[3115] | 1 | #include "sopnamsp.h"
|
---|
| 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "tarray.h"
|
---|
| 11 | #include "pexceptions.h"
|
---|
| 12 | #include "perandom.h"
|
---|
| 13 | #include "srandgen.h"
|
---|
| 14 |
|
---|
[3141] | 15 | #include "fabtcolread.h"
|
---|
| 16 | #include "fabtwriter.h"
|
---|
| 17 | #include "fioarr.h"
|
---|
| 18 |
|
---|
| 19 | #include "arrctcast.h"
|
---|
| 20 |
|
---|
[3115] | 21 | #include "constcosmo.h"
|
---|
| 22 | #include "geneutils.h"
|
---|
[3199] | 23 | #include "schechter.h"
|
---|
[3115] | 24 |
|
---|
| 25 | #include "genefluct3d.h"
|
---|
| 26 |
|
---|
| 27 | //#define FFTW_THREAD
|
---|
| 28 |
|
---|
| 29 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 30 |
|
---|
| 31 | //-------------------------------------------------------
|
---|
[3141] | 32 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T)
|
---|
[3154] | 33 | : T_(T) , Nx_(0) , Ny_(0) , Nz_(0) , array_allocated_(false) , lp_(0)
|
---|
[3157] | 34 | , redshref_(-999.) , kredshref_(0.) , cosmo_(NULL) , growth_(NULL)
|
---|
| 35 | , loscom_ref_(-999.), loscom_min_(-999.), loscom_max_(-999.)
|
---|
[3199] | 36 | , loscom2zred_min_(0.) , loscom2zred_max_(0.)
|
---|
[3115] | 37 | {
|
---|
[3157] | 38 | xobs_[0] = xobs_[1] = xobs_[2] = 0.;
|
---|
| 39 | zred_.resize(0);
|
---|
| 40 | loscom_.resize(0);
|
---|
[3199] | 41 | loscom2zred_.resize(0);
|
---|
[3115] | 42 | SetNThread();
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | GeneFluct3D::~GeneFluct3D(void)
|
---|
| 46 | {
|
---|
| 47 | fftw_destroy_plan(pf_);
|
---|
| 48 | fftw_destroy_plan(pb_);
|
---|
| 49 | #ifdef FFTW_THREAD
|
---|
| 50 | if(nthread_>0) fftw_cleanup_threads();
|
---|
| 51 | #endif
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | //-------------------------------------------------------
|
---|
[3129] | 55 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
[3115] | 56 | {
|
---|
[3141] | 57 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 58 | setalloc();
|
---|
| 59 | setpointers(false);
|
---|
[3154] | 60 | init_fftw();
|
---|
[3141] | 61 | }
|
---|
| 62 |
|
---|
[3154] | 63 | void GeneFluct3D::SetObservator(double redshref,double kredshref)
|
---|
| 64 | // L'observateur est au redshift z=0
|
---|
| 65 | // est situe sur la "perpendiculaire" a la face x,y
|
---|
| 66 | // issue du centre de cette face
|
---|
| 67 | // Il faut positionner le cube sur l'axe des z cad des redshifts:
|
---|
| 68 | // redshref = redshift de reference
|
---|
| 69 | // Si redshref<0 alors redshref=0
|
---|
| 70 | // kredshref = indice (en double) correspondant a ce redshift
|
---|
[3267] | 71 | // Si kredshref<0 alors kredshref=nz/2 (milieu du cube)
|
---|
[3157] | 72 | // Exemple: redshref=1.5 kredshref=250.75
|
---|
| 73 | // -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
|
---|
[3154] | 74 | {
|
---|
| 75 | if(redshref<0.) redshref = 0.;
|
---|
[3267] | 76 | if(kredshref<0.) {
|
---|
| 77 | if(Nz_<=0) {
|
---|
| 78 | char *bla = "GeneFluct3D::SetObservator_Error: for kredshref<0 SetSize should be called first";
|
---|
| 79 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 80 | }
|
---|
| 81 | kredshref = Nz_/2.;
|
---|
| 82 | }
|
---|
[3157] | 83 | redshref_ = redshref;
|
---|
[3154] | 84 | kredshref_ = kredshref;
|
---|
[3199] | 85 | if(lp_>0)
|
---|
| 86 | cout<<"--- GeneFluct3D::SetObservator zref="<<redshref_<<" kref="<<kredshref_<<endl;
|
---|
[3154] | 87 | }
|
---|
| 88 |
|
---|
[3157] | 89 | void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
|
---|
| 90 | {
|
---|
| 91 | cosmo_ = &cosmo;
|
---|
| 92 | if(lp_>1) cosmo_->Print();
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
|
---|
| 96 | {
|
---|
| 97 | growth_ = &growth;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[3141] | 100 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 101 | {
|
---|
[3155] | 102 | if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
|
---|
| 103 | <<" D="<<dx<<","<<dy<<","<<dz<<endl;
|
---|
[3141] | 104 | if(nx<=0 || dx<=0.) {
|
---|
[3267] | 105 | char *bla = "GeneFluct3D::setsize_Error: bad value(s) for nn/dx";
|
---|
[3199] | 106 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3115] | 107 | }
|
---|
| 108 |
|
---|
[3141] | 109 | // Les tailles des tableaux
|
---|
[3115] | 110 | Nx_ = nx;
|
---|
| 111 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 112 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 113 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3115] | 114 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 115 | NCz_ = Nz_/2 +1;
|
---|
| 116 | NTz_ = 2*NCz_;
|
---|
| 117 |
|
---|
| 118 | // le pas dans l'espace (Mpc)
|
---|
| 119 | Dx_ = dx;
|
---|
| 120 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 121 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 122 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 123 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 124 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 125 |
|
---|
| 126 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 127 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 128 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 129 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 130 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 131 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 132 |
|
---|
| 133 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 134 | Knyqx_ = M_PI/Dx_;
|
---|
| 135 | Knyqy_ = M_PI/Dy_;
|
---|
| 136 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 137 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 138 | }
|
---|
[3115] | 139 |
|
---|
[3141] | 140 | void GeneFluct3D::setalloc(void)
|
---|
| 141 | {
|
---|
[3155] | 142 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
|
---|
[3141] | 143 | // Dimensionnement du tableau complex<r_8>
|
---|
| 144 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 145 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 146 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 147 | try {
|
---|
| 148 | T_.ReSize(3,SzK_);
|
---|
| 149 | array_allocated_ = true;
|
---|
[3255] | 150 | if(lp_>1) cout<<" allocating: "<<T_.Size()*sizeof(complex<r_8>)/1.e6<<" Mo"<<endl;
|
---|
[3141] | 151 | } catch (...) {
|
---|
[3155] | 152 | cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
|
---|
[3141] | 153 | }
|
---|
| 154 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
[3115] | 155 | }
|
---|
| 156 |
|
---|
[3141] | 157 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 158 | {
|
---|
[3155] | 159 | if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
|
---|
[3141] | 160 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 161 | else R_ = ArrCastC2R(T_);
|
---|
| 162 | // On remplit les pointeurs
|
---|
