|
---|
| 198 | cout<<" some other exception was caught !"<<endl;
|
---|
| 199 | return;
|
---|
| 200 | }
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 204 | {
|
---|
| 205 | cout<<"GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
| 206 | try {
|
---|
| 207 | bool from_real = true;
|
---|
| 208 | PInPersist pis(cfname.c_str());
|
---|
| 209 | string name_tag_k = "pkgen";
|
---|
| 210 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 211 | if(found_tag_k) {
|
---|
| 212 | cout<<" ...reading spectrun into TArray<complex <r_8> >"<<endl;
|
---|
| 213 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 214 | from_real = false;
|
---|
| 215 | } else {
|
---|
| 216 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 217 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 218 | }
|
---|
| 219 | int_8 nx = R_.Info()["NX"];
|
---|
| 220 | int_8 ny = R_.Info()["NY"];
|
---|
| 221 | int_8 nz = R_.Info()["NZ"];
|
---|
| 222 | r_8 dx = R_.Info()["DX"];
|
---|
| 223 | r_8 dy = R_.Info()["DY"];
|
---|
| 224 | r_8 dz = R_.Info()["DZ"];
|
---|
| 225 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 226 | setpointers(from_real);
|
---|
| 227 | } catch (PThrowable & exc) {
|
---|
| 228 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 229 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 230 | return;
|
---|
| 231 | } catch (...) {
|
---|
| 232 | cout<<" some other exception was caught !"<<endl;
|
---|
| 233 | return;
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | //-------------------------------------------------------
|
---|
[3115] | 238 | void GeneFluct3D::Print(void)
|
---|
| 239 | {
|
---|
[3141] | 240 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 241 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 242 | <<NRtot_<<endl;
|
---|
| 243 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 244 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 245 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 246 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 247 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 248 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 249 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 250 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 251 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | //-------------------------------------------------------
|
---|
[3141] | 255 | void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
|
---|
[3115] | 256 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 257 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 258 | {
|
---|
| 259 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3150] | 260 | if(lp_>1) PrtTim("--- ComputeFourier0: before fftw_plan ---");
|
---|
[3115] | 261 | #ifdef FFTW_THREAD
|
---|
| 262 | if(nthread_>0) {
|
---|
| 263 | cout<<"Computing with "<<nthread_<<" threads"<<endl;
|
---|
| 264 | fftw_init_threads();
|
---|
| 265 | fftw_plan_with_nthreads(nthread_);
|
---|
| 266 | }
|
---|
| 267 | #endif
|
---|
[3141] | 268 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
| 269 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
[3150] | 270 | if(lp_>1) PrtTim("--- ComputeFourier0: after fftw_plan ---");
|
---|
[3115] | 271 |
|
---|
| 272 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3150] | 273 | if(lp_>1) PrtTim("--- ComputeFourier0: before gaussian filling ---");
|
---|
[3115] | 274 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 275 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 276 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 277 | int_8 ip = IndexR(i,j,l);
|
---|
| 278 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 279 | }
|
---|
[3150] | 280 | if(lp_>1) PrtTim("--- ComputeFourier0: after gaussian filling ---");
|
---|
[3115] | 281 |
|
---|
| 282 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3150] | 283 | if(lp_>1) PrtTim("--- ComputeFourier0: before fft real ---");
|
---|
[3115] | 284 | fftw_execute(pf_);
|
---|
[3150] | 285 | if(lp_>1) PrtTim("--- ComputeFourier0: after fft real ---");
