[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "tarray.h"
|
---|
| 11 | #include "pexceptions.h"
|
---|
| 12 | #include "perandom.h"
|
---|
| 13 | #include "srandgen.h"
|
---|
| 14 |
|
---|
[3141] | 15 | #include "fabtcolread.h"
|
---|
| 16 | #include "fabtwriter.h"
|
---|
| 17 | #include "fioarr.h"
|
---|
| 18 |
|
---|
| 19 | #include "arrctcast.h"
|
---|
| 20 |
|
---|
[3115] | 21 | #include "constcosmo.h"
|
---|
| 22 | #include "geneutils.h"
|
---|
| 23 |
|
---|
| 24 | #include "genefluct3d.h"
|
---|
| 25 |
|
---|
| 26 | //#define FFTW_THREAD
|
---|
| 27 |
|
---|
| 28 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 29 |
|
---|
| 30 | //-------------------------------------------------------
|
---|
[3141] | 31 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T)
|
---|
[3154] | 32 | : T_(T) , Nx_(0) , Ny_(0) , Nz_(0) , array_allocated_(false) , lp_(0)
|
---|
[3157] | 33 | , redshref_(-999.) , kredshref_(0.) , cosmo_(NULL) , growth_(NULL)
|
---|
| 34 | , loscom_ref_(-999.), loscom_min_(-999.), loscom_max_(-999.)
|
---|
| 35 |
|
---|
| 36 |
|
---|
[3115] | 37 | {
|
---|
[3157] | 38 | xobs_[0] = xobs_[1] = xobs_[2] = 0.;
|
---|
| 39 | zred_.resize(0);
|
---|
| 40 | loscom_.resize(0);
|
---|
[3115] | 41 | SetNThread();
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | GeneFluct3D::~GeneFluct3D(void)
|
---|
| 45 | {
|
---|
| 46 | fftw_destroy_plan(pf_);
|
---|
| 47 | fftw_destroy_plan(pb_);
|
---|
| 48 | #ifdef FFTW_THREAD
|
---|
| 49 | if(nthread_>0) fftw_cleanup_threads();
|
---|
| 50 | #endif
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | //-------------------------------------------------------
|
---|
[3129] | 54 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
[3115] | 55 | {
|
---|
[3141] | 56 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 57 | setalloc();
|
---|
| 58 | setpointers(false);
|
---|
[3154] | 59 | init_fftw();
|
---|
[3141] | 60 | }
|
---|
| 61 |
|
---|
[3154] | 62 | void GeneFluct3D::SetObservator(double redshref,double kredshref)
|
---|
| 63 | // L'observateur est au redshift z=0
|
---|
| 64 | // est situe sur la "perpendiculaire" a la face x,y
|
---|
| 65 | // issue du centre de cette face
|
---|
| 66 | // Il faut positionner le cube sur l'axe des z cad des redshifts:
|
---|
| 67 | // redshref = redshift de reference
|
---|
| 68 | // Si redshref<0 alors redshref=0
|
---|
| 69 | // kredshref = indice (en double) correspondant a ce redshift
|
---|
| 70 | // Si kredshref<0 alors kredshref=0
|
---|
[3157] | 71 | // Exemple: redshref=1.5 kredshref=250.75
|
---|
| 72 | // -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
|
---|
[3154] | 73 | {
|
---|
| 74 | if(redshref<0.) redshref = 0.;
|
---|
| 75 | if(kredshref<0.) kredshref = 0.;
|
---|
[3157] | 76 | redshref_ = redshref;
|
---|
[3154] | 77 | kredshref_ = kredshref;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
[3157] | 80 | void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
|
---|
| 81 | {
|
---|
| 82 | cosmo_ = &cosmo;
|
---|
| 83 | if(lp_>1) cosmo_->Print();
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
|
---|
| 87 | {
|
---|
| 88 | growth_ = &growth;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
[3141] | 91 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 92 | {
|
---|
[3155] | 93 | if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
|
---|
| 94 | <<" D="<<dx<<","<<dy<<","<<dz<<endl;
|
---|
[3141] | 95 | if(nx<=0 || dx<=0.) {
|
---|
[3155] | 96 | cout<<"GeneFluct3D::setsize_Error: bad value(s)"<<endl;
|
---|
| 97 | throw ParmError("GeneFluct3D::setsize_Error: bad value(s)");
|
---|
[3115] | 98 | }
|
---|
| 99 |
|
---|
[3141] | 100 | // Les tailles des tableaux
|
---|
[3115] | 101 | Nx_ = nx;
|
---|
| 102 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 103 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 104 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3115] | 105 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 106 | NCz_ = Nz_/2 +1;
|
---|
| 107 | NTz_ = 2*NCz_;
|
---|
| 108 |
|
---|
| 109 | // le pas dans l'espace (Mpc)
|
---|
| 110 | Dx_ = dx;
|
---|
| 111 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 112 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 113 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 114 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 115 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 116 |
|
---|
| 117 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 118 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 119 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 120 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 121 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 122 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 123 |
|
---|
| 124 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 125 | Knyqx_ = M_PI/Dx_;
|
---|
| 126 | Knyqy_ = M_PI/Dy_;
|
---|
| 127 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 128 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 129 | }
|
---|
[3115] | 130 |
|
---|
[3141] | 131 | void GeneFluct3D::setalloc(void)
|
---|
| 132 | {
|
---|
[3155] | 133 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
|
---|
[3141] | 134 | // Dimensionnement du tableau complex<r_8>
|
---|
| 135 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 136 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 137 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 138 | try {
|
---|
| 139 | T_.ReSize(3,SzK_);
|
---|
| 140 | array_allocated_ = true;
|
---|
| 141 | } catch (...) {
|
---|
[3155] | 142 | cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
|
---|
[3141] | 143 | }
|
---|
| 144 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
[3115] | 145 | }
|
---|
| 146 |
|
---|
[3141] | 147 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 148 | {
|
---|
[3155] | 149 | if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
|
---|
[3141] | 150 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 151 | else R_ = ArrCastC2R(T_);