| 163 | fdata_ = (fftw_complex *) (&T_(0,0,0));
|
---|
| 164 | data_ = (double *) (&R_(0,0,0));
|
---|
| 165 | }
|
---|
| 166 |
|
---|
| 167 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 168 | // Pour tester si le tableau T_ est alloue
|
---|
| 169 | {
|
---|
| 170 | if(array_allocated_) return;
|
---|
| 171 | char bla[90];
|
---|
| 172 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
[3199] | 173 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3141] | 174 | }
|
---|
| 175 |
|
---|
[3154] | 176 | void GeneFluct3D::init_fftw(void)
|
---|
| 177 | {
|
---|
| 178 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3155] | 179 | if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
|
---|
[3154] | 180 | #ifdef FFTW_THREAD
|
---|
| 181 | if(nthread_>0) {
|
---|
[3155] | 182 | cout<<"...Computing with "<<nthread_<<" threads"<<endl;
|
---|
[3154] | 183 | fftw_init_threads();
|
---|
| 184 | fftw_plan_with_nthreads(nthread_);
|
---|
| 185 | }
|
---|
| 186 | #endif
|
---|
[3155] | 187 | if(lp_>1) cout<<"...forward plan"<<endl;
|
---|
[3154] | 188 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
[3155] | 189 | if(lp_>1) cout<<"...backward plan"<<endl;
|
---|
[3154] | 190 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
| 191 | }
|
---|
[3141] | 192 |
|
---|
[3157] | 193 | //-------------------------------------------------------
|
---|
[3199] | 194 | long GeneFluct3D::LosComRedshift(double zinc,long npoints)
|
---|
[3157] | 195 | // Given a position of the cube relative to the observer
|
---|
| 196 | // and a cosmology
|
---|
| 197 | // (SetObservator() and SetCosmology() should have been called !)
|
---|
| 198 | // This routine filled:
|
---|
| 199 | // the vector "zred_" of scanned redshift (by zinc increments)
|
---|
| 200 | // the vector "loscom_" of corresponding los comoving distance
|
---|
[3199] | 201 | // -- Input:
|
---|
| 202 | // zinc : redshift increment for computation
|
---|
| 203 | // npoints : number of points required for inverting loscom -> zred
|
---|
[3157] | 204 | //
|
---|
| 205 | {
|
---|
[3199] | 206 | if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
|
---|
[3154] | 207 |
|
---|
[3157] | 208 | if(cosmo_ == NULL || redshref_<0.) {
|
---|
[3199] | 209 | char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first";
|
---|
| 210 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 211 | }
|
---|
| 212 |
|
---|
[3199] | 213 | // On calcule les coordonnees de l'observateur dans le repere du cube
|
---|
| 214 | // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
|
---|
| 215 | // L'observateur est sur un axe centre sur le milieu de la face Oxy
|
---|
[3157] | 216 | double loscom_ref_ = cosmo_->Dloscom(redshref_);
|
---|
| 217 | xobs_[0] = Nx_/2.*Dx_;
|
---|
| 218 | xobs_[1] = Ny_/2.*Dy_;
|
---|
| 219 | xobs_[2] = kredshref_*Dz_ - loscom_ref_;
|
---|
| 220 |
|
---|
| 221 | // L'observateur est-il dans le cube?
|
---|
| 222 | bool obs_in_cube = false;
|
---|
| 223 | if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
|
---|
| 224 |
|
---|
| 225 | // Find MINIMUM los com distance to the observer:
|
---|
| 226 | // c'est le centre de la face a k=0
|
---|
| 227 | // (ou zero si l'observateur est dans le cube)
|
---|
| 228 | loscom_min_ = 0.;
|
---|
| 229 | if(!obs_in_cube) loscom_min_ = -xobs_[2];
|
---|
| 230 |
|
---|
| 231 | // Find MAXIMUM los com distance to the observer:
|
---|
| 232 | // ou que soit positionne l'observateur, la distance
|
---|
| 233 | // maximal est sur un des coins du cube
|
---|
| 234 | loscom_max_ = 0.;
|
---|
| 235 | for(long i=0;i<=1;i++) {
|
---|
[3267] | 236 | double dx2 = xobs_[0] - i*(Nx_-1)*Dx_; dx2 *= dx2;
|
---|
[3157] | 237 | for(long j=0;j<=1;j++) {
|
---|
[3267] | 238 | double dy2 = xobs_[1] - j*(Ny_-1)*Dy_; dy2 *= dy2;
|
---|
[3157] | 239 | for(long k=0;k<=1;k++) {
|
---|
[3267] | 240 | double dz2 = xobs_[2] - k*(Nz_-1)*Dz_; dz2 *= dz2;
|
---|
[3157] | 241 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 242 | if(dz2>loscom_max_) loscom_max_ = dz2;
|
---|
| 243 | }
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 | if(lp_>0) {
|
---|
| 247 | cout<<"...zref="<<redshref_<<" kzref="<<kredshref_<<" losref="<<loscom_ref_<<" Mpc\n"
|
---|
| 248 | <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
|
---|
| 249 | <<" in_cube="<<obs_in_cube
|
---|
| 250 | <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc "<<endl;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
[3199] | 253 | // Fill the corresponding vectors for loscom and zred
|
---|
[3267] | 254 | // Be shure to have one dlc <loscom_min and one >loscom_max
|
---|
[3199] | 255 | if(zinc<=0.) zinc = 0.01;
|
---|
[3157] | 256 | for(double z=0.; ; z+=zinc) {
|
---|
| 257 | double dlc = cosmo_->Dloscom(z);
|
---|
| 258 | if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
|
---|
| 259 | zred_.push_back(z);
|
---|
| 260 | loscom_.push_back(dlc);
|
---|
| 261 | z += zinc;
|
---|
[3199] | 262 | if(dlc>loscom_max_) break; // on sort apres avoir stoque un dlc>dlcmax
|
---|
[3157] | 263 | }
|
---|
| 264 |
|
---|
| 265 | if(lp_>0) {
|
---|
[3199] | 266 | long n = zred_.size();
|
---|
| 267 | cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
|
---|
[3157] | 268 | if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
|
---|
| 269 | if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
|
---|
| 270 | cout<<endl;
|
---|
| 271 | }
|
---|
| 272 |
|
---|
[3199] | 273 | // Compute the parameters and tables needed for inversion loscom->zred
|
---|
| 274 | if(npoints<3) npoints = zred_.size();
|
---|
| 275 | InverseFunc invfun(zred_,loscom_);
|
---|
| 276 | invfun.ComputeParab(npoints,loscom2zred_);
|
---|
| 277 | loscom2zred_min_ = invfun.YMin();
|
---|
| 278 | loscom2zred_max_ = invfun.YMax();
|
---|
| 279 |
|
---|
| 280 | if(lp_>0) {
|
---|
| 281 | long n = loscom2zred_.size();
|
---|
| 282 | cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
|
---|
| 283 | <<" los_min="<<loscom2zred_min_
|
---|
| 284 | <<" los_max="<<loscom2zred_max_
|
---|
| 285 | <<" -> zred=[";
|
---|
| 286 | if(n>0) cout<<loscom2zred_[0];
|
---|
| 287 | cout<<",";
|
---|
| 288 | if(n>1) cout<<loscom2zred_[n-1];
|
---|
| 289 | cout<<"]"<<endl;
|
---|
| 290 | if(lp_>1 && n>0)
|
---|
| 291 | for(int i=0;i<n;i++)
|
---|
| 292 | if(i==0 || abs(i-n/2)<2 || i==n-1)
|
---|
| 293 | cout<<" "<<i<<" "<<loscom2zred_[i]<<endl;
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | return zred_.size();
|
---|
[3157] | 297 | }
|
---|
| 298 |
|
---|
[3115] | 299 | //-------------------------------------------------------
|
---|
[3141] | 300 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 301 | {
|
---|
[3155] | 302 | cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
[3141] | 303 | try {
|
---|
| 304 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