|
---|
[3115] | 286 |
|
---|
| 287 | // --- On remplit avec une realisation
|
---|
[3150] | 288 | if(lp_>1) PrtTim("--- ComputeFourier0: before Fourier realization filling ---");
|
---|
[3115] | 289 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 290 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 291 | for(long i=0;i<Nx_;i++) {
|
---|
| 292 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 293 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3150] | 294 | if(lp_>1 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 295 | for(long j=0;j<Ny_;j++) {
|
---|
| 296 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 297 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 298 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 299 | double kz = l*Dkz_; kz *= kz;
|
---|
| 300 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 301 | double k = sqrt(kx+ky+kz);
|
---|
| 302 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 303 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 304 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 305 | T_(l,j,i) *= sqrt(pk);
|
---|
| 306 | }
|
---|
| 307 | }
|
---|
| 308 | }
|
---|
[3150] | 309 | if(lp_>1) PrtTim("--- ComputeFourier0: after Fourier realization filling ---");
|
---|
[3115] | 310 |
|
---|
| 311 | double p = compute_power_carte();
|
---|
| 312 | cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3150] | 313 | if(lp_>1) PrtTim("--- ComputeFourier0: after Computing power ---");
|
---|
[3115] | 314 |
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | //-------------------------------------------------------
|
---|
[3141] | 318 | void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
|
---|
| 319 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 320 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 321 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 322 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 323 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 324 | // sum(f(x_i)^2) = S
|
---|
| 325 | // sum(F(nu_i)^2) = S*N
|
---|
| 326 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 327 | {
|
---|
| 328 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3150] | 329 | if(lp_>1) PrtTim("--- ComputeFourier: before fftw_plan ---");
|
---|
[3115] | 330 | #ifdef FFTW_THREAD
|
---|
| 331 | if(nthread_>0) {
|
---|
| 332 | cout<<"Computing with "<<nthread_<<" threads"<<endl;
|
---|
| 333 | fftw_init_threads();
|
---|
| 334 | fftw_plan_with_nthreads(nthread_);
|
---|
| 335 | }
|
---|
| 336 | #endif
|
---|
[3141] | 337 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
| 338 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
[3115] | 339 | //fftw_print_plan(pb_); cout<<endl;
|
---|
[3150] | 340 | if(lp_>1) PrtTim("--- ComputeFourier: after fftw_plan ---");
|
---|
[3115] | 341 |
|
---|
| 342 | // --- RaZ du tableau
|
---|
| 343 | T_ = complex<r_8>(0.);
|
---|
| 344 |
|
---|
| 345 | // --- On remplit avec une realisation
|
---|
[3150] | 346 | if(lp_>1) PrtTim("--- ComputeFourier: before Fourier realization filling ---");
|
---|
[3129] | 347 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 348 | for(long i=0;i<Nx_;i++) {
|
---|
| 349 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 350 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3150] | 351 | if(lp_>1 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 352 | for(long j=0;j<Ny_;j++) {
|
---|
| 353 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 354 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 355 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 356 | double kz = l*Dkz_; kz *= kz;
|
---|
| 357 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 358 | double k = sqrt(kx+ky+kz);
|
---|
| 359 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 360 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 361 | // Explication de la division par 2: voir perandom.cc
|
---|
| 362 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 363 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 364 | }
