[3115] | 1 | #include "machdefs.h"
|
---|
| 2 | #include <iostream>
|
---|
| 3 | #include <stdlib.h>
|
---|
| 4 | #include <stdio.h>
|
---|
| 5 | #include <string.h>
|
---|
| 6 | #include <math.h>
|
---|
| 7 | #include <unistd.h>
|
---|
| 8 |
|
---|
| 9 | #include "tarray.h"
|
---|
| 10 | #include "pexceptions.h"
|
---|
| 11 | #include "perandom.h"
|
---|
| 12 | #include "srandgen.h"
|
---|
| 13 |
|
---|
[3141] | 14 | #include "fabtcolread.h"
|
---|
| 15 | #include "fabtwriter.h"
|
---|
| 16 | #include "fioarr.h"
|
---|
| 17 |
|
---|
| 18 | #include "arrctcast.h"
|
---|
| 19 |
|
---|
[3115] | 20 | #include "constcosmo.h"
|
---|
| 21 | #include "geneutils.h"
|
---|
[3199] | 22 | #include "schechter.h"
|
---|
[3115] | 23 |
|
---|
| 24 | #include "genefluct3d.h"
|
---|
| 25 |
|
---|
[3281] | 26 | #define FFTW_THREAD
|
---|
[3115] | 27 |
|
---|
| 28 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 29 |
|
---|
[3325] | 30 | namespace SOPHYA {
|
---|
| 31 |
|
---|
[3115] | 32 | //-------------------------------------------------------
|
---|
[3141] | 33 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T)
|
---|
[3271] | 34 | : Nx_(0) , Ny_(0) , Nz_(0)
|
---|
| 35 | , lp_(0)
|
---|
| 36 | , array_allocated_(false) , T_(T)
|
---|
| 37 | , cosmo_(NULL) , growth_(NULL)
|
---|
| 38 | , redsh_ref_(-999.), kredsh_ref_(0.), dred_ref_(-999.)
|
---|
| 39 | , loscom_ref_(-999.), dtrc_ref_(-999.), dlum_ref_(-999.), dang_ref_(-999.)
|
---|
| 40 | , nu_ref_(-999.), dnu_ref_ (-999.)
|
---|
| 41 | , loscom_min_(-999.), loscom_max_(-999.)
|
---|
[3199] | 42 | , loscom2zred_min_(0.) , loscom2zred_max_(0.)
|
---|
[3115] | 43 | {
|
---|
[3157] | 44 | xobs_[0] = xobs_[1] = xobs_[2] = 0.;
|
---|
| 45 | zred_.resize(0);
|
---|
| 46 | loscom_.resize(0);
|
---|
[3199] | 47 | loscom2zred_.resize(0);
|
---|
[3115] | 48 | SetNThread();
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | GeneFluct3D::~GeneFluct3D(void)
|
---|
| 52 | {
|
---|
| 53 | fftw_destroy_plan(pf_);
|
---|
| 54 | fftw_destroy_plan(pb_);
|
---|
| 55 | #ifdef FFTW_THREAD
|
---|
| 56 | if(nthread_>0) fftw_cleanup_threads();
|
---|
| 57 | #endif
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | //-------------------------------------------------------
|
---|
[3129] | 61 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
[3115] | 62 | {
|
---|
[3141] | 63 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 64 | setalloc();
|
---|
| 65 | setpointers(false);
|
---|
[3154] | 66 | init_fftw();
|
---|
[3141] | 67 | }
|
---|
| 68 |
|
---|
[3154] | 69 | void GeneFluct3D::SetObservator(double redshref,double kredshref)
|
---|
| 70 | // L'observateur est au redshift z=0
|
---|
| 71 | // est situe sur la "perpendiculaire" a la face x,y
|
---|
| 72 | // issue du centre de cette face
|
---|
| 73 | // Il faut positionner le cube sur l'axe des z cad des redshifts:
|
---|
| 74 | // redshref = redshift de reference
|
---|
| 75 | // Si redshref<0 alors redshref=0
|
---|
| 76 | // kredshref = indice (en double) correspondant a ce redshift
|
---|
[3267] | 77 | // Si kredshref<0 alors kredshref=nz/2 (milieu du cube)
|
---|
[3157] | 78 | // Exemple: redshref=1.5 kredshref=250.75
|
---|
| 79 | // -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
|
---|
[3154] | 80 | {
|
---|
| 81 | if(redshref<0.) redshref = 0.;
|
---|
[3267] | 82 | if(kredshref<0.) {
|
---|
| 83 | if(Nz_<=0) {
|
---|
[3271] | 84 | char *bla = "GeneFluct3D::SetObservator_Error: for kredsh_ref<0 SetSize should be called first";
|
---|
[3267] | 85 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 86 | }
|
---|
| 87 | kredshref = Nz_/2.;
|
---|
| 88 | }
|
---|
[3271] | 89 | redsh_ref_ = redshref;
|
---|
| 90 | kredsh_ref_ = kredshref;
|
---|
[3199] | 91 | if(lp_>0)
|
---|
[3271] | 92 | cout<<"--- GeneFluct3D::SetObservator zref="<<redsh_ref_<<" kref="<<kredsh_ref_<<endl;
|
---|
[3154] | 93 | }
|
---|
| 94 |
|
---|
[3157] | 95 | void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
|
---|
| 96 | {
|
---|
| 97 | cosmo_ = &cosmo;
|
---|
| 98 | if(lp_>1) cosmo_->Print();
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
|
---|
| 102 | {
|
---|
| 103 | growth_ = &growth;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
[3141] | 106 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 107 | {
|
---|
[3155] | 108 | if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
|
---|
| 109 | <<" D="<<dx<<","<<dy<<","<<dz<<endl;