|
---|
| 152 | // On remplit les pointeurs
|
---|
| 153 | fdata_ = (fftw_complex *) (&T_(0,0,0));
|
---|
| 154 | data_ = (double *) (&R_(0,0,0));
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 158 | // Pour tester si le tableau T_ est alloue
|
---|
| 159 | {
|
---|
| 160 | if(array_allocated_) return;
|
---|
| 161 | char bla[90];
|
---|
| 162 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
| 163 | cout<<bla<<endl;
|
---|
| 164 | throw ParmError(bla);
|
---|
| 165 | }
|
---|
| 166 |
|
---|
[3154] | 167 | void GeneFluct3D::init_fftw(void)
|
---|
| 168 | {
|
---|
| 169 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3155] | 170 | if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
|
---|
[3154] | 171 | #ifdef FFTW_THREAD
|
---|
| 172 | if(nthread_>0) {
|
---|
[3155] | 173 | cout<<"...Computing with "<<nthread_<<" threads"<<endl;
|
---|
[3154] | 174 | fftw_init_threads();
|
---|
| 175 | fftw_plan_with_nthreads(nthread_);
|
---|
| 176 | }
|
---|
| 177 | #endif
|
---|
[3155] | 178 | if(lp_>1) cout<<"...forward plan"<<endl;
|
---|
[3154] | 179 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
[3155] | 180 | if(lp_>1) cout<<"...backward plan"<<endl;
|
---|
[3154] | 181 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
| 182 | }
|
---|
[3141] | 183 |
|
---|
[3157] | 184 | //-------------------------------------------------------
|
---|
| 185 | long GeneFluct3D::LosComRedshift(double zinc)
|
---|
| 186 | // Given a position of the cube relative to the observer
|
---|
| 187 | // and a cosmology
|
---|
| 188 | // (SetObservator() and SetCosmology() should have been called !)
|
---|
| 189 | // This routine filled:
|
---|
| 190 | // the vector "zred_" of scanned redshift (by zinc increments)
|
---|
| 191 | // the vector "loscom_" of corresponding los comoving distance
|
---|
| 192 | //
|
---|
| 193 | {
|
---|
| 194 | if(zinc<=0.) zinc = 0.01;
|
---|
| 195 | if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<endl;
|
---|
[3154] | 196 |
|
---|
[3157] | 197 | if(cosmo_ == NULL || redshref_<0.) {
|
---|
| 198 | cout<<"GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first"<<endl;
|
---|
| 199 | throw ParmError("");
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | // On calcule les coordonnees de l'observateur
|
---|
| 203 | // Il est sur un axe centre sur le milieu de la face Oxy
|
---|
| 204 | double loscom_ref_ = cosmo_->Dloscom(redshref_);
|
---|
| 205 | xobs_[0] = Nx_/2.*Dx_;
|
---|
| 206 | xobs_[1] = Ny_/2.*Dy_;
|
---|
| 207 | xobs_[2] = kredshref_*Dz_ - loscom_ref_;
|
---|
| 208 |
|
---|
| 209 | // L'observateur est-il dans le cube?
|
---|
| 210 | bool obs_in_cube = false;
|
---|
| 211 | if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
|
---|
| 212 |
|
---|
| 213 | // Find MINIMUM los com distance to the observer:
|
---|
| 214 | // c'est le centre de la face a k=0
|
---|
| 215 | // (ou zero si l'observateur est dans le cube)
|
---|
| 216 | loscom_min_ = 0.;
|
---|
| 217 | if(!obs_in_cube) loscom_min_ = -xobs_[2];
|
---|
| 218 |
|
---|
| 219 | // Find MAXIMUM los com distance to the observer:
|
---|
| 220 | // ou que soit positionne l'observateur, la distance
|
---|
| 221 | // maximal est sur un des coins du cube
|
---|
| 222 | loscom_max_ = 0.;
|
---|
| 223 | for(long i=0;i<=1;i++) {
|
---|
| 224 | double dx2 = xobs_[0] - i*Nx_*Dx_; dx2 *= dx2;
|
---|
| 225 | for(long j=0;j<=1;j++) {
|
---|
| 226 | double dy2 = xobs_[1] - j*Ny_*Dy_; dy2 *= dy2;
|
---|
| 227 | for(long k=0;k<=1;k++) {
|
---|
| 228 | double dz2 = xobs_[2] - k*Nz_*Dz_; dz2 *= dz2;
|
---|
| 229 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 230 | if(dz2>loscom_max_) loscom_max_ = dz2;
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 | }
|
---|
| 234 | if(lp_>0) {
|
---|
| 235 | cout<<"...zref="<<redshref_<<" kzref="<<kredshref_<<" losref="<<loscom_ref_<<" Mpc\n"
|
---|
| 236 | <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
|
---|
| 237 | <<" in_cube="<<obs_in_cube
|
---|
| 238 | <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc "<<endl;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | // Fill the corresponding vectors
|
---|
| 242 | for(double z=0.; ; z+=zinc) {
|
---|
| 243 | double dlc = cosmo_->Dloscom(z);
|
---|
| 244 | if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
|
---|
| 245 | zred_.push_back(z);
|
---|
| 246 | loscom_.push_back(dlc);
|
---|
| 247 | z += zinc;
|
---|
| 248 | if(dlc>loscom_max_) break; // on break apres avoir stoque un dlc>dlcmax
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | long n = zred_.size();
|
---|
| 252 | if(lp_>0) {
|
---|
| 253 | cout<<"...n="<<n;
|
---|
| 254 | if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
|
---|
| 255 | if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
|
---|
| 256 | cout<<endl;
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | return n;
|
---|
| 260 | }
|
---|
| 261 |
|
---|
[3115] | 262 | //-------------------------------------------------------
|
---|
[3141] | 263 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 264 | {
|
---|
[3155] | 265 | cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
[3141] | 266 | try {
|
---|
| 267 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
| 268 | fwrt.WriteKey("NX",Nx_," axe transverse 1");
|
---|
| 269 | fwrt.WriteKey("NY",Ny_," axe transverse 2");
|
---|
| 270 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
|
---|
| 271 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 272 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 273 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 274 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 275 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 276 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
[3154] | 277 | fwrt.WriteKey("ZREF",redshref_," reference redshift");
|
---|
| 278 | fwrt.WriteKey("KZREF",kredshref_," reference redshift on z axe");
|
---|
[3141] | 279 | fwrt.Write(R_);
|