|
---|
| 365 | }
|
---|
| 366 | }
|
---|
[3150] | 367 | if(lp_>1) PrtTim("--- ComputeFourier: after Fourier realization filling ---");
|
---|
[3115] | 368 |
|
---|
| 369 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
[3150] | 370 | if(lp_>1) PrtTim("--- ComputeFourier: after managing coefficients ---");
|
---|
[3115] | 371 |
|
---|
| 372 | double p = compute_power_carte();
|
---|
| 373 | cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3150] | 374 | if(lp_>1) PrtTim("--- ComputeFourier: after before Computing power ---");
|
---|
[3115] | 375 |
|
---|
| 376 | }
|
---|
| 377 |
|
---|
[3129] | 378 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 379 | // Take into account the real and complexe conjugate coefficients
|
---|
| 380 | // because we want a realization of a real data in real space
|
---|
| 381 | {
|
---|
[3141] | 382 | check_array_alloc();
|
---|
[3115] | 383 |
|
---|
| 384 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 385 | long nreal = 0;
|
---|
| 386 | for(long kk=0;kk<2;kk++) {
|
---|
| 387 | long k=0; // continu
|
---|
[3115] | 388 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 389 | for(long jj=0;jj<2;jj++) {
|
---|
| 390 | long j=0;
|
---|
[3115] | 391 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 392 | for(long ii=0;ii<2;ii++) {
|
---|
| 393 | long i=0;
|
---|
[3115] | 394 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 395 | int_8 ip = IndexC(i,j,k);
|
---|
| 396 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 397 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 398 | nreal++;
|
---|
| 399 | }
|
---|
| 400 | }
|
---|
| 401 | }
|
---|
| 402 | cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
| 403 |
|
---|
| 404 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 405 |
|
---|
| 406 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 407 | long nconj1 = 0;
|
---|
| 408 | for(long kk=0;kk<2;kk++) {
|
---|
| 409 | long k=0; // continu
|
---|
[3115] | 410 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 411 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 412 | long j=0;
|
---|
[3115] | 413 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 414 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 415 | int_8 ip = IndexC(i,j,k);
|
---|
| 416 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 417 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 418 | nconj1++;
|
---|
| 419 | }
|
---|
| 420 | }
|
---|
[3129] | 421 | for(long ii=0;ii<2;ii++) {
|
---|
| 422 | long i=0;
|
---|
[3115] | 423 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 424 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 425 | int_8 ip = IndexC(i,j,k);
|
---|
| 426 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 427 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 428 | nconj1++;
|
---|
| 429 | }
|
---|
| 430 | }
|
---|
| 431 | }
|
---|
| 432 | cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
| 433 |
|
---|
| 434 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 435 | long nconj2 = 0;
|
---|
| 436 | for(long kk=0;kk<2;kk++) {
|
---|
| 437 | long k=0; // continu
|
---|
[3115] | 438 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 439 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 440 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 441 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 442 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 443 | int_8 ip = IndexC(i,j,k);
|
---|
| 444 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 445 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 446 | nconj2++;
|
---|
| 447 | }
|
---|
| 448 | }
|
---|
| 449 | }
|
---|
| 450 | cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
| 451 |
|
---|
| 452 | cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
| 453 |
|
---|
| 454 | return nreal+nconj1+nconj2;
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 458 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 459 | {
|
---|
[3141] | 460 | check_array_alloc();