|
---|
[3141] | 110 | if(nx<=0 || dx<=0.) {
|
---|
[3267] | 111 | char *bla = "GeneFluct3D::setsize_Error: bad value(s) for nn/dx";
|
---|
[3199] | 112 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3115] | 113 | }
|
---|
| 114 |
|
---|
[3141] | 115 | // Les tailles des tableaux
|
---|
[3115] | 116 | Nx_ = nx;
|
---|
| 117 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 118 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 119 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3115] | 120 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 121 | NCz_ = Nz_/2 +1;
|
---|
| 122 | NTz_ = 2*NCz_;
|
---|
| 123 |
|
---|
| 124 | // le pas dans l'espace (Mpc)
|
---|
| 125 | Dx_ = dx;
|
---|
| 126 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 127 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 128 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 129 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 130 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 131 |
|
---|
| 132 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 133 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 134 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 135 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 136 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 137 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 138 |
|
---|
| 139 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 140 | Knyqx_ = M_PI/Dx_;
|
---|
| 141 | Knyqy_ = M_PI/Dy_;
|
---|
| 142 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 143 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 144 | }
|
---|
[3115] | 145 |
|
---|
[3141] | 146 | void GeneFluct3D::setalloc(void)
|
---|
| 147 | {
|
---|
[3155] | 148 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
|
---|
[3141] | 149 | // Dimensionnement du tableau complex<r_8>
|
---|
| 150 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 151 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 152 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 153 | try {
|
---|
| 154 | T_.ReSize(3,SzK_);
|
---|
| 155 | array_allocated_ = true;
|
---|
[3255] | 156 | if(lp_>1) cout<<" allocating: "<<T_.Size()*sizeof(complex<r_8>)/1.e6<<" Mo"<<endl;
|
---|
[3141] | 157 | } catch (...) {
|
---|
[3155] | 158 | cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
|
---|
[3141] | 159 | }
|
---|
| 160 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
[3115] | 161 | }
|
---|
| 162 |
|
---|
[3141] | 163 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 164 | {
|
---|
[3155] | 165 | if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
|
---|
[3141] | 166 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 167 | else R_ = ArrCastC2R(T_);
|
---|
| 168 | // On remplit les pointeurs
|
---|
| 169 | fdata_ = (fftw_complex *) (&T_(0,0,0));
|
---|
| 170 | data_ = (double *) (&R_(0,0,0));
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 174 | // Pour tester si le tableau T_ est alloue
|
---|
| 175 | {
|
---|
| 176 | if(array_allocated_) return;
|
---|
| 177 | char bla[90];
|
---|
| 178 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
[3199] | 179 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3141] | 180 | }
|
---|
| 181 |
|
---|
[3154] | 182 | void GeneFluct3D::init_fftw(void)
|
---|
| 183 | {
|
---|
| 184 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3155] | 185 | if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
|
---|
[3154] | 186 | #ifdef FFTW_THREAD
|
---|
| 187 | if(nthread_>0) {
|
---|
[3155] | 188 | cout<<"...Computing with "<<nthread_<<" threads"<<endl;
|
---|
[3154] | 189 | fftw_init_threads();
|
---|
| 190 | fftw_plan_with_nthreads(nthread_);
|
---|
| 191 | }
|
---|
| 192 | #endif
|
---|
[3155] | 193 | if(lp_>1) cout<<"...forward plan"<<endl;
|
---|
[3154] | 194 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
[3155] | 195 | if(lp_>1) cout<<"...backward plan"<<endl;
|
---|
[3154] | 196 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
| 197 | }
|
---|
[3141] | 198 |
|
---|
[3157] | 199 | //-------------------------------------------------------
|
---|
[3199] | 200 | long GeneFluct3D::LosComRedshift(double zinc,long npoints)
|
---|
[3157] | 201 | // Given a position of the cube relative to the observer
|
---|
| 202 | // and a cosmology
|
---|
| 203 | // (SetObservator() and SetCosmology() should have been called !)