| 305 | fwrt.WriteKey("NX",Nx_," axe transverse 1");
|
---|
| 306 | fwrt.WriteKey("NY",Ny_," axe transverse 2");
|
---|
| 307 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
|
---|
| 308 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 309 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 310 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 311 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 312 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 313 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
[3154] | 314 | fwrt.WriteKey("ZREF",redshref_," reference redshift");
|
---|
| 315 | fwrt.WriteKey("KZREF",kredshref_," reference redshift on z axe");
|
---|
[3141] | 316 | fwrt.Write(R_);
|
---|
| 317 | } catch (PThrowable & exc) {
|
---|
| 318 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 319 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 320 | return;
|
---|
| 321 | } catch (...) {
|
---|
| 322 | cout<<" some other exception was caught !"<<endl;
|
---|
| 323 | return;
|
---|
| 324 | }
|
---|
| 325 | }
|
---|
| 326 |
|
---|
| 327 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 328 | {
|
---|
[3155] | 329 | cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 330 | try {
|
---|
| 331 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 332 | fimg.Read(R_);
|
---|
| 333 | long nx = fimg.ReadKeyL("NX");
|
---|
| 334 | long ny = fimg.ReadKeyL("NY");
|
---|
| 335 | long nz = fimg.ReadKeyL("NZ");
|
---|
| 336 | double dx = fimg.ReadKey("DX");
|
---|
| 337 | double dy = fimg.ReadKey("DY");
|
---|
| 338 | double dz = fimg.ReadKey("DZ");
|
---|
[3154] | 339 | double zref = fimg.ReadKey("ZREF");
|
---|
| 340 | double kzref = fimg.ReadKey("KZREF");
|
---|
[3141] | 341 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 342 | setpointers(true);
|
---|
[3154] | 343 | init_fftw();
|
---|
| 344 | SetObservator(zref,kzref);
|
---|
[3141] | 345 | } catch (PThrowable & exc) {
|
---|
| 346 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 347 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 348 | return;
|
---|
| 349 | } catch (...) {
|
---|
| 350 | cout<<" some other exception was caught !"<<endl;
|
---|
| 351 | return;
|
---|
| 352 | }
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 356 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 357 | {
|
---|
[3155] | 358 | cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
[3141] | 359 | try {
|
---|
| 360 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 361 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 362 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 363 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 364 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 365 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
[3154] | 366 | R_.Info()["ZREF"] = (r_8)redshref_;
|
---|
| 367 | R_.Info()["KZREF"] = (r_8)kredshref_;
|
---|
[3141] | 368 | POutPersist pos(cfname.c_str());
|
---|
| 369 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 370 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 371 | } catch (PThrowable & exc) {
|
---|
| 372 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 373 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 374 | return;
|
---|
| 375 | } catch (...) {
|
---|
| 376 | cout<<" some other exception was caught !"<<endl;
|
---|
| 377 | return;
|
---|
| 378 | }
|
---|
| 379 | }
|
---|
| 380 |
|
---|
| 381 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 382 | {
|
---|
[3155] | 383 | cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 384 | try {
|
---|
| 385 | bool from_real = true;
|
---|
| 386 | PInPersist pis(cfname.c_str());
|
---|
| 387 | string name_tag_k = "pkgen";
|
---|
| 388 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 389 | if(found_tag_k) {
|
---|
[3262] | 390 | cout<<" ...reading spectrum into TArray<complex <r_8> >"<<endl;
|
---|
[3141] | 391 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 392 | from_real = false;
|
---|
| 393 | } else {
|
---|
| 394 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 395 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 396 | }
|
---|
[3154] | 397 | setpointers(from_real); // a mettre ici pour relire les DVInfo
|
---|
[3141] | 398 | int_8 nx = R_.Info()["NX"];
|
---|
| 399 | int_8 ny = R_.Info()["NY"];
|
---|
| 400 | int_8 nz = R_.Info()["NZ"];
|
---|
| 401 | r_8 dx = R_.Info()["DX"];
|
---|
| 402 | r_8 dy = R_.Info()["DY"];
|
---|
| 403 | r_8 dz = R_.Info()["DZ"];
|
---|
[3154] | 404 | r_8 zref = R_.Info()["ZREF"];
|
---|
| 405 | r_8 kzref = R_.Info()["KZREF"];
|
---|
[3141] | 406 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
[3154] | 407 | init_fftw();
|
---|
| 408 | SetObservator(zref,kzref);
|
---|
[3141] | 409 | } catch (PThrowable & exc) {
|
---|
| 410 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 411 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 412 | return;
|
---|
| 413 | } catch (...) {
|
---|
| 414 | cout<<" some other exception was caught !"<<endl;
|
---|
| 415 | return;
|
---|
| 416 | }
|
---|
| 417 | }
|
---|
| 418 |
|
---|
| 419 | //-------------------------------------------------------
|
---|
[3115] | 420 | void GeneFluct3D::Print(void)
|
---|
| 421 | {
|
---|
[3141] | 422 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 423 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 424 | <<NRtot_<<endl;
|
---|
| 425 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 426 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 427 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 428 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 429 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 430 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 431 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 432 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 433 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
[3154] | 434 | cout<<"Redshift "<<redshref_<<" for z axe at k="<<kredshref_<<endl;
|
---|
[3115] | 435 | }
|
---|
| 436 |
|
---|
| 437 | //-------------------------------------------------------
|
---|
[3141] | 438 | void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
|
---|
[3115] | 439 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 440 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 441 | {
|
---|
| 442 |
|
---|
| 443 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 444 | if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
|
---|
[3115] | 445 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 446 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 447 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 448 | int_8 ip = IndexR(i,j,l);
|
---|
| 449 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 450 | }
|
---|
| 451 |
|
---|