|
---|
| 461 |
|
---|
[3115] | 462 | double s2 = 0.;
|
---|
[3129] | 463 | for(long l=0;l<NCz_;l++)
|
---|
| 464 | for(long j=0;j<Ny_;j++)
|
---|
| 465 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 466 |
|
---|
| 467 | double s20 = 0.;
|
---|
[3129] | 468 | for(long j=0;j<Ny_;j++)
|
---|
| 469 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 470 |
|
---|
| 471 | double s2n = 0.;
|
---|
| 472 | if(Nz_%2==0)
|
---|
[3129] | 473 | for(long j=0;j<Ny_;j++)
|
---|
| 474 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 475 |
|
---|
| 476 | return 2.*s2 -s20 -s2n;
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | //-------------------------------------------------------------------
|
---|
| 480 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 481 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 482 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 483 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 484 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 485 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 486 | // avec y = k_x*dx/2
|
---|
[3115] | 487 | {
|
---|
[3141] | 488 | check_array_alloc();
|
---|
| 489 |
|
---|
[3150] | 490 | if(lp_>1) PrtTim("--- FilterByPixel: before ---");
|
---|
[3115] | 491 |
|
---|
[3129] | 492 | for(long i=0;i<Nx_;i++) {
|
---|
| 493 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 494 | double kx = ii*Dkx_ *Dx_/2;
|
---|
[3141] | 495 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 496 | for(long j=0;j<Ny_;j++) {
|
---|
| 497 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 498 | double ky = jj*Dky_ *Dy_/2;
|
---|
[3141] | 499 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 500 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 501 | double kz = l*Dkz_ *Dz_/2;
|
---|
[3141] | 502 | double pk_z = pixelfilter(kz);
|
---|
| 503 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 504 | }
|
---|
| 505 | }
|
---|
| 506 | }
|
---|
| 507 |
|
---|
[3150] | 508 | if(lp_>1) PrtTim("--- FilterByPixel: after ---");
|
---|
[3115] | 509 | }
|
---|
| 510 |
|
---|
| 511 | //-------------------------------------------------------------------
|
---|
| 512 | void GeneFluct3D::ComputeReal(void)
|
---|
| 513 | // Calcule une realisation dans l'espace reel
|
---|
| 514 | {
|
---|
[3141] | 515 | check_array_alloc();
|
---|
[3115] | 516 |
|
---|
| 517 | // On fait la FFT
|
---|
[3150] | 518 | if(lp_>1) PrtTim("--- ComputeReal: before fftw backward ---");
|
---|
[3115] | 519 | fftw_execute(pb_);
|
---|
[3150] | 520 | if(lp_>1) PrtTim("--- ComputeReal: after fftw backward ---");
|
---|
[3115] | 521 | }
|
---|
| 522 |
|
---|
| 523 | //-------------------------------------------------------------------
|
---|
| 524 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 525 | {
|
---|
[3141] | 526 | check_array_alloc();
|
---|
[3115] | 527 |
|
---|
| 528 | // On fait la FFT
|
---|
[3150] | 529 | if(lp_>1) PrtTim("--- ComputeReal: before fftw forward ---");
|
---|
[3115] | 530 | fftw_execute(pf_);
|
---|
| 531 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 532 | double v = (double)NRtot_;
|
---|
[3129] | 533 | for(long i=0;i<Nx_;i++)
|
---|
| 534 | for(long j=0;j<Ny_;j++)
|
---|
| 535 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 536 |
|
---|
[3150] | 537 | if(lp_>1) PrtTim("--- ComputeReal: after fftw forward ---");
|
---|
[3115] | 538 | }
|
---|
| 539 |
|
---|
| 540 | //-------------------------------------------------------------------
|
---|
[3141] | 541 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 542 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 543 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 544 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 545 | {
|
---|
[3141] | 546 | check_array_alloc();
|
---|
[3150] | 547 | if(lp_>1) PrtTim("--- ComputeSpectrum: before ---");
|
---|
[3115] | 548 |
|
---|
[3141] | 549 | if(herr.NBins()<0) return -1;
|
---|
| 550 | herr.Zero();
|
---|
[3115] | 551 |
|
---|
| 552 | // Attention a l'ordre
|
---|