|
---|
| 204 | // This routine filled:
|
---|
| 205 | // the vector "zred_" of scanned redshift (by zinc increments)
|
---|
| 206 | // the vector "loscom_" of corresponding los comoving distance
|
---|
[3199] | 207 | // -- Input:
|
---|
| 208 | // zinc : redshift increment for computation
|
---|
| 209 | // npoints : number of points required for inverting loscom -> zred
|
---|
[3157] | 210 | //
|
---|
| 211 | {
|
---|
[3199] | 212 | if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
|
---|
[3154] | 213 |
|
---|
[3271] | 214 | if(cosmo_ == NULL || redsh_ref_<0.) {
|
---|
[3199] | 215 | char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first";
|
---|
| 216 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 217 | }
|
---|
| 218 |
|
---|
[3271] | 219 | // La distance angulaire/luminosite/Dnu au pixel de reference
|
---|
| 220 | dred_ref_ = Dz_/(cosmo_->Dhubble()/cosmo_->E(redsh_ref_));
|
---|
| 221 | loscom_ref_ = cosmo_->Dloscom(redsh_ref_);
|
---|
| 222 | dtrc_ref_ = cosmo_->Dtrcom(redsh_ref_);
|
---|
| 223 | dlum_ref_ = cosmo_->Dlum(redsh_ref_);
|
---|
| 224 | dang_ref_ = cosmo_->Dang(redsh_ref_);
|
---|
| 225 | nu_ref_ = Fr_HyperFin_Par/(1.+redsh_ref_); // GHz
|
---|
| 226 | dnu_ref_ = Fr_HyperFin_Par *dred_ref_/pow(1.+redsh_ref_,2.); // GHz
|
---|
| 227 | if(lp_>0) {
|
---|
| 228 | cout<<"...reference pixel redshref="<<redsh_ref_
|
---|
| 229 | <<", dredref="<<dred_ref_
|
---|
| 230 | <<", nuref="<<nu_ref_ <<" GHz"
|
---|
| 231 | <<", dnuref="<<dnu_ref_ <<" GHz"<<endl
|
---|
| 232 | <<" dlosc="<<loscom_ref_<<" Mpc com"
|
---|
| 233 | <<", dtrc="<<dtrc_ref_<<" Mpc com"
|
---|
| 234 | <<", dlum="<<dlum_ref_<<" Mpc"
|
---|
| 235 | <<", dang="<<dang_ref_<<" Mpc"<<endl;
|
---|
| 236 | }
|
---|
| 237 |
|
---|
[3199] | 238 | // On calcule les coordonnees de l'observateur dans le repere du cube
|
---|
| 239 | // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
|
---|
| 240 | // L'observateur est sur un axe centre sur le milieu de la face Oxy
|
---|
[3157] | 241 | xobs_[0] = Nx_/2.*Dx_;
|
---|
| 242 | xobs_[1] = Ny_/2.*Dy_;
|
---|
[3271] | 243 | xobs_[2] = kredsh_ref_*Dz_ - loscom_ref_;
|
---|
[3157] | 244 |
|
---|
| 245 | // L'observateur est-il dans le cube?
|
---|
| 246 | bool obs_in_cube = false;
|
---|
| 247 | if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
|
---|
| 248 |
|
---|
| 249 | // Find MINIMUM los com distance to the observer:
|
---|
| 250 | // c'est le centre de la face a k=0
|
---|
| 251 | // (ou zero si l'observateur est dans le cube)
|
---|
| 252 | loscom_min_ = 0.;
|
---|
| 253 | if(!obs_in_cube) loscom_min_ = -xobs_[2];
|
---|
| 254 |
|
---|
[3271] | 255 | // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
|
---|
| 256 | if(loscom_min_<=1.e-50)
|
---|
| 257 | for(int i=0;i<50;i++)
|
---|
| 258 | cout<<"ATTENTION TOUTES LES PARTIES DU CODE NE MARCHENT PAS POUR UN OBSERVATEUR DANS LE CUBE"<<endl;
|
---|
| 259 | // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
|
---|
| 260 |
|
---|
| 261 |
|
---|
[3157] | 262 | // Find MAXIMUM los com distance to the observer:
|
---|
| 263 | // ou que soit positionne l'observateur, la distance
|
---|
| 264 | // maximal est sur un des coins du cube
|
---|
| 265 | loscom_max_ = 0.;
|
---|
| 266 | for(long i=0;i<=1;i++) {
|
---|
[3271] | 267 | double dx2 = DXcom(i*(Nx_-1)); dx2 *= dx2;
|
---|
[3157] | 268 | for(long j=0;j<=1;j++) {
|
---|
[3271] | 269 | double dy2 = DYcom(j*(Ny_-1)); dy2 *= dy2;
|
---|
[3157] | 270 | for(long k=0;k<=1;k++) {
|
---|
[3271] | 271 | double dz2 = DZcom(k*(Nz_-1)); dz2 *= dz2;
|
---|
[3157] | 272 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 273 | if(dz2>loscom_max_) loscom_max_ = dz2;
|
---|
| 274 | }
|
---|
| 275 | }
|
---|
| 276 | }
|
---|
| 277 | if(lp_>0) {
|
---|
[3271] | 278 | cout<<"...zref="<<redsh_ref_<<" kzref="<<kredsh_ref_<<" losref="<<loscom_ref_<<" Mpc\n"
|
---|
[3157] | 279 | <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
|
---|
| 280 | <<" in_cube="<<obs_in_cube
|
---|
[3271] | 281 | <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc (com)"<<endl;
|
---|
[3157] | 282 | }
|
---|
| 283 |
|
---|
[3199] | 284 | // Fill the corresponding vectors for loscom and zred
|
---|
[3267] | 285 | // Be shure to have one dlc <loscom_min and one >loscom_max
|
---|
[3199] | 286 | if(zinc<=0.) zinc = 0.01;
|
---|
[3157] | 287 | for(double z=0.; ; z+=zinc) {
|
---|
| 288 | double dlc = cosmo_->Dloscom(z);
|
---|
| 289 | if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
|
---|
| 290 | zred_.push_back(z);
|
---|
| 291 | loscom_.push_back(dlc);
|
---|
| 292 | z += zinc;
|
---|
[3199] | 293 | if(dlc>loscom_max_) break; // on sort apres avoir stoque un dlc>dlcmax
|
---|
[3157] | 294 | }
|
---|
| 295 |
|
---|
| 296 | if(lp_>0) {
|
---|
[3199] | 297 | long n = zred_.size();
|
---|
| 298 | cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
|
---|
[3157] | 299 | if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
|
---|
| 300 | if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
|
---|
| 301 | cout<<endl;
|
---|
| 302 | }
|
---|
| 303 |
|
---|