| 452 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 453 | if(lp_>0) cout<<"...before fft real ---"<<endl;
|
---|
[3115] | 454 | fftw_execute(pf_);
|
---|
| 455 |
|
---|
| 456 | // --- On remplit avec une realisation
|
---|
[3157] | 457 | if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
|
---|
[3115] | 458 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 459 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 460 | for(long i=0;i<Nx_;i++) {
|
---|
| 461 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 462 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 463 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 464 | for(long j=0;j<Ny_;j++) {
|
---|
| 465 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 466 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 467 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 468 | double kz = l*Dkz_; kz *= kz;
|
---|
| 469 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 470 | double k = sqrt(kx+ky+kz);
|
---|
| 471 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 472 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 473 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 474 | T_(l,j,i) *= sqrt(pk);
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
| 478 |
|
---|
[3155] | 479 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 480 | double p = compute_power_carte();
|
---|
[3155] | 481 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 482 |
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 | //-------------------------------------------------------
|
---|
[3141] | 486 | void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
|
---|
| 487 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 488 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 489 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 490 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 491 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 492 | // sum(f(x_i)^2) = S
|
---|
| 493 | // sum(F(nu_i)^2) = S*N
|
---|
| 494 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 495 | {
|
---|
| 496 | // --- RaZ du tableau
|
---|
| 497 | T_ = complex<r_8>(0.);
|
---|
| 498 |
|
---|
| 499 | // --- On remplit avec une realisation
|
---|
[3155] | 500 | if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
|
---|
[3129] | 501 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 502 | for(long i=0;i<Nx_;i++) {
|
---|
| 503 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 504 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 505 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 506 | for(long j=0;j<Ny_;j++) {
|
---|
| 507 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 508 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 509 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 510 | double kz = l*Dkz_; kz *= kz;
|
---|
| 511 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 512 | double k = sqrt(kx+ky+kz);
|
---|
| 513 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 514 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 515 | // Explication de la division par 2: voir perandom.cc
|
---|
| 516 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 517 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 518 | }
|
---|
| 519 | }
|
---|
| 520 | }
|
---|
| 521 |
|
---|
| 522 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 523 |
|
---|
[3155] | 524 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 525 | double p = compute_power_carte();
|
---|
[3155] | 526 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 527 |
|
---|
| 528 | }
|
---|
| 529 |
|
---|
[3129] | 530 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 531 | // Take into account the real and complexe conjugate coefficients
|
---|
| 532 | // because we want a realization of a real data in real space
|
---|
| 533 | {
|
---|
[3155] | 534 | if(lp_>1) cout<<"...managing coefficients"<<endl;
|
---|
[3141] | 535 | check_array_alloc();
|
---|
[3115] | 536 |
|
---|
| 537 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 538 | long nreal = 0;
|
---|
| 539 | for(long kk=0;kk<2;kk++) {
|
---|
| 540 | long k=0; // continu
|
---|
[3115] | 541 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 542 | for(long jj=0;jj<2;jj++) {
|
---|
| 543 | long j=0;
|
---|
[3115] | 544 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 545 | for(long ii=0;ii<2;ii++) {
|
---|
| 546 | long i=0;
|
---|
[3115] | 547 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 548 | int_8 ip = IndexC(i,j,k);
|
---|
| 549 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 550 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 551 | nreal++;
|
---|
| 552 | }
|
---|
| 553 | }
|
---|
| 554 | }
|
---|
[3155] | 555 | if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
[3115] | 556 |
|
---|
| 557 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 558 |
|
---|
| 559 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 560 | long nconj1 = 0;
|
---|
| 561 | for(long kk=0;kk<2;kk++) {
|
---|
| 562 | long k=0; // continu
|
---|
[3115] | 563 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 564 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 565 | long j=0;
|
---|
[3115] | 566 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 567 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 568 | int_8 ip = IndexC(i,j,k);
|
---|
| 569 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 570 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 571 | nconj1++;
|
---|
| 572 | }
|
---|
| 573 | }
|
---|
[3129] | 574 | for(long ii=0;ii<2;ii++) {
|
---|
| 575 | long i=0;
|
---|
[3115] | 576 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 577 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 578 | int_8 ip = IndexC(i,j,k);
|
---|
| 579 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 580 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 581 | nconj1++;
|
---|
| 582 | }
|
---|
| 583 | }
|
---|
| 584 | }
|
---|
[3155] | 585 | if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
[3115] | 586 |
|
---|
| 587 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 588 | long nconj2 = 0;
|
---|
| 589 | for(long kk=0;kk<2;kk++) {
|
---|
| 590 | long k=0; // continu
|
---|
[3115] | 591 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 592 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 593 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 594 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 595 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 596 | int_8 ip = IndexC(i,j,k);
|
---|
| 597 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 598 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 599 | nconj2++;
|
---|
| 600 | }
|
---|
| 601 | }
|
---|
| 602 | }
|
---|