---|
| 280 | } catch (PThrowable & exc) {
|
---|
| 281 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 282 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 283 | return;
|
---|
| 284 | } catch (...) {
|
---|
| 285 | cout<<" some other exception was caught !"<<endl;
|
---|
| 286 | return;
|
---|
| 287 | }
|
---|
| 288 | }
|
---|
| 289 |
|
---|
| 290 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 291 | {
|
---|
[3155] | 292 | cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 293 | try {
|
---|
| 294 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 295 | fimg.Read(R_);
|
---|
| 296 | long nx = fimg.ReadKeyL("NX");
|
---|
| 297 | long ny = fimg.ReadKeyL("NY");
|
---|
| 298 | long nz = fimg.ReadKeyL("NZ");
|
---|
| 299 | double dx = fimg.ReadKey("DX");
|
---|
| 300 | double dy = fimg.ReadKey("DY");
|
---|
| 301 | double dz = fimg.ReadKey("DZ");
|
---|
[3154] | 302 | double zref = fimg.ReadKey("ZREF");
|
---|
| 303 | double kzref = fimg.ReadKey("KZREF");
|
---|
[3141] | 304 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 305 | setpointers(true);
|
---|
[3154] | 306 | init_fftw();
|
---|
| 307 | SetObservator(zref,kzref);
|
---|
[3141] | 308 | } catch (PThrowable & exc) {
|
---|
| 309 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 310 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 311 | return;
|
---|
| 312 | } catch (...) {
|
---|
| 313 | cout<<" some other exception was caught !"<<endl;
|
---|
| 314 | return;
|
---|
| 315 | }
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 319 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 320 | {
|
---|
[3155] | 321 | cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
[3141] | 322 | try {
|
---|
| 323 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 324 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 325 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 326 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 327 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 328 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
[3154] | 329 | R_.Info()["ZREF"] = (r_8)redshref_;
|
---|
| 330 | R_.Info()["KZREF"] = (r_8)kredshref_;
|
---|
[3141] | 331 | POutPersist pos(cfname.c_str());
|
---|
| 332 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 333 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 334 | } catch (PThrowable & exc) {
|
---|
| 335 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 336 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 337 | return;
|
---|
| 338 | } catch (...) {
|
---|
| 339 | cout<<" some other exception was caught !"<<endl;
|
---|
| 340 | return;
|
---|
| 341 | }
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 345 | {
|
---|
[3155] | 346 | cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 347 | try {
|
---|
| 348 | bool from_real = true;
|
---|
| 349 | PInPersist pis(cfname.c_str());
|
---|
| 350 | string name_tag_k = "pkgen";
|
---|
| 351 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 352 | if(found_tag_k) {
|
---|
| 353 | cout<<" ...reading spectrun into TArray<complex <r_8> >"<<endl;
|
---|
| 354 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 355 | from_real = false;
|
---|
| 356 | } else {
|
---|
| 357 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 358 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 359 | }
|
---|
[3154] | 360 | setpointers(from_real); // a mettre ici pour relire les DVInfo
|
---|
[3141] | 361 | int_8 nx = R_.Info()["NX"];
|
---|
| 362 | int_8 ny = R_.Info()["NY"];
|
---|
| 363 | int_8 nz = R_.Info()["NZ"];
|
---|
| 364 | r_8 dx = R_.Info()["DX"];
|
---|
| 365 | r_8 dy = R_.Info()["DY"];
|
---|
| 366 | r_8 dz = R_.Info()["DZ"];
|
---|
[3154] | 367 | r_8 zref = R_.Info()["ZREF"];
|
---|
| 368 | r_8 kzref = R_.Info()["KZREF"];
|
---|
[3141] | 369 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
[3154] | 370 | init_fftw();
|
---|
| 371 | SetObservator(zref,kzref);
|
---|
[3141] | 372 | } catch (PThrowable & exc) {
|
---|
| 373 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 374 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 375 | return;
|
---|
| 376 | } catch (...) {
|
---|
| 377 | cout<<" some other exception was caught !"<<endl;
|
---|
| 378 | return;
|
---|
| 379 | }
|
---|
| 380 | }
|
---|
| 381 |
|
---|
| 382 | //-------------------------------------------------------
|
---|
[3115] | 383 | void GeneFluct3D::Print(void)
|
---|
| 384 | {
|
---|
[3141] | 385 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 386 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 387 | <<NRtot_<<endl;
|
---|
| 388 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 389 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 390 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 391 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 392 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 393 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 394 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 395 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 396 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
[3154] | 397 | cout<<"Redshift "<<redshref_<<" for z axe at k="<<kredshref_<<endl;
|
---|
[3115] | 398 | }
|
---|
| 399 |
|
---|
| 400 | //-------------------------------------------------------
|
---|
[3141] | 401 | void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
|
---|
[3115] | 402 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 403 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 404 | {
|
---|
| 405 |
|
---|
| 406 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 407 | if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
|
---|
[3115] | 408 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 409 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 410 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 411 | int_8 ip = IndexR(i,j,l);
|
---|
| 412 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 413 | }