[3199] | 304 | // Compute the parameters and tables needed for inversion loscom->zred
|
---|
| 305 | if(npoints<3) npoints = zred_.size();
|
---|
| 306 | InverseFunc invfun(zred_,loscom_);
|
---|
| 307 | invfun.ComputeParab(npoints,loscom2zred_);
|
---|
| 308 | loscom2zred_min_ = invfun.YMin();
|
---|
| 309 | loscom2zred_max_ = invfun.YMax();
|
---|
| 310 |
|
---|
| 311 | if(lp_>0) {
|
---|
| 312 | long n = loscom2zred_.size();
|
---|
| 313 | cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
|
---|
| 314 | <<" los_min="<<loscom2zred_min_
|
---|
| 315 | <<" los_max="<<loscom2zred_max_
|
---|
| 316 | <<" -> zred=[";
|
---|
| 317 | if(n>0) cout<<loscom2zred_[0];
|
---|
| 318 | cout<<",";
|
---|
| 319 | if(n>1) cout<<loscom2zred_[n-1];
|
---|
| 320 | cout<<"]"<<endl;
|
---|
| 321 | if(lp_>1 && n>0)
|
---|
| 322 | for(int i=0;i<n;i++)
|
---|
| 323 | if(i==0 || abs(i-n/2)<2 || i==n-1)
|
---|
| 324 | cout<<" "<<i<<" "<<loscom2zred_[i]<<endl;
|
---|
| 325 | }
|
---|
| 326 |
|
---|
| 327 | return zred_.size();
|
---|
[3157] | 328 | }
|
---|
| 329 |
|
---|
[3115] | 330 | //-------------------------------------------------------
|
---|
[3141] | 331 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 332 | {
|
---|
[3155] | 333 | cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
[3141] | 334 | try {
|
---|
| 335 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
| 336 | fwrt.WriteKey("NX",Nx_," axe transverse 1");
|
---|
| 337 | fwrt.WriteKey("NY",Ny_," axe transverse 2");
|
---|
| 338 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
|
---|
| 339 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 340 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 341 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 342 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 343 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 344 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
[3271] | 345 | fwrt.WriteKey("ZREF",redsh_ref_," reference redshift");
|
---|
| 346 | fwrt.WriteKey("KZREF",kredsh_ref_," reference redshift on z axe");
|
---|
[3141] | 347 | fwrt.Write(R_);
|
---|
| 348 | } catch (PThrowable & exc) {
|
---|
| 349 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 350 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 351 | return;
|
---|
| 352 | } catch (...) {
|
---|
| 353 | cout<<" some other exception was caught !"<<endl;
|
---|
| 354 | return;
|
---|
| 355 | }
|
---|
| 356 | }
|
---|
| 357 |
|
---|
| 358 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 359 | {
|
---|
[3155] | 360 | cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 361 | try {
|
---|
| 362 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 363 | fimg.Read(R_);
|
---|
| 364 | long nx = fimg.ReadKeyL("NX");
|
---|
| 365 | long ny = fimg.ReadKeyL("NY");
|
---|
| 366 | long nz = fimg.ReadKeyL("NZ");
|
---|
| 367 | double dx = fimg.ReadKey("DX");
|
---|
| 368 | double dy = fimg.ReadKey("DY");
|
---|
| 369 | double dz = fimg.ReadKey("DZ");
|
---|
[3154] | 370 | double zref = fimg.ReadKey("ZREF");
|
---|
| 371 | double kzref = fimg.ReadKey("KZREF");
|
---|
[3141] | 372 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 373 | setpointers(true);
|
---|
[3154] | 374 | init_fftw();
|
---|
| 375 | SetObservator(zref,kzref);
|
---|
[3141] | 376 | } catch (PThrowable & exc) {
|
---|
| 377 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 378 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 379 | return;
|
---|
| 380 | } catch (...) {
|
---|
| 381 | cout<<" some other exception was caught !"<<endl;
|
---|
| 382 | return;
|
---|
| 383 | }
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 387 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 388 | {
|
---|
[3155] | 389 | cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
[3141] | 390 | try {
|
---|
| 391 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 392 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 393 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 394 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 395 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 396 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
[3271] | 397 | R_.Info()["ZREF"] = (r_8)redsh_ref_;
|
---|
| 398 | R_.Info()["KZREF"] = (r_8)kredsh_ref_;
|
---|
[3141] | 399 | POutPersist pos(cfname.c_str());
|
---|
| 400 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 401 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 402 | } catch (PThrowable & exc) {
|
---|
| 403 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 404 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 405 | return;
|
---|
| 406 | } catch (...) {
|
---|
| 407 | cout<<" some other exception was caught !"<<endl;
|
---|
| 408 | return;
|
---|
| 409 | }
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 413 | {
|
---|
[3155] | 414 | cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 415 | try {
|
---|
| 416 | bool from_real = true;
|
---|
| 417 | PInPersist pis(cfname.c_str());
|
---|
| 418 | string name_tag_k = "pkgen";
|
---|
| 419 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 420 | if(found_tag_k) {