[3155] | 603 | if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
[3115] | 604 |
|
---|
[3155] | 605 | if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
[3115] | 606 |
|
---|
| 607 | return nreal+nconj1+nconj2;
|
---|
| 608 | }
|
---|
| 609 |
|
---|
| 610 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 611 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 612 | {
|
---|
[3141] | 613 | check_array_alloc();
|
---|
| 614 |
|
---|
[3115] | 615 | double s2 = 0.;
|
---|
[3129] | 616 | for(long l=0;l<NCz_;l++)
|
---|
| 617 | for(long j=0;j<Ny_;j++)
|
---|
| 618 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 619 |
|
---|
| 620 | double s20 = 0.;
|
---|
[3129] | 621 | for(long j=0;j<Ny_;j++)
|
---|
| 622 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 623 |
|
---|
| 624 | double s2n = 0.;
|
---|
| 625 | if(Nz_%2==0)
|
---|
[3129] | 626 | for(long j=0;j<Ny_;j++)
|
---|
| 627 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 628 |
|
---|
| 629 | return 2.*s2 -s20 -s2n;
|
---|
| 630 | }
|
---|
| 631 |
|
---|
| 632 | //-------------------------------------------------------------------
|
---|
| 633 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 634 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 635 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 636 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 637 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 638 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 639 | // avec y = k_x*dx/2
|
---|
[3115] | 640 | {
|
---|
[3155] | 641 | if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
|
---|
[3141] | 642 | check_array_alloc();
|
---|
| 643 |
|
---|
[3129] | 644 | for(long i=0;i<Nx_;i++) {
|
---|
| 645 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 646 | double kx = ii*Dkx_ *Dx_/2;
|
---|
[3141] | 647 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 648 | for(long j=0;j<Ny_;j++) {
|
---|
| 649 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 650 | double ky = jj*Dky_ *Dy_/2;
|
---|
[3141] | 651 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 652 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 653 | double kz = l*Dkz_ *Dz_/2;
|
---|
[3141] | 654 | double pk_z = pixelfilter(kz);
|
---|
| 655 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 656 | }
|
---|
| 657 | }
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | }
|
---|
| 661 |
|
---|
| 662 | //-------------------------------------------------------------------
|
---|
[3199] | 663 | void GeneFluct3D::ApplyGrowthFactor(void)
|
---|
[3157] | 664 | // Apply Growth to real space
|
---|
| 665 | // Using the correspondance between redshift and los comoving distance
|
---|
| 666 | // describe in vector "zred_" "loscom_"
|
---|
| 667 | {
|
---|
[3199] | 668 | if(lp_>0) cout<<"--- ApplyGrowthFactor ---"<<endl;
|
---|
[3157] | 669 | check_array_alloc();
|
---|
| 670 |
|
---|
| 671 | if(growth_ == NULL) {
|
---|
[3199] | 672 | char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
|
---|
| 673 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 674 | }
|
---|
| 675 |
|
---|
[3199] | 676 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3157] | 677 | unsigned short ok;
|
---|
| 678 |
|
---|
| 679 | //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
|
---|
| 680 | for(long i=0;i<Nx_;i++) {
|
---|
| 681 | double dx2 = xobs_[0] - i*Dx_; dx2 *= dx2;
|
---|
| 682 | for(long j=0;j<Ny_;j++) {
|
---|
| 683 | double dy2 = xobs_[1] - j*Dy_; dy2 *= dy2;
|
---|
| 684 | for(long l=0;l<Nz_;l++) {
|
---|
| 685 | double dz2 = xobs_[2] - l*Dz_; dz2 *= dz2;
|
---|
| 686 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 687 | double z = interpinv(dz2);
|
---|
| 688 | //CHECK: hgr.Add(z);
|
---|
| 689 | double dzgr = (*growth_)(z); // interpolation par morceau
|
---|
| 690 | //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
|
---|
| 691 | //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
|
---|
| 692 | int_8 ip = IndexR(i,j,l);
|
---|
| 693 | data_[ip] *= dzgr;
|
---|
| 694 | }
|
---|
| 695 | }
|
---|
| 696 | }
|
---|
| 697 |
|
---|
| 698 | //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
|
---|
| 699 |
|
---|
| 700 | }
|
---|
| 701 |
|
---|
| 702 | //-------------------------------------------------------------------
|
---|
[3115] | 703 | void GeneFluct3D::ComputeReal(void)
|
---|
| 704 | // Calcule une realisation dans l'espace reel
|
---|
| 705 | {
|
---|
[3155] | 706 | if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
|
---|
[3141] | 707 | check_array_alloc();
|
---|
[3115] | 708 |
|
---|
| 709 | // On fait la FFT
|
---|
| 710 | fftw_execute(pb_);
|
---|
| 711 | }
|
---|
| 712 |
|
---|
| 713 | //-------------------------------------------------------------------
|
---|
| 714 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 715 | {
|
---|
[3155] | 716 | if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
|
---|
[3141] | 717 | check_array_alloc();
|
---|
[3115] | 718 |
|
---|
| 719 | // On fait la FFT
|
---|
| 720 | fftw_execute(pf_);
|
---|
| 721 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 722 | double v = (double)NRtot_;
|
---|
[3129] | 723 | for(long i=0;i<Nx_;i++)
|
---|
| 724 | for(long j=0;j<Ny_;j++)
|
---|
| 725 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 726 |
|
---|
| 727 | }
|
---|
| 728 |
|
---|
| 729 | //-------------------------------------------------------------------
|
---|
[3141] | 730 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 731 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 732 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 733 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 734 | {
|
---|
[3155] | 735 | if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
|
---|
[3141] | 736 | check_array_alloc();
|
---|
[3115] | 737 |
|
---|
[3141] | 738 | if(herr.NBins()<0) return -1;
|
---|
| 739 | herr.Zero();
|
---|
[3115] | 740 |
|
---|
| 741 | // Attention a l'ordre
|
---|
[3129] | 742 | for(long i=0;i<Nx_;i++) {
|
---|
| 743 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 744 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 745 | for(long j=0;j<Ny_;j++) {
|
---|
| 746 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 747 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 748 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 749 | double kz = l*Dkz_; kz *= kz;
|
---|
| 750 | double k = sqrt(kx+ky+kz);
|
---|
| 751 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 752 | herr.Add(k,pk);
|
---|
[3115] | 753 | }
|
---|
| 754 | }
|
---|
| 755 | }
|
---|
[3150] | 756 | herr.ToVariance();
|
---|
[3115] | 757 |
|
---|
| 758 | // renormalize to directly compare to original spectrum
|
---|
| 759 | double norm = Vol_;
|
---|
[3141] | 760 | herr *= norm;
|
---|
[3115] | 761 |
|
---|
| 762 | return 0;