|
---|
| 414 |
|
---|
| 415 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 416 | if(lp_>0) cout<<"...before fft real ---"<<endl;
|
---|
[3115] | 417 | fftw_execute(pf_);
|
---|
| 418 |
|
---|
| 419 | // --- On remplit avec une realisation
|
---|
[3157] | 420 | if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
|
---|
[3115] | 421 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 422 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 423 | for(long i=0;i<Nx_;i++) {
|
---|
| 424 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 425 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 426 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 427 | for(long j=0;j<Ny_;j++) {
|
---|
| 428 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 429 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 430 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 431 | double kz = l*Dkz_; kz *= kz;
|
---|
| 432 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 433 | double k = sqrt(kx+ky+kz);
|
---|
| 434 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 435 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 436 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 437 | T_(l,j,i) *= sqrt(pk);
|
---|
| 438 | }
|
---|
| 439 | }
|
---|
| 440 | }
|
---|
| 441 |
|
---|
[3155] | 442 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 443 | double p = compute_power_carte();
|
---|
[3155] | 444 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 445 |
|
---|
| 446 | }
|
---|
| 447 |
|
---|
| 448 | //-------------------------------------------------------
|
---|
[3141] | 449 | void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
|
---|
| 450 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 451 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 452 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 453 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 454 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 455 | // sum(f(x_i)^2) = S
|
---|
| 456 | // sum(F(nu_i)^2) = S*N
|
---|
| 457 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 458 | {
|
---|
| 459 | // --- RaZ du tableau
|
---|
| 460 | T_ = complex<r_8>(0.);
|
---|
| 461 |
|
---|
| 462 | // --- On remplit avec une realisation
|
---|
[3155] | 463 | if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
|
---|
[3129] | 464 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 465 | for(long i=0;i<Nx_;i++) {
|
---|
| 466 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 467 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 468 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 469 | for(long j=0;j<Ny_;j++) {
|
---|
| 470 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 471 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 472 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 473 | double kz = l*Dkz_; kz *= kz;
|
---|
| 474 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 475 | double k = sqrt(kx+ky+kz);
|
---|
| 476 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 477 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 478 | // Explication de la division par 2: voir perandom.cc
|
---|
| 479 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 480 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 486 |
|
---|
[3155] | 487 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 488 | double p = compute_power_carte();
|
---|
[3155] | 489 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 490 |
|
---|
| 491 | }
|
---|
| 492 |
|
---|
[3129] | 493 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 494 | // Take into account the real and complexe conjugate coefficients
|
---|
| 495 | // because we want a realization of a real data in real space
|
---|
| 496 | {
|
---|
[3155] | 497 | if(lp_>1) cout<<"...managing coefficients"<<endl;
|
---|
[3141] | 498 | check_array_alloc();
|
---|
[3115] | 499 |
|
---|
| 500 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 501 | long nreal = 0;
|
---|
| 502 | for(long kk=0;kk<2;kk++) {
|
---|
| 503 | long k=0; // continu
|
---|
[3115] | 504 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 505 | for(long jj=0;jj<2;jj++) {
|
---|
| 506 | long j=0;
|
---|
[3115] | 507 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 508 | for(long ii=0;ii<2;ii++) {
|
---|
| 509 | long i=0;
|
---|
[3115] | 510 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 511 | int_8 ip = IndexC(i,j,k);
|
---|
| 512 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 513 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 514 | nreal++;
|
---|
| 515 | }
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
[3155] | 518 | if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
[3115] | 519 |
|
---|
| 520 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 521 |
|
---|
| 522 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 523 | long nconj1 = 0;
|
---|
| 524 | for(long kk=0;kk<2;kk++) {
|
---|
| 525 | long k=0; // continu
|
---|
[3115] | 526 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 527 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 528 | long j=0;
|
---|
[3115] | 529 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 530 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 531 | int_8 ip = IndexC(i,j,k);
|
---|
| 532 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 533 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 534 | nconj1++;
|
---|
| 535 | }
|
---|
| 536 | }
|
---|
[3129] | 537 | for(long ii=0;ii<2;ii++) {
|
---|
| 538 | long i=0;
|
---|
[3115] | 539 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 540 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 541 | int_8 ip = IndexC(i,j,k);
|
---|
| 542 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 543 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 544 | nconj1++;
|
---|
| 545 | }
|
---|
| 546 | }
|
---|
| 547 | }
|
---|
[3155] | 548 | if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