|
---|
[3262] | 421 | cout<<" ...reading spectrum into TArray<complex <r_8> >"<<endl;
|
---|
[3141] | 422 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 423 | from_real = false;
|
---|
| 424 | } else {
|
---|
| 425 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 426 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 427 | }
|
---|
[3154] | 428 | setpointers(from_real); // a mettre ici pour relire les DVInfo
|
---|
[3141] | 429 | int_8 nx = R_.Info()["NX"];
|
---|
| 430 | int_8 ny = R_.Info()["NY"];
|
---|
| 431 | int_8 nz = R_.Info()["NZ"];
|
---|
| 432 | r_8 dx = R_.Info()["DX"];
|
---|
| 433 | r_8 dy = R_.Info()["DY"];
|
---|
| 434 | r_8 dz = R_.Info()["DZ"];
|
---|
[3154] | 435 | r_8 zref = R_.Info()["ZREF"];
|
---|
| 436 | r_8 kzref = R_.Info()["KZREF"];
|
---|
[3141] | 437 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
[3154] | 438 | init_fftw();
|
---|
| 439 | SetObservator(zref,kzref);
|
---|
[3141] | 440 | } catch (PThrowable & exc) {
|
---|
| 441 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 442 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 443 | return;
|
---|
| 444 | } catch (...) {
|
---|
| 445 | cout<<" some other exception was caught !"<<endl;
|
---|
| 446 | return;
|
---|
| 447 | }
|
---|
| 448 | }
|
---|
| 449 |
|
---|
[3281] | 450 | void GeneFluct3D::WriteSlicePPF(string cfname)
|
---|
| 451 | // On ecrit 3 tranches du cube selon chaque axe
|
---|
| 452 | {
|
---|
[3283] | 453 | cout<<"--- GeneFluct3D::WriteSlicePPF: Writing Cube Slices "<<cfname<<endl;
|
---|
[3281] | 454 | try {
|
---|
| 455 |
|
---|
| 456 | POutPersist pos(cfname.c_str());
|
---|
| 457 | TMatrix<r_4> S;
|
---|
| 458 | char str[16];
|
---|
| 459 | long i,j,l;
|
---|
| 460 |
|
---|
| 461 | // Tranches en Z
|
---|
| 462 | for(int s=0;s<3;s++) {
|
---|
| 463 | S.ReSize(Nx_,Ny_);
|
---|
| 464 | if(s==0) l=0; else if(s==1) l=(Nz_+1)/2; else l=Nz_-1;
|
---|
[3289] | 465 | sprintf(str,"z%ld",l);
|
---|
[3281] | 466 | for(i=0;i<Nx_;i++) for(j=0;j<Ny_;j++) S(i,j)=data_[IndexR(i,j,l)];
|
---|
| 467 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 | // Tranches en Y
|
---|
| 471 | for(int s=0;s<3;s++) {
|
---|
| 472 | S.ReSize(Nz_,Nx_);
|
---|
| 473 | if(s==0) j=0; else if(s==1) j=(Ny_+1)/2; else j=Ny_-1;
|
---|
[3289] | 474 | sprintf(str,"y%ld",j);
|
---|
[3281] | 475 | for(i=0;i<Nx_;i++) for(l=0;l<Nz_;l++) S(l,i)=data_[IndexR(i,j,l)];
|
---|
| 476 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | // Tranches en X
|
---|
| 480 | for(int s=0;s<3;s++) {
|
---|
| 481 | S.ReSize(Nz_,Ny_);
|
---|
| 482 | if(s==0) i=0; else if(s==1) i=(Nx_+1)/2; else i=Nx_-1;
|
---|
[3289] | 483 | sprintf(str,"x%ld",i);
|
---|
[3281] | 484 | for(j=0;j<Ny_;j++) for(l=0;l<Nz_;l++) S(l,j)=data_[IndexR(i,j,l)];
|
---|
| 485 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 486 | }
|
---|
| 487 |
|
---|
| 488 | } catch (PThrowable & exc) {
|
---|
| 489 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 490 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 491 | return;
|
---|
| 492 | } catch (...) {
|
---|
| 493 | cout<<" some other exception was caught !"<<endl;
|
---|
| 494 | return;
|
---|
| 495 | }
|
---|
| 496 | }
|
---|
| 497 |
|
---|
[3141] | 498 | //-------------------------------------------------------
|
---|
[3115] | 499 | void GeneFluct3D::Print(void)
|
---|
| 500 | {
|
---|
[3141] | 501 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 502 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 503 | <<NRtot_<<endl;
|
---|
| 504 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 505 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 506 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 507 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 508 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 509 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 510 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 511 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 512 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
[3271] | 513 | cout<<"Redshift "<<redsh_ref_<<" for z axe at k="<<kredsh_ref_<<endl;
|
---|
[3115] | 514 | }
|
---|
| 515 |
|
---|
| 516 | //-------------------------------------------------------
|
---|
[3141] | 517 | void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
|
---|
[3115] | 518 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 519 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 520 | {
|
---|
| 521 |
|
---|
| 522 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 523 | if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
|
---|
[3115] | 524 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 525 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 526 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 527 | int_8 ip = IndexR(i,j,l);
|
---|
| 528 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 529 | }
|
---|
| 530 |
|
---|
| 531 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 532 | if(lp_>0) cout<<"...before fft real ---"<<endl;
|
---|
[3115] | 533 | fftw_execute(pf_);