|
---|
| 763 | }
|
---|
| 764 |
|
---|
[3141] | 765 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 766 | {
|
---|
[3155] | 767 | if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
|
---|
[3141] | 768 | check_array_alloc();
|
---|
| 769 |
|
---|
| 770 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 771 | herr.Zero();
|
---|
| 772 |
|
---|
| 773 | // Attention a l'ordre
|
---|
| 774 | for(long i=0;i<Nx_;i++) {
|
---|
| 775 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 776 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 777 | for(long j=0;j<Ny_;j++) {
|
---|
| 778 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 779 | double ky = jj*Dky_; ky *= ky;
|
---|
| 780 | double kt = sqrt(kx+ky);
|
---|
| 781 | for(long l=0;l<NCz_;l++) {
|
---|
| 782 | double kz = l*Dkz_;
|
---|
| 783 | double pk = MODULE2(T_(l,j,i));
|
---|
| 784 | herr.Add(kt,kz,pk);
|
---|
| 785 | }
|
---|
| 786 | }
|
---|
| 787 | }
|
---|
[3150] | 788 | herr.ToVariance();
|
---|
[3141] | 789 |
|
---|
| 790 | // renormalize to directly compare to original spectrum
|
---|
| 791 | double norm = Vol_;
|
---|
| 792 | herr *= norm;
|
---|
| 793 |
|
---|
| 794 | return 0;
|
---|
| 795 | }
|
---|
| 796 |
|
---|
[3115] | 797 | //-------------------------------------------------------
|
---|
[3134] | 798 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 799 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
| 800 | {
|
---|
[3262] | 801 | if(lp_>0) cout<<"--- VarianceFrReal R="<<R<<endl;
|
---|
[3141] | 802 | check_array_alloc();
|
---|
| 803 |
|
---|
[3129] | 804 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
| 805 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
| 806 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
[3155] | 807 | if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
[3115] | 808 |
|
---|
[3134] | 809 | double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
|
---|
[3115] | 810 |
|
---|
[3129] | 811 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
| 812 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
| 813 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
[3134] | 814 | double s=0.; int_8 n=0;
|
---|
[3129] | 815 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 816 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 817 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 818 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 819 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 820 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 821 | if(x+y+z>r2) continue;
|
---|
[3141] | 822 | int_8 ip = IndexR(ii,jj,ll);
|
---|
| 823 | s += 1.+data_[ip];
|
---|
[3115] | 824 | n++;
|
---|
| 825 | }
|
---|
| 826 | }
|
---|
| 827 | }
|
---|
| 828 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
| 829 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
| 830 | }
|
---|
| 831 | }
|
---|
| 832 | }
|
---|
| 833 |
|
---|
| 834 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 835 |
|
---|
| 836 | sum /= nsum;
|
---|
| 837 | sum2 = sum2/nsum - sum*sum;
|
---|
[3262] | 838 | if(lp_>0) cout<<"...nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
[3115] | 839 |
|
---|
| 840 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
[3262] | 841 | if(lp_>0) cout<<"...sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
[3115] | 842 |
|
---|
| 843 | return nsum;
|
---|
| 844 | }
|
---|
| 845 |
|
---|
| 846 | //-------------------------------------------------------
|
---|
[3134] | 847 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 848 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 849 | // -> vmin and vmax are considered as bad
|
---|
| 850 | {
|
---|
[3141] | 851 | check_array_alloc();
|
---|
[3115] | 852 |
|
---|
[3134] | 853 | int_8 nbad = 0;
|
---|
[3129] | 854 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 855 | int_8 ip = IndexR(i,j,l);
|
---|
| 856 | double v = data_[ip];
|
---|
[3115] | 857 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 858 | }
|
---|
| 859 |
|
---|
[3262] | 860 | if(lp_>0) cout<<"--- NumberOfBad "<<nbad<<" px out of ]"<<vmin<<","<<vmax<<"["<<endl;
|
---|
[3115] | 861 | return nbad;
|
---|
| 862 | }
|
---|
| 863 |
|
---|
[3261] | 864 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax
|
---|
| 865 | ,bool useout,double vout)
|
---|
| 866 | // Calcul de mean,sigma2 dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 867 | // useout = false: ne pas utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 868 | // true : utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 869 | // en remplacant leurs valeurs par "vout"
|
---|
[3115] | 870 | {
|
---|
[3261] | 871 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 872 | if(lp_>0) {
|
---|
[3262] | 873 | cout<<"--- MeanSigma2";
|
---|
| 874 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
[3261] | 875 | if(useout) cout<<", useout="<<useout<<" vout="<<vout;
|
---|
| 876 | cout<<endl;
|
---|
| 877 | }
|
---|
[3141] | 878 | check_array_alloc();
|
---|
[3115] | 879 |
|
---|
[3134] | 880 | int_8 n = 0;
|
---|
[3115] | 881 | rm = rs2 = 0.;
|
---|
| 882 |
|
---|
[3129] | 883 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 884 | int_8 ip = IndexR(i,j,l);
|
---|
| 885 | double v = data_[ip];
|
---|
[3261] | 886 | if(tstval) {
|
---|
| 887 | if(v<=vmin || v>=vmax) {if(useout) v=vout; else continue;}
|
---|
| 888 | }
|
---|
[3115] | 889 | rm += v;
|
---|
| 890 | rs2 += v*v;
|
---|
| 891 | n++;
|
---|
| 892 | }
|
---|
| 893 |
|
---|
| 894 | if(n>1) {
|
---|
| 895 | rm /= (double)n;
|
---|
| 896 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 897 | }
|
---|
| 898 |
|
---|
[3261] | 899 | if(lp_>0) cout<<" n="<<n<<" m="<<rm<<" s2="<<rs2<<" s="<<sqrt(fabs(rs2))<<endl;
|
---|
| 900 |
|
---|
[3115] | 901 | return n;
|
---|
| 902 | }
|
---|
| 903 |
|
---|
[3134] | 904 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 905 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
[3261] | 906 | // cad set to "val0" if in [vmin,vmax] -> vmin and vmax are set to val0
|
---|
[3115] | 907 | {
|
---|
[3141] | 908 | check_array_alloc();
|
---|
[3115] | 909 |
|
---|
[3134] | 910 | int_8 nbad = 0;
|
---|
[3129] | 911 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 912 | int_8 ip = IndexR(i,j,l);
|
---|
| 913 | double v = data_[ip];
|
---|
| 914 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 915 | }
|
---|
| 916 |
|
---|
[3262] | 917 | if(lp_>0) cout<<"--- SetToVal "<<nbad<<" px set to="<<val0
|
---|
| 918 | <<" because out of range=]"<<vmin<<","<<vmax<<"["<<endl;
|
---|
[3115] | 919 | return nbad;
|
---|
| 920 | }
|
---|
| 921 |
|
---|
| 922 | //-------------------------------------------------------
|
---|
| 923 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 924 | // d_rho/rho -> Mass (add one!)