[3115] | 549 |
|
---|
| 550 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 551 | long nconj2 = 0;
|
---|
| 552 | for(long kk=0;kk<2;kk++) {
|
---|
| 553 | long k=0; // continu
|
---|
[3115] | 554 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 555 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 556 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 557 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 558 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 559 | int_8 ip = IndexC(i,j,k);
|
---|
| 560 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 561 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 562 | nconj2++;
|
---|
| 563 | }
|
---|
| 564 | }
|
---|
| 565 | }
|
---|
[3155] | 566 | if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
[3115] | 567 |
|
---|
[3155] | 568 | if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
[3115] | 569 |
|
---|
| 570 | return nreal+nconj1+nconj2;
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 574 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 575 | {
|
---|
[3141] | 576 | check_array_alloc();
|
---|
| 577 |
|
---|
[3115] | 578 | double s2 = 0.;
|
---|
[3129] | 579 | for(long l=0;l<NCz_;l++)
|
---|
| 580 | for(long j=0;j<Ny_;j++)
|
---|
| 581 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 582 |
|
---|
| 583 | double s20 = 0.;
|
---|
[3129] | 584 | for(long j=0;j<Ny_;j++)
|
---|
| 585 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 586 |
|
---|
| 587 | double s2n = 0.;
|
---|
| 588 | if(Nz_%2==0)
|
---|
[3129] | 589 | for(long j=0;j<Ny_;j++)
|
---|
| 590 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 591 |
|
---|
| 592 | return 2.*s2 -s20 -s2n;
|
---|
| 593 | }
|
---|
| 594 |
|
---|
| 595 | //-------------------------------------------------------------------
|
---|
| 596 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 597 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 598 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 599 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 600 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 601 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 602 | // avec y = k_x*dx/2
|
---|
[3115] | 603 | {
|
---|
[3155] | 604 | if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
|
---|
[3141] | 605 | check_array_alloc();
|
---|
| 606 |
|
---|
[3129] | 607 | for(long i=0;i<Nx_;i++) {
|
---|
| 608 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 609 | double kx = ii*Dkx_ *Dx_/2;
|
---|
[3141] | 610 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 611 | for(long j=0;j<Ny_;j++) {
|
---|
| 612 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 613 | double ky = jj*Dky_ *Dy_/2;
|
---|
[3141] | 614 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 615 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 616 | double kz = l*Dkz_ *Dz_/2;
|
---|
[3141] | 617 | double pk_z = pixelfilter(kz);
|
---|
| 618 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 619 | }
|
---|
| 620 | }
|
---|
| 621 | }
|
---|
| 622 |
|
---|
| 623 | }
|
---|
| 624 |
|
---|
| 625 | //-------------------------------------------------------------------
|
---|
[3157] | 626 | void GeneFluct3D::ApplyGrowthFactor(long npoints)
|
---|
| 627 | // Apply Growth to real space
|
---|
| 628 | // Using the correspondance between redshift and los comoving distance
|
---|
| 629 | // describe in vector "zred_" "loscom_"
|
---|
| 630 | {
|
---|
| 631 | if(npoints<3) npoints = zred_.size();
|
---|
| 632 | if(lp_>0) cout<<"--- ApplyGrowthFactor --- npoints="<<npoints<<endl;
|
---|
| 633 | check_array_alloc();
|
---|
| 634 |
|
---|
| 635 | if(growth_ == NULL) {
|
---|
| 636 | cout<<"GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first"<<endl;
|
---|
| 637 | throw ParmError("GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first");
|
---|
| 638 | }
|
---|
| 639 |
|
---|
| 640 | long n = zred_.size();
|
---|
| 641 | InverseFunc invfun(zred_,loscom_);
|
---|
| 642 | vector<double> invlos;
|
---|
| 643 | invfun.ComputeParab(npoints,invlos);
|
---|
| 644 |
|
---|
| 645 | InterpFunc interpinv(invfun.YMin(),invfun.YMax(),invlos);
|
---|
| 646 | unsigned short ok;
|
---|
| 647 |
|
---|
| 648 | //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
|
---|
| 649 | for(long i=0;i<Nx_;i++) {
|
---|
| 650 | double dx2 = xobs_[0] - i*Dx_; dx2 *= dx2;
|
---|
| 651 | for(long j=0;j<Ny_;j++) {
|
---|
| 652 | double dy2 = xobs_[1] - j*Dy_; dy2 *= dy2;
|
---|
| 653 | for(long l=0;l<Nz_;l++) {
|
---|
| 654 | double dz2 = xobs_[2] - l*Dz_; dz2 *= dz2;
|
---|
| 655 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 656 | double z = interpinv(dz2);
|
---|
| 657 | //CHECK: hgr.Add(z);
|
---|
| 658 | double dzgr = (*growth_)(z); // interpolation par morceau
|
---|
| 659 | //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
|
---|
| 660 | //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
|
---|
| 661 | int_8 ip = IndexR(i,j,l);
|
---|
| 662 | data_[ip] *= dzgr;
|
---|
| 663 | }
|
---|
| 664 | }
|
---|
| 665 | }
|
---|
| 666 |
|
---|
| 667 | //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
|
---|
| 668 |
|
---|
| 669 | }
|
---|
| 670 |
|
---|
| 671 | //-------------------------------------------------------------------
|
---|
[3115] | 672 | void GeneFluct3D::ComputeReal(void)
|
---|
| 673 | // Calcule une realisation dans l'espace reel
|
---|
| 674 | {
|
---|
[3155] | 675 | if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
|
---|
[3141] | 676 | check_array_alloc();
|
---|
[3115] | 677 |
|
---|
| 678 | // On fait la FFT
|
---|
| 679 | fftw_execute(pb_);
|
---|
| 680 | }
|
---|
| 681 |
|
---|
| 682 | //-------------------------------------------------------------------
|
---|
| 683 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 684 | {
|
---|
[3155] | 685 | if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
|
---|
[3141] | 686 | check_array_alloc();
|
---|
[3115] | 687 |
|
---|
| 688 | // On fait la FFT
|
---|