|
---|
| 534 |
|
---|
| 535 | // --- On remplit avec une realisation
|
---|
[3157] | 536 | if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
|
---|
[3115] | 537 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 538 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 539 | for(long i=0;i<Nx_;i++) {
|
---|
| 540 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 541 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 542 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 543 | for(long j=0;j<Ny_;j++) {
|
---|
| 544 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 545 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 546 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 547 | double kz = l*Dkz_; kz *= kz;
|
---|
| 548 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 549 | double k = sqrt(kx+ky+kz);
|
---|
| 550 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 551 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 552 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 553 | T_(l,j,i) *= sqrt(pk);
|
---|
| 554 | }
|
---|
| 555 | }
|
---|
| 556 | }
|
---|
| 557 |
|
---|
[3155] | 558 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 559 | double p = compute_power_carte();
|
---|
[3155] | 560 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 561 |
|
---|
| 562 | }
|
---|
| 563 |
|
---|
| 564 | //-------------------------------------------------------
|
---|
[3141] | 565 | void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
|
---|
| 566 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 567 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 568 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 569 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 570 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 571 | // sum(f(x_i)^2) = S
|
---|
| 572 | // sum(F(nu_i)^2) = S*N
|
---|
| 573 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 574 | {
|
---|
| 575 | // --- RaZ du tableau
|
---|
| 576 | T_ = complex<r_8>(0.);
|
---|
| 577 |
|
---|
| 578 | // --- On remplit avec une realisation
|
---|
[3155] | 579 | if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
|
---|
[3129] | 580 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 581 | for(long i=0;i<Nx_;i++) {
|
---|
| 582 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 583 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 584 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 585 | for(long j=0;j<Ny_;j++) {
|
---|
| 586 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 587 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 588 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 589 | double kz = l*Dkz_; kz *= kz;
|
---|
| 590 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 591 | double k = sqrt(kx+ky+kz);
|
---|
| 592 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 593 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 594 | // Explication de la division par 2: voir perandom.cc
|
---|
| 595 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 596 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 597 | }
|
---|
| 598 | }
|
---|
| 599 | }
|
---|
| 600 |
|
---|
| 601 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 602 |
|
---|
[3155] | 603 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 604 | double p = compute_power_carte();
|
---|
[3155] | 605 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 606 |
|
---|
| 607 | }
|
---|
| 608 |
|
---|
[3129] | 609 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 610 | // Take into account the real and complexe conjugate coefficients
|
---|
| 611 | // because we want a realization of a real data in real space
|
---|
| 612 | {
|
---|
[3155] | 613 | if(lp_>1) cout<<"...managing coefficients"<<endl;
|
---|
[3141] | 614 | check_array_alloc();
|
---|
[3115] | 615 |
|
---|
| 616 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 617 | long nreal = 0;
|
---|
| 618 | for(long kk=0;kk<2;kk++) {
|
---|
| 619 | long k=0; // continu
|
---|
[3115] | 620 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 621 | for(long jj=0;jj<2;jj++) {
|
---|
| 622 | long j=0;
|
---|
[3115] | 623 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 624 | for(long ii=0;ii<2;ii++) {
|
---|
| 625 | long i=0;
|
---|
[3115] | 626 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 627 | int_8 ip = IndexC(i,j,k);
|
---|
| 628 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 629 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 630 | nreal++;
|
---|
| 631 | }
|
---|
| 632 | }
|
---|
| 633 | }
|
---|
[3155] | 634 | if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
[3115] | 635 |
|
---|
| 636 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 637 |
|
---|
| 638 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 639 | long nconj1 = 0;
|
---|
| 640 | for(long kk=0;kk<2;kk++) {
|
---|
| 641 | long k=0; // continu
|
---|
[3115] | 642 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 643 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 644 | long j=0;
|
---|