|
---|
| 925 | {
|
---|
[3155] | 926 | if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
|
---|
[3141] | 927 | check_array_alloc();
|
---|
| 928 |
|
---|
[3115] | 929 |
|
---|
[3129] | 930 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 931 | int_8 ip = IndexR(i,j,l);
|
---|
| 932 | data_[ip] += 1.;
|
---|
[3115] | 933 | }
|
---|
| 934 | }
|
---|
| 935 |
|
---|
| 936 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
| 937 | // do NOT treate negative or nul values
|
---|
| 938 | {
|
---|
[3155] | 939 | if(lp_>0) cout<<"--- TurnMass2MeanNumber ---"<<endl;
|
---|
[3115] | 940 |
|
---|
[3262] | 941 | double mall=0., mgood=0.;
|
---|
| 942 | int_8 nall=0, ngood=0;
|
---|
| 943 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 944 | int_8 ip = IndexR(i,j,l);
|
---|
| 945 | mall += data_[ip]; nall++;
|
---|
| 946 | if(data_[ip]>0.) {mgood += data_[ip]; ngood++;}
|
---|
| 947 | }
|
---|
| 948 | if(ngood>0) mgood /= (double)ngood;
|
---|
| 949 | if(nall>0) mall /= (double)nall;
|
---|
| 950 | if(lp_>0) cout<<"...ngood="<<ngood<<" mgood="<<mgood
|
---|
| 951 | <<", nall="<<nall<<" mall="<<mall<<endl;
|
---|
| 952 | if(ngood<=0 || mall<=0.) {
|
---|
| 953 | cout<<"TurnMass2MeanNumber_Error: ngood="<<ngood<<" <=0 || mall="<<mall<<" <=0"<<endl;
|
---|
| 954 | throw RangeCheckError("TurnMass2MeanNumber_Error: ngood<=0 || mall<=0");
|
---|
| 955 | }
|
---|
[3115] | 956 |
|
---|
| 957 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
| 958 | // On en met uniquement dans les pixels de masse >0.
|
---|
| 959 | // On NE met PAS a zero les pixels <0
|
---|
| 960 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
| 961 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
| 962 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
| 963 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
[3262] | 964 | // nb de gal a mettre ds 1 px:
|
---|
| 965 | double dn = n_by_mpc3*Vol_/ (mgood/mall) /(double)ngood;
|
---|
[3155] | 966 | if(lp_>0) cout<<"...galaxy density move from "
|
---|
| 967 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
[3262] | 968 |
|
---|
[3115] | 969 | double sum = 0.;
|
---|
[3129] | 970 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 971 | int_8 ip = IndexR(i,j,l);
|
---|
| 972 | data_[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
| 973 | if(data_[ip]>0.) sum += data_[ip]; // mais on ne les compte pas
|
---|
[3115] | 974 | }
|
---|
[3262] | 975 |
|
---|
[3155] | 976 | if(lp_>0) cout<<sum<<"...galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
[3115] | 977 |
|
---|
| 978 | return sum;
|
---|
| 979 | }
|
---|
| 980 |
|
---|
| 981 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 982 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 983 | {
|
---|
[3155] | 984 | if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
|
---|
[3141] | 985 | check_array_alloc();
|
---|
| 986 |
|
---|
[3115] | 987 | double sum = 0.;
|
---|
[3129] | 988 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 989 | int_8 ip = IndexR(i,j,l);
|
---|
| 990 | double v = data_[ip];
|
---|
[3115] | 991 | if(v>0.) {
|
---|
| 992 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
[3141] | 993 | data_[ip] = (double)dn;
|
---|
[3115] | 994 | sum += (double)dn;
|
---|
| 995 | }
|
---|
| 996 | }
|
---|
[3155] | 997 | if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 998 |
|
---|
| 999 | return sum;
|
---|
| 1000 | }
|
---|
| 1001 |
|
---|
| 1002 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 1003 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1004 | // INPUT:
|
---|
| 1005 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 1006 | // axeslog = false : retourne la masse
|
---|
| 1007 | // = true : retourne le log10(mass)
|
---|
| 1008 | // RETURN la masse totale
|
---|
| 1009 | {
|
---|
[3155] | 1010 | if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
|
---|
[3141] | 1011 | check_array_alloc();
|
---|
| 1012 |
|
---|
[3115] | 1013 | double sum = 0.;
|
---|
[3129] | 1014 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1015 | int_8 ip = IndexR(i,j,l);
|
---|
| 1016 | double v = data_[ip];
|
---|
[3115] | 1017 | if(v>0.) {
|
---|
[3129] | 1018 | long ngal = long(v+0.1);
|
---|
[3141] | 1019 | data_[ip] = 0.;
|
---|
[3129] | 1020 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 1021 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 1022 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 1023 | data_[ip] += m;
|
---|
[3115] | 1024 | }
|
---|
[3141] | 1025 | sum += data_[ip];
|
---|
[3115] | 1026 | }
|
---|
| 1027 | }
|
---|
[3155] | 1028 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 1029 |
|
---|
| 1030 | return sum;
|
---|
| 1031 | }
|
---|
| 1032 |
|
---|
[3199] | 1033 | void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
|
---|
[3196] | 1034 | // Add AGN flux into simulation:
|
---|
| 1035 | // --- Procedure:
|
---|
| 1036 | // 1. lancer "cmvdefsurv" avec les parametres du survey
|
---|
[3199] | 1037 | // (au redshift de reference du survey)
|
---|
[3196] | 1038 | // et recuperer l'angle solide "angsol sr" du pixel elementaire
|
---|
| 1039 | // au centre du cube.