| 689 | fftw_execute(pf_);
|
---|
| 690 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 691 | double v = (double)NRtot_;
|
---|
[3129] | 692 | for(long i=0;i<Nx_;i++)
|
---|
| 693 | for(long j=0;j<Ny_;j++)
|
---|
| 694 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 695 |
|
---|
| 696 | }
|
---|
| 697 |
|
---|
| 698 | //-------------------------------------------------------------------
|
---|
[3141] | 699 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 700 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 701 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 702 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 703 | {
|
---|
[3155] | 704 | if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
|
---|
[3141] | 705 | check_array_alloc();
|
---|
[3115] | 706 |
|
---|
[3141] | 707 | if(herr.NBins()<0) return -1;
|
---|
| 708 | herr.Zero();
|
---|
[3115] | 709 |
|
---|
| 710 | // Attention a l'ordre
|
---|
[3129] | 711 | for(long i=0;i<Nx_;i++) {
|
---|
| 712 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 713 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 714 | for(long j=0;j<Ny_;j++) {
|
---|
| 715 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 716 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 717 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 718 | double kz = l*Dkz_; kz *= kz;
|
---|
| 719 | double k = sqrt(kx+ky+kz);
|
---|
| 720 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 721 | herr.Add(k,pk);
|
---|
[3115] | 722 | }
|
---|
| 723 | }
|
---|
| 724 | }
|
---|
[3150] | 725 | herr.ToVariance();
|
---|
[3115] | 726 |
|
---|
| 727 | // renormalize to directly compare to original spectrum
|
---|
| 728 | double norm = Vol_;
|
---|
[3141] | 729 | herr *= norm;
|
---|
[3115] | 730 |
|
---|
| 731 | return 0;
|
---|
| 732 | }
|
---|
| 733 |
|
---|
[3141] | 734 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 735 | {
|
---|
[3155] | 736 | if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
|
---|
[3141] | 737 | check_array_alloc();
|
---|
| 738 |
|
---|
| 739 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 740 | herr.Zero();
|
---|
| 741 |
|
---|
| 742 | // Attention a l'ordre
|
---|
| 743 | for(long i=0;i<Nx_;i++) {
|
---|
| 744 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 745 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 746 | for(long j=0;j<Ny_;j++) {
|
---|
| 747 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 748 | double ky = jj*Dky_; ky *= ky;
|
---|
| 749 | double kt = sqrt(kx+ky);
|
---|
| 750 | for(long l=0;l<NCz_;l++) {
|
---|
| 751 | double kz = l*Dkz_;
|
---|
| 752 | double pk = MODULE2(T_(l,j,i));
|
---|
| 753 | herr.Add(kt,kz,pk);
|
---|
| 754 | }
|
---|
| 755 | }
|
---|
| 756 | }
|
---|
[3150] | 757 | herr.ToVariance();
|
---|
[3141] | 758 |
|
---|
| 759 | // renormalize to directly compare to original spectrum
|
---|
| 760 | double norm = Vol_;
|
---|
| 761 | herr *= norm;
|
---|
| 762 |
|
---|
| 763 | return 0;
|
---|
| 764 | }
|
---|
| 765 |
|
---|
[3115] | 766 | //-------------------------------------------------------
|
---|
[3134] | 767 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 768 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
| 769 | {
|
---|
[3155] | 770 | if(lp_>0) cout<<"--- VarianceFrReal ---"<<endl;
|
---|
[3141] | 771 | check_array_alloc();
|
---|
| 772 |
|
---|
[3129] | 773 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
| 774 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
| 775 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
[3155] | 776 | if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
[3115] | 777 |
|
---|
[3134] | 778 | double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
|
---|
[3115] | 779 |
|
---|
[3129] | 780 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
| 781 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
| 782 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
[3134] | 783 | double s=0.; int_8 n=0;
|
---|
[3129] | 784 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 785 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 786 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 787 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 788 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 789 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 790 | if(x+y+z>r2) continue;
|
---|
[3141] | 791 | int_8 ip = IndexR(ii,jj,ll);
|
---|
| 792 | s += 1.+data_[ip];
|
---|
[3115] | 793 | n++;
|
---|
| 794 | }
|
---|
| 795 | }
|
---|
| 796 | }
|
---|
| 797 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
| 798 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
| 799 | }
|
---|
| 800 | }
|
---|
| 801 | }
|
---|
| 802 |
|
---|
| 803 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 804 |
|
---|
| 805 | sum /= nsum;
|
---|
| 806 | sum2 = sum2/nsum - sum*sum;
|
---|
[3155] | 807 | if(lp_>0) cout<<"VarianceFrReal: nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
[3115] | 808 |
|
---|
| 809 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
[3155] | 810 | if(lp_>0) cout<<"sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
[3115] | 811 |
|
---|
| 812 | return nsum;
|
---|
| 813 | }
|
---|
| 814 |
|
---|
| 815 | //-------------------------------------------------------
|
---|
[3134] | 816 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 817 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 818 | // -> vmin and vmax are considered as bad
|
---|
| 819 | {
|
---|
[3141] | 820 | check_array_alloc();
|
---|
[3115] | 821 |
|
---|
[3134] | 822 | int_8 nbad = 0;
|
---|
[3129] | 823 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 824 | int_8 ip = IndexR(i,j,l);
|
---|
| 825 | double v = data_[ip];
|
---|
[3115] | 826 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 827 | }
|
---|
| 828 |
|
---|
| 829 | return nbad;
|
---|
| 830 | }
|
---|
| 831 |
|
---|
[3134] | 832 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax)
|
---|