[3129] | 553 | for(long i=0;i<Nx_;i++) {
|
---|
| 554 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 555 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 556 | for(long j=0;j<Ny_;j++) {
|
---|
| 557 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 558 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 559 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 560 | double kz = l*Dkz_; kz *= kz;
|
---|
| 561 | double k = sqrt(kx+ky+kz);
|
---|
| 562 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 563 | herr.Add(k,pk);
|
---|
[3115] | 564 | }
|
---|
| 565 | }
|
---|
| 566 | }
|
---|
[3150] | 567 | herr.ToVariance();
|
---|
[3115] | 568 |
|
---|
| 569 | // renormalize to directly compare to original spectrum
|
---|
| 570 | double norm = Vol_;
|
---|
[3141] | 571 | herr *= norm;
|
---|
[3115] | 572 |
|
---|
[3150] | 573 | if(lp_>1) PrtTim("--- ComputeSpectrum: after ---");
|
---|
| 574 |
|
---|
[3115] | 575 | return 0;
|
---|
| 576 | }
|
---|
| 577 |
|
---|
[3141] | 578 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 579 | {
|
---|
| 580 | check_array_alloc();
|
---|
[3150] | 581 | if(lp_>1) PrtTim("--- ComputeSpectrum2D: before ---");
|
---|
[3141] | 582 |
|
---|
| 583 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 584 | herr.Zero();
|
---|
| 585 |
|
---|
| 586 | // Attention a l'ordre
|
---|
| 587 | for(long i=0;i<Nx_;i++) {
|
---|
| 588 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 589 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 590 | for(long j=0;j<Ny_;j++) {
|
---|
| 591 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 592 | double ky = jj*Dky_; ky *= ky;
|
---|
| 593 | double kt = sqrt(kx+ky);
|
---|
| 594 | for(long l=0;l<NCz_;l++) {
|
---|
| 595 | double kz = l*Dkz_;
|
---|
| 596 | double pk = MODULE2(T_(l,j,i));
|
---|
| 597 | herr.Add(kt,kz,pk);
|
---|
| 598 | }
|
---|
| 599 | }
|
---|
| 600 | }
|
---|
[3150] | 601 | herr.ToVariance();
|
---|
[3141] | 602 |
|
---|
| 603 | // renormalize to directly compare to original spectrum
|
---|
| 604 | double norm = Vol_;
|
---|
| 605 | herr *= norm;
|
---|
| 606 |
|
---|
[3150] | 607 | if(lp_>1) PrtTim("--- ComputeSpectrum2D: after ---");
|
---|
| 608 |
|
---|
[3141] | 609 | return 0;
|
---|
| 610 | }
|
---|
| 611 |
|
---|
[3115] | 612 | //-------------------------------------------------------
|
---|
[3134] | 613 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 614 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
| 615 | {
|
---|
[3141] | 616 | check_array_alloc();
|
---|
| 617 |
|
---|
[3150] | 618 | if(lp_>1) PrtTim("--- VarianceFrReal: before computation ---");
|
---|
[3115] | 619 |
|
---|
[3129] | 620 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
| 621 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
| 622 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
[3115] | 623 | cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
| 624 |
|
---|
[3134] | 625 | double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
|
---|
[3115] | 626 |
|
---|
[3129] | 627 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
| 628 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
| 629 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
[3134] | 630 | double s=0.; int_8 n=0;
|
---|
[3129] | 631 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 632 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 633 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 634 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 635 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 636 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 637 | if(x+y+z>r2) continue;
|
---|
[3141] | 638 | int_8 ip = IndexR(ii,jj,ll);
|
---|
| 639 | s += 1.+data_[ip];
|
---|
[3115] | 640 | n++;
|
---|
| 641 | }
|
---|
| 642 | }
|
---|
| 643 | }
|
---|
| 644 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
| 645 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
| 646 | }
|
---|
| 647 | }
|
---|
| 648 | }
|
---|
| 649 |
|
---|
| 650 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 651 |