[3115] | 645 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 646 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 647 | int_8 ip = IndexC(i,j,k);
|
---|
| 648 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 649 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 650 | nconj1++;
|
---|
| 651 | }
|
---|
| 652 | }
|
---|
[3129] | 653 | for(long ii=0;ii<2;ii++) {
|
---|
| 654 | long i=0;
|
---|
[3115] | 655 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 656 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 657 | int_8 ip = IndexC(i,j,k);
|
---|
| 658 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 659 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 660 | nconj1++;
|
---|
| 661 | }
|
---|
| 662 | }
|
---|
| 663 | }
|
---|
[3155] | 664 | if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
[3115] | 665 |
|
---|
| 666 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 667 | long nconj2 = 0;
|
---|
| 668 | for(long kk=0;kk<2;kk++) {
|
---|
| 669 | long k=0; // continu
|
---|
[3115] | 670 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 671 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 672 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 673 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 674 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 675 | int_8 ip = IndexC(i,j,k);
|
---|
| 676 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 677 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 678 | nconj2++;
|
---|
| 679 | }
|
---|
| 680 | }
|
---|
| 681 | }
|
---|
[3155] | 682 | if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
[3115] | 683 |
|
---|
[3155] | 684 | if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
[3115] | 685 |
|
---|
| 686 | return nreal+nconj1+nconj2;
|
---|
| 687 | }
|
---|
| 688 |
|
---|
| 689 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 690 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 691 | {
|
---|
[3141] | 692 | check_array_alloc();
|
---|
| 693 |
|
---|
[3115] | 694 | double s2 = 0.;
|
---|
[3129] | 695 | for(long l=0;l<NCz_;l++)
|
---|
| 696 | for(long j=0;j<Ny_;j++)
|
---|
| 697 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 698 |
|
---|
| 699 | double s20 = 0.;
|
---|
[3129] | 700 | for(long j=0;j<Ny_;j++)
|
---|
| 701 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 702 |
|
---|
| 703 | double s2n = 0.;
|
---|
| 704 | if(Nz_%2==0)
|
---|
[3129] | 705 | for(long j=0;j<Ny_;j++)
|
---|
| 706 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 707 |
|
---|
| 708 | return 2.*s2 -s20 -s2n;
|
---|
| 709 | }
|
---|
| 710 |
|
---|
| 711 | //-------------------------------------------------------------------
|
---|
| 712 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 713 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 714 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 715 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 716 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 717 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 718 | // avec y = k_x*dx/2
|
---|
[3115] | 719 | {
|
---|
[3155] | 720 | if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
|
---|
[3141] | 721 | check_array_alloc();
|
---|
| 722 |
|
---|
[3129] | 723 | for(long i=0;i<Nx_;i++) {
|
---|
| 724 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 725 | double kx = ii*Dkx_ *Dx_/2;
|
---|
[3141] | 726 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 727 | for(long j=0;j<Ny_;j++) {
|
---|
| 728 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 729 | double ky = jj*Dky_ *Dy_/2;
|
---|
[3141] | 730 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 731 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 732 | double kz = l*Dkz_ *Dz_/2;
|
---|
[3141] | 733 | double pk_z = pixelfilter(kz);
|
---|
| 734 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 735 | }
|
---|
| 736 | }
|
---|
| 737 | }
|
---|
| 738 |
|
---|
| 739 | }
|
---|
| 740 |
|
---|
| 741 | //-------------------------------------------------------------------
|
---|
[3199] | 742 | void GeneFluct3D::ApplyGrowthFactor(void)
|
---|
[3157] | 743 | // Apply Growth to real space
|
---|
| 744 | // Using the correspondance between redshift and los comoving distance
|
---|
| 745 | // describe in vector "zred_" "loscom_"
|
---|
| 746 | {
|
---|
[3199] | 747 | if(lp_>0) cout<<"--- ApplyGrowthFactor ---"<<endl;
|
---|
[3157] | 748 | check_array_alloc();
|
---|
| 749 |
|
---|
| 750 | if(growth_ == NULL) {
|
---|
[3199] | 751 | char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
|
---|
| 752 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 753 | }
|
---|
| 754 |
|
---|
[3199] | 755 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3157] | 756 | unsigned short ok;
|
---|
| 757 |
|
---|
| 758 | //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
|
---|
| 759 | for(long i=0;i<Nx_;i++) {
|
---|
| 760 | double dx2 = xobs_[0] - i*Dx_; dx2 *= dx2;
|
---|
| 761 | for(long j=0;j<Ny_;j++) {
|
---|
| 762 | double dy2 = xobs_[1] - j*Dy_; dy2 *= dy2;
|
---|
| 763 | for(long l=0;l<Nz_;l++) {
|
---|