[3115] | 833 | // mean,sigma^2 pour pixels avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 834 | // -> mean and sigma^2 are NOT computed with pixels values vmin and vmax
|
---|
| 835 | {
|
---|
[3141] | 836 | check_array_alloc();
|
---|
[3115] | 837 |
|
---|
[3134] | 838 | int_8 n = 0;
|
---|
[3115] | 839 | rm = rs2 = 0.;
|
---|
| 840 |
|
---|
[3129] | 841 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 842 | int_8 ip = IndexR(i,j,l);
|
---|
| 843 | double v = data_[ip];
|
---|
[3115] | 844 | if(v<=vmin || v>=vmax) continue;
|
---|
| 845 | rm += v;
|
---|
| 846 | rs2 += v*v;
|
---|
| 847 | n++;
|
---|
| 848 | }
|
---|
| 849 |
|
---|
| 850 | if(n>1) {
|
---|
| 851 | rm /= (double)n;
|
---|
| 852 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 853 | }
|
---|
| 854 |
|
---|
| 855 | return n;
|
---|
| 856 | }
|
---|
| 857 |
|
---|
[3134] | 858 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 859 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
| 860 | // -> vmin and vmax are set to val0
|
---|
| 861 | {
|
---|
[3141] | 862 | check_array_alloc();
|
---|
[3115] | 863 |
|
---|
[3134] | 864 | int_8 nbad = 0;
|
---|
[3129] | 865 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 866 | int_8 ip = IndexR(i,j,l);
|
---|
| 867 | double v = data_[ip];
|
---|
| 868 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 869 | }
|
---|
| 870 |
|
---|
| 871 | return nbad;
|
---|
| 872 | }
|
---|
| 873 |
|
---|
| 874 | //-------------------------------------------------------
|
---|
| 875 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 876 | // d_rho/rho -> Mass (add one!)
|
---|
| 877 | {
|
---|
[3155] | 878 | if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
|
---|
[3141] | 879 | check_array_alloc();
|
---|
| 880 |
|
---|
[3115] | 881 |
|
---|
[3129] | 882 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 883 | int_8 ip = IndexR(i,j,l);
|
---|
| 884 | data_[ip] += 1.;
|
---|
[3115] | 885 | }
|
---|
| 886 | }
|
---|
| 887 |
|
---|
| 888 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
| 889 | // do NOT treate negative or nul values
|
---|
| 890 | {
|
---|
[3155] | 891 | if(lp_>0) cout<<"--- TurnMass2MeanNumber ---"<<endl;
|
---|
[3115] | 892 |
|
---|
| 893 | double m,s2;
|
---|
[3134] | 894 | int_8 ngood = MeanSigma2(m,s2,0.,1e+200);
|
---|
[3155] | 895 | if(lp_>0) cout<<"...ngood="<<ngood
|
---|
| 896 | <<" m="<<m<<" s2="<<s2<<" -> "<<sqrt(s2)<<endl;
|
---|
[3115] | 897 |
|
---|
| 898 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
| 899 | // On en met uniquement dans les pixels de masse >0.
|
---|
| 900 | // On NE met PAS a zero les pixels <0
|
---|
| 901 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
| 902 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
| 903 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
| 904 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
| 905 | double dn = n_by_mpc3*Vol_/m /(double)ngood; // nb de gal a mettre ds 1 px
|
---|
[3155] | 906 | if(lp_>0) cout<<"...galaxy density move from "
|
---|
| 907 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
[3115] | 908 | double sum = 0.;
|
---|
[3129] | 909 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 910 | int_8 ip = IndexR(i,j,l);
|
---|
| 911 | data_[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
| 912 | if(data_[ip]>0.) sum += data_[ip]; // mais on ne les compte pas
|
---|
[3115] | 913 | }
|
---|
[3155] | 914 | if(lp_>0) cout<<sum<<"...galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
[3115] | 915 |
|
---|
| 916 | return sum;
|
---|
| 917 | }
|
---|
| 918 |
|
---|
| 919 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 920 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 921 | {
|
---|
[3155] | 922 | if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
|
---|
[3141] | 923 | check_array_alloc();
|
---|
| 924 |
|
---|
[3115] | 925 | double sum = 0.;
|
---|
[3129] | 926 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 927 | int_8 ip = IndexR(i,j,l);
|
---|
| 928 | double v = data_[ip];
|
---|
[3115] | 929 | if(v>0.) {
|
---|
| 930 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
[3141] | 931 | data_[ip] = (double)dn;
|
---|
[3115] | 932 | sum += (double)dn;
|
---|
| 933 | }
|
---|
| 934 | }
|
---|
[3155] | 935 | if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 936 |
|
---|
| 937 | return sum;
|
---|
| 938 | }
|
---|
| 939 |
|
---|
| 940 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 941 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 942 | // INPUT:
|
---|
| 943 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 944 | // axeslog = false : retourne la masse
|
---|
| 945 | // = true : retourne le log10(mass)
|
---|
| 946 | // RETURN la masse totale
|
---|
| 947 | {
|
---|
[3155] | 948 | if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
|
---|
[3141] | 949 | check_array_alloc();
|
---|
| 950 |
|
---|
[3115] | 951 | double sum = 0.;
|
---|
[3129] | 952 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 953 | int_8 ip = IndexR(i,j,l);
|
---|
| 954 | double v = data_[ip];
|
---|
[3115] | 955 | if(v>0.) {
|
---|
[3129] | 956 | long ngal = long(v+0.1);
|
---|
[3141] | 957 | data_[ip] = 0.;
|
---|
[3129] | 958 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 959 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 960 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 961 | data_[ip] += m;
|
---|
[3115] | 962 | }
|
---|
[3141] | 963 | sum += data_[ip];
|
---|
[3115] | 964 | }
|
---|
| 965 | }
|
---|
[3155] | 966 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 967 |
|
---|
| 968 | return sum;
|
---|
| 969 | }
|
---|
| 970 |
|
---|
[3196] | 971 | void GeneFluct3D::AddAGN(double lmsol,double lsigma)
|
---|
| 972 | // Add AGN flux into simulation:
|
---|
| 973 | // --- Procedure:
|
---|
| 974 | // 1. lancer "cmvdefsurv" avec les parametres du survey
|
---|
| 975 | // et recuperer l'angle solide "angsol sr" du pixel elementaire
|
---|
| 976 | // au centre du cube.