|
---|
| 652 | sum /= nsum;
|
---|
| 653 | sum2 = sum2/nsum - sum*sum;
|
---|
[3150] | 654 | if(lp_) cout<<"VarianceFrReal: nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
[3115] | 655 |
|
---|
| 656 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
[3150] | 657 | if(lp_) cout<<"sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
[3115] | 658 |
|
---|
[3150] | 659 | if(lp_>1) PrtTim("--- VarianceFrReal: after computation ---");
|
---|
[3115] | 660 | return nsum;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
| 663 | //-------------------------------------------------------
|
---|
[3134] | 664 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 665 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 666 | // -> vmin and vmax are considered as bad
|
---|
| 667 | {
|
---|
[3141] | 668 | check_array_alloc();
|
---|
[3115] | 669 |
|
---|
[3134] | 670 | int_8 nbad = 0;
|
---|
[3129] | 671 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 672 | int_8 ip = IndexR(i,j,l);
|
---|
| 673 | double v = data_[ip];
|
---|
[3115] | 674 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 675 | }
|
---|
| 676 |
|
---|
| 677 | return nbad;
|
---|
| 678 | }
|
---|
| 679 |
|
---|
[3134] | 680 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax)
|
---|
[3115] | 681 | // mean,sigma^2 pour pixels avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 682 | // -> mean and sigma^2 are NOT computed with pixels values vmin and vmax
|
---|
| 683 | {
|
---|
[3141] | 684 | check_array_alloc();
|
---|
[3115] | 685 |
|
---|
[3134] | 686 | int_8 n = 0;
|
---|
[3115] | 687 | rm = rs2 = 0.;
|
---|
| 688 |
|
---|
[3129] | 689 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 690 | int_8 ip = IndexR(i,j,l);
|
---|
| 691 | double v = data_[ip];
|
---|
[3115] | 692 | if(v<=vmin || v>=vmax) continue;
|
---|
| 693 | rm += v;
|
---|
| 694 | rs2 += v*v;
|
---|
| 695 | n++;
|
---|
| 696 | }
|
---|
| 697 |
|
---|
| 698 | if(n>1) {
|
---|
| 699 | rm /= (double)n;
|
---|
| 700 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 701 | }
|
---|
| 702 |
|
---|
| 703 | return n;
|
---|
| 704 | }
|
---|
| 705 |
|
---|
[3134] | 706 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 707 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
| 708 | // -> vmin and vmax are set to val0
|
---|
| 709 | {
|
---|
[3141] | 710 | check_array_alloc();
|
---|
[3115] | 711 |
|
---|
[3134] | 712 | int_8 nbad = 0;
|
---|
[3129] | 713 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 714 | int_8 ip = IndexR(i,j,l);
|
---|
| 715 | double v = data_[ip];
|
---|
| 716 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 717 | }
|
---|
| 718 |
|
---|
| 719 | return nbad;
|
---|
| 720 | }
|
---|
| 721 |
|
---|
| 722 | //-------------------------------------------------------
|
---|
| 723 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 724 | // d_rho/rho -> Mass (add one!)
|
---|
| 725 | {
|
---|
[3141] | 726 | check_array_alloc();
|
---|
| 727 |
|
---|
[3150] | 728 | if(lp_>1) PrtTim("--- TurnFluct2Mass: before computation ---");
|
---|
[3115] | 729 |
|
---|
[3129] | 730 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 731 | int_8 ip = IndexR(i,j,l);
|
---|
| 732 | data_[ip] += 1.;
|
---|
[3115] | 733 | }
|
---|
| 734 |
|
---|
[3150] | 735 | if(lp_>1) PrtTim("--- TurnFluct2Mass: after computation ---");
|
---|
[3115] | 736 | }
|
---|
| 737 |
|
---|
| 738 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
| 739 | // do NOT treate negative or nul values
|
---|
| 740 | {
|
---|
[3150] | 741 | if(lp_>1) PrtTim("--- TurnMass2MeanNumber: before computation ---");
|
---|
[3115] | 742 |
|
---|
| 743 | double m,s2;
|
---|
[3134] | 744 | int_8 ngood = MeanSigma2(m,s2,0.,1e+200);
|
---|
[3150] | 745 | if(lp_) cout<<"TurnMass2MeanNumber: ngood="<<ngood
|
---|
[3115] | 746 | <<" m="<<m<<" s2="<<s2<<" -> "<<sqrt(s2)<<endl;
|
---|
| 747 |
|
---|
| 748 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
| 749 | // On en met uniquement dans les pixels de masse >0.