|
---|
| 1040 | // 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
|
---|
| 1041 | // 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
|
---|
| 1042 | // cad une moyenne <log10(S)> et un sigma "sig"
|
---|
[3199] | 1043 | // Attention: la distribution n'est pas gaussienne les "mean,sigma"
|
---|
| 1044 | // de l'histo ne sont pas vraiment ce que l'on veut
|
---|
[3196] | 1045 | // --- Limitations actuelle du code:
|
---|
[3199] | 1046 | // . les AGN sont supposes en loi de puissance IDENTIQUE pour tout theta,phi
|
---|
| 1047 | // . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
|
---|
| 1048 | // . la distribution est approximee a une gaussienne
|
---|
| 1049 | // ... C'est une approximation pour un observateur loin du centre du cube
|
---|
| 1050 | // et pour un cube peu epais / distance observateur
|
---|
[3196] | 1051 | // --- Parametres de la routine:
|
---|
[3199] | 1052 | // llfy : c'est le <log10(S)> du flux depose dans un pixel par les AGN
|
---|
[3196] | 1053 | // lsigma : c'est le sigma de la distribution
|
---|
[3199] | 1054 | // powlaw : c'est la pente de ls distribution cad que le flux "lmsol"
|
---|
| 1055 | // et considere comme le flux a 1.4GHz et qu'on suppose une loi
|
---|
| 1056 | // F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
|
---|
[3196] | 1057 | // - Comme on est en echelle log10():
|
---|
| 1058 | // on tire log10(Msol) + X
|
---|
| 1059 | // ou X est une realisation sur une gaussienne de variance "sig^2"
|
---|
| 1060 | // La masse realisee est donc: Msol*10^X
|
---|
| 1061 | // - Pas de probleme de pixel negatif car on a une multiplication!
|
---|
| 1062 | {
|
---|
[3199] | 1063 | if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
|
---|
[3196] | 1064 | check_array_alloc();
|
---|
| 1065 |
|
---|
[3199] | 1066 | if(cosmo_ == NULL || redshref_<0.| loscom2zred_.size()<1) {
|
---|
| 1067 | char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
|
---|
| 1068 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1069 | }
|
---|
[3196] | 1070 |
|
---|
[3199] | 1071 | // La distance angulaire/luminosite/Dnu au centre
|
---|
| 1072 | double dangref = cosmo_->Dang(redshref_);
|
---|
| 1073 | double dlumref = cosmo_->Dlum(redshref_);
|
---|
| 1074 | double dredref = Dz_/(cosmo_->Dhubble()/cosmo_->E(redshref_));
|
---|
| 1075 | double dnuref = Fr_HyperFin_Par *dredref/pow(1.+redshref_,2.); // GHz
|
---|
| 1076 | double fagnref = pow(10.,lfjy)*(dnuref*1.e9); // Jy.Hz
|
---|
| 1077 | double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlumref); // Msol
|
---|
| 1078 | if(lp_>0) {
|
---|
| 1079 | cout<<"Au centre: z="<<redshref_<<", dredref="<<dredref<<", dnuref="<<dnuref<<" GHz"<<endl
|
---|
| 1080 | <<" dang="<<dangref<<" Mpc, dlum="<<dlumref<<" Mpc,"
|
---|
| 1081 | <<" fagnref="<<fagnref<<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
|
---|
| 1082 | }
|
---|
[3196] | 1083 |
|
---|
[3199] | 1084 | if(powlaw!=0.) {
|
---|
| 1085 | // F(nu) = (nu GHz/1.4 Ghz)^p * F(1.4GHz) et nu = 1.4 GHz / (1+z)
|
---|
| 1086 | magnref *= pow(1/(1.+redshref_),powlaw);
|
---|
| 1087 | if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
|
---|
| 1088 | }
|
---|
| 1089 |
|
---|
| 1090 | // Les infos en fonction de l'indice "l" selon Oz
|
---|
| 1091 | vector<double> correction;
|
---|
| 1092 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
| 1093 | for(long l=0;l<Nz_;l++) {
|
---|
| 1094 | double z = fabs(xobs_[2] - l*Dz_);
|
---|
| 1095 | double zred = interpinv(z);
|
---|
| 1096 | double dang = cosmo_->Dang(zred); // pour variation angle solide
|
---|
| 1097 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1098 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1099 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
| 1100 | double corr = dnu/dnuref*pow(dangref/dang*dlum/dlumref,2.);
|
---|
| 1101 | if(powlaw!=0.) corr *= pow((1.+redshref_)/(1.+zred),powlaw);
|
---|
| 1102 | correction.push_back(corr);
|
---|
| 1103 | if(lp_>0 && (l==0 || abs(l-Nz_/2)<2 || l==Nz_-1)) {
|
---|
| 1104 | cout<<"l="<<l<<" z="<<z<<" red="<<zred
|
---|
| 1105 | <<" da="<<dang<<" dlu="<<dlum<<" dred="<<dred
|
---|
| 1106 | <<" dnu="<<dnu<<" -> corr="<<corr<<endl;
|
---|
| 1107 | }
|
---|
| 1108 | }
|
---|
| 1109 |
|
---|
| 1110 | double sum=0., sum2=0., nsum=0.;
|
---|
| 1111 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
|
---|
| 1112 | double a = lsigma*NorRand();
|
---|
| 1113 | a = magnref*pow(10.,a);
|
---|
| 1114 | // On met le meme tirage le long de Oz (indice k)
|
---|
| 1115 | for(long l=0;l<Nz_;l++) {
|
---|
| 1116 | int_8 ip = IndexR(i,j,l);
|
---|
| 1117 | data_[ip] += a*correction[l];
|
---|
| 1118 | }
|
---|
| 1119 | sum += a; sum2 += a*a; nsum += 1.;
|
---|
| 1120 | }
|
---|
| 1121 |
|
---|
| 1122 | if(lp_>0 && nsum>1.) {
|
---|
[3196] | 1123 | sum /= nsum;
|
---|
| 1124 | sum2 = sum2/nsum - sum*sum;
|
---|
| 1125 | cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
|
---|
| 1126 | }
|
---|
| 1127 |
|
---|
| 1128 | }
|
---|
| 1129 |
|
---|
[3267] | 1130 | void GeneFluct3D::AddNoise2Real(double snoise,bool with_evol)
|
---|
[3115] | 1131 | // add noise to every pixels (meme les <=0 !)
|
---|
| 1132 | {
|
---|
[3267] | 1133 | if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<" evol="<<with_evol<<endl;
|
---|
[3141] | 1134 | check_array_alloc();
|
---|
| 1135 |
|
---|
[3199] | 1136 | for(long i=0;i<Nx_;i++) {
|
---|
| 1137 | for(long j=0;j<Ny_;j++) {
|
---|
[3267] | 1138 | for(long l=0;l<Nz_;l++) {
|
---|
| 1139 | int_8 ip = IndexR(i,j,l);
|
---|
| 1140 | data_[ip] += snoise*NorRand();
|
---|
[3199] | 1141 | }
|
---|
| 1142 | }
|
---|
| 1143 | }
|
---|
| 1144 |
|
---|
| 1145 | }
|
---|
| 1146 |
|
---|