|
---|
| 977 | // 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
|
---|
| 978 | // 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
|
---|
| 979 | // cad une moyenne <log10(S)> et un sigma "sig"
|
---|
| 980 | // Attention: la distribution n'etant pas gaussienne
|
---|
| 981 | // 4. re-lancer "cmvdefsurv" en ajoutant l'info sur les AGN
|
---|
| 982 | // "cmvdefsurv ... -G <log10(S)> ..."
|
---|
| 983 | // et recuperer le log10(masse solaire equivalente)
|
---|
| 984 | // --- Limitations actuelle du code:
|
---|
| 985 | // a. l'angle solide du pixel est pris au centre du cube
|
---|
| 986 | // et ne varie pas avec la distance a l'interieur du cube
|
---|
| 987 | // b. la taille en dNu des pixels (selon z) est supposee constante
|
---|
| 988 | // et egale a celle calculee pour le centre du cube
|
---|
| 989 | // c. les AGN sont supposes plats en flux
|
---|
| 990 | // d. le flux des AGN est mis dans une colonne Oz (indice k)
|
---|
| 991 | // et pas sur la ligne de visee
|
---|
| 992 | // e. la distribution est approximee a une gaussienne
|
---|
| 993 | // .. C'est une approximation pour un observateur loin du centre du cube
|
---|
| 994 | // et pour un cube peu epais / distance observateur
|
---|
| 995 | // --- Parametres de la routine:
|
---|
| 996 | // lmsol : c'est le <log10(Msol)> qui est la conversion en masse solaire
|
---|
| 997 | // du flux depose dans un pixel par les AGN
|
---|
| 998 | // lsigma : c'est le sigma de la distribution
|
---|
| 999 | // - Comme on est en echelle log10():
|
---|
| 1000 | // on tire log10(Msol) + X
|
---|
| 1001 | // ou X est une realisation sur une gaussienne de variance "sig^2"
|
---|
| 1002 | // La masse realisee est donc: Msol*10^X
|
---|
| 1003 | // - Pas de probleme de pixel negatif car on a une multiplication!
|
---|
| 1004 | {
|
---|
| 1005 | if(lp_>0) cout<<"--- AddAGN: lmsol = "<<lmsol<<" , sigma = "<<lsigma<<endl;
|
---|
| 1006 | check_array_alloc();
|
---|
| 1007 |
|
---|
| 1008 | double m = pow(10.,lmsol);
|
---|
| 1009 |
|
---|
| 1010 | double sum=0., sum2=0., nsum=0.;
|
---|
| 1011 | for(long l=0;l<Nz_;l++) {
|
---|
| 1012 | double a = lsigma*NorRand();
|
---|
| 1013 | a = m*pow(10.,a);
|
---|
| 1014 | // On met le meme tirage le long de Oz (indice k)
|
---|
| 1015 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
|
---|
| 1016 | int_8 ip = IndexR(i,j,l);
|
---|
| 1017 | data_[ip] += a;
|
---|
| 1018 | }
|
---|
| 1019 | sum += a; sum2 += a*a; nsum += 1.;
|
---|
| 1020 | }
|
---|
| 1021 |
|
---|
| 1022 | if(nsum>1.) {
|
---|
| 1023 | sum /= nsum;
|
---|
| 1024 | sum2 = sum2/nsum - sum*sum;
|
---|
| 1025 | cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
|
---|
| 1026 | }
|
---|
| 1027 |
|
---|
| 1028 | }
|
---|
| 1029 |
|
---|
[3115] | 1030 | void GeneFluct3D::AddNoise2Real(double snoise)
|
---|
| 1031 | // add noise to every pixels (meme les <=0 !)
|
---|
| 1032 | {
|
---|
[3155] | 1033 | if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<endl;
|
---|
[3141] | 1034 | check_array_alloc();
|
---|
| 1035 |
|
---|
[3129] | 1036 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1037 | int_8 ip = IndexR(i,j,l);
|
---|
| 1038 | data_[ip] += snoise*NorRand();
|
---|
[3115] | 1039 | }
|
---|
| 1040 | }
|
---|