|
---|
| 750 | // On NE met PAS a zero les pixels <0
|
---|
| 751 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
| 752 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
| 753 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
| 754 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
| 755 | double dn = n_by_mpc3*Vol_/m /(double)ngood; // nb de gal a mettre ds 1 px
|
---|
[3150] | 756 | if(lp_) cout<<"galaxy density move from "
|
---|
[3115] | 757 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
| 758 | double sum = 0.;
|
---|
[3129] | 759 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 760 | int_8 ip = IndexR(i,j,l);
|
---|
| 761 | data_[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
| 762 | if(data_[ip]>0.) sum += data_[ip]; // mais on ne les compte pas
|
---|
[3115] | 763 | }
|
---|
[3150] | 764 | if(lp_) cout<<sum<<" galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
[3115] | 765 |
|
---|
[3150] | 766 | if(lp_>1) PrtTim("--- TurnMass2MeanNumber: after computation ---");
|
---|
[3115] | 767 | return sum;
|
---|
| 768 | }
|
---|
| 769 |
|
---|
| 770 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 771 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 772 | {
|
---|
[3141] | 773 | check_array_alloc();
|
---|
| 774 |
|
---|
[3150] | 775 | if(lp_>1) PrtTim("--- ApplyPoisson: before computation ---");
|
---|
[3115] | 776 |
|
---|
| 777 | double sum = 0.;
|
---|
[3129] | 778 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 779 | int_8 ip = IndexR(i,j,l);
|
---|
| 780 | double v = data_[ip];
|
---|
[3115] | 781 | if(v>0.) {
|
---|
| 782 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
[3141] | 783 | data_[ip] = (double)dn;
|
---|
[3115] | 784 | sum += (double)dn;
|
---|
| 785 | }
|
---|
| 786 | }
|
---|
[3150] | 787 | if(lp_) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 788 |
|
---|
[3150] | 789 | if(lp_>1) PrtTim("--- ApplyPoisson: before computation ---");
|
---|
[3115] | 790 | return sum;
|
---|
| 791 | }
|
---|
| 792 |
|
---|
| 793 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 794 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 795 | // INPUT:
|
---|
| 796 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 797 | // axeslog = false : retourne la masse
|
---|
| 798 | // = true : retourne le log10(mass)
|
---|
| 799 | // RETURN la masse totale
|
---|
| 800 | {
|
---|
[3141] | 801 | check_array_alloc();
|
---|
| 802 |
|
---|
[3150] | 803 | if(lp_>1) PrtTim("--- TurnNGal2Mass: before computation ---");
|
---|
[3115] | 804 |
|
---|
| 805 | double sum = 0.;
|
---|
[3129] | 806 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 807 | int_8 ip = IndexR(i,j,l);
|
---|
| 808 | double v = data_[ip];
|
---|
[3115] | 809 | if(v>0.) {
|
---|
[3129] | 810 | long ngal = long(v+0.1);
|
---|
[3141] | 811 | data_[ip] = 0.;
|
---|
[3129] | 812 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 813 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 814 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 815 | data_[ip] += m;
|
---|
[3115] | 816 | }
|
---|
[3141] | 817 | sum += data_[ip];
|
---|
[3115] | 818 | }
|
---|
| 819 | }
|
---|
[3150] | 820 | if(lp_) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 821 |
|
---|
[3150] | 822 | if(lp_>1) PrtTim("--- TurnNGal2Mass: after computation ---");
|
---|
[3115] | 823 | return sum;
|
---|
| 824 | }
|
---|
| 825 |
|
---|
| 826 | void GeneFluct3D::AddNoise2Real(double snoise)
|
---|
| 827 | // add noise to every pixels (meme les <=0 !)
|
---|
| 828 | {
|
---|
[3141] | 829 | check_array_alloc();
|
---|
| 830 |
|
---|
[3150] | 831 | if(lp_>1) PrtTim("--- AddNoise2Real: before computation ---");
|
---|
[3115] | 832 |
|
---|
[3129] | 833 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 834 | int_8 ip = IndexR(i,j,l);
|
---|
| 835 | data_[ip] += snoise*NorRand();
|
---|
[3115] | 836 | }
|
---|
| 837 |
|
---|
[3150] | 838 | if(lp_>1) PrtTim("--- AddNoise2Real: after computation ---");
|
---|
[3115] | 839 | }
|
---|