| 764 | double dz2 = xobs_[2] - l*Dz_; dz2 *= dz2;
|
---|
| 765 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 766 | double z = interpinv(dz2);
|
---|
| 767 | //CHECK: hgr.Add(z);
|
---|
| 768 | double dzgr = (*growth_)(z); // interpolation par morceau
|
---|
| 769 | //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
|
---|
| 770 | //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
|
---|
| 771 | int_8 ip = IndexR(i,j,l);
|
---|
| 772 | data_[ip] *= dzgr;
|
---|
| 773 | }
|
---|
| 774 | }
|
---|
| 775 | }
|
---|
| 776 |
|
---|
| 777 | //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
|
---|
| 778 |
|
---|
| 779 | }
|
---|
| 780 |
|
---|
| 781 | //-------------------------------------------------------------------
|
---|
[3115] | 782 | void GeneFluct3D::ComputeReal(void)
|
---|
| 783 | // Calcule une realisation dans l'espace reel
|
---|
| 784 | {
|
---|
[3155] | 785 | if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
|
---|
[3141] | 786 | check_array_alloc();
|
---|
[3115] | 787 |
|
---|
| 788 | // On fait la FFT
|
---|
| 789 | fftw_execute(pb_);
|
---|
| 790 | }
|
---|
| 791 |
|
---|
| 792 | //-------------------------------------------------------------------
|
---|
| 793 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 794 | {
|
---|
[3155] | 795 | if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
|
---|
[3141] | 796 | check_array_alloc();
|
---|
[3115] | 797 |
|
---|
| 798 | // On fait la FFT
|
---|
| 799 | fftw_execute(pf_);
|
---|
| 800 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 801 | double v = (double)NRtot_;
|
---|
[3129] | 802 | for(long i=0;i<Nx_;i++)
|
---|
| 803 | for(long j=0;j<Ny_;j++)
|
---|
| 804 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 805 |
|
---|
| 806 | }
|
---|
| 807 |
|
---|
| 808 | //-------------------------------------------------------------------
|
---|
[3141] | 809 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 810 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 811 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 812 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 813 | {
|
---|
[3155] | 814 | if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
|
---|
[3141] | 815 | check_array_alloc();
|
---|
[3115] | 816 |
|
---|
[3141] | 817 | if(herr.NBins()<0) return -1;
|
---|
| 818 | herr.Zero();
|
---|
[3115] | 819 |
|
---|
| 820 | // Attention a l'ordre
|
---|
[3129] | 821 | for(long i=0;i<Nx_;i++) {
|
---|
| 822 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 823 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 824 | for(long j=0;j<Ny_;j++) {
|
---|
| 825 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 826 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 827 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 828 | double kz = l*Dkz_; kz *= kz;
|
---|
| 829 | double k = sqrt(kx+ky+kz);
|
---|
| 830 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 831 | herr.Add(k,pk);
|
---|
[3115] | 832 | }
|
---|
| 833 | }
|
---|
| 834 | }
|
---|
[3150] | 835 | herr.ToVariance();
|
---|
[3115] | 836 |
|
---|
| 837 | // renormalize to directly compare to original spectrum
|
---|
| 838 | double norm = Vol_;
|
---|
[3141] | 839 | herr *= norm;
|
---|
[3115] | 840 |
|
---|
| 841 | return 0;
|
---|
| 842 | }
|
---|
| 843 |
|
---|
[3141] | 844 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 845 | {
|
---|
[3155] | 846 | if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
|
---|
[3141] | 847 | check_array_alloc();
|
---|
| 848 |
|
---|
| 849 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 850 | herr.Zero();
|
---|
| 851 |
|
---|
| 852 | // Attention a l'ordre
|
---|
| 853 | for(long i=0;i<Nx_;i++) {
|
---|
| 854 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 855 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 856 | for(long j=0;j<Ny_;j++) {
|
---|
| 857 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 858 | double ky = jj*Dky_; ky *= ky;
|
---|
| 859 | double kt = sqrt(kx+ky);
|
---|
| 860 | for(long l=0;l<NCz_;l++) {
|
---|
| 861 | double kz = l*Dkz_;
|
---|
| 862 | double pk = MODULE2(T_(l,j,i));
|
---|
| 863 | herr.Add(kt,kz,pk);
|
---|
| 864 | }
|
---|
| 865 | }
|
---|
| 866 | }
|
---|
[3150] | 867 | herr.ToVariance();
|
---|
[3141] | 868 |
|
---|
| 869 | // renormalize to directly compare to original spectrum
|
---|
| 870 | double norm = Vol_;
|
---|
| 871 | herr *= norm;
|
---|
| 872 |
|
---|
| 873 | return 0;
|
---|
| 874 | }
|
---|
| 875 |
|
---|
[3115] | 876 | //-------------------------------------------------------
|
---|
[3134] | 877 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 878 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
| 879 | {
|
---|
[3262] | 880 | if(lp_>0) cout<<"--- VarianceFrReal R="<<R<<endl;
|
---|
[3141] | 881 | check_array_alloc();
|
---|
| 882 |
|
---|
[3129] | 883 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
| 884 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
| 885 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
[3155] | 886 | if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
[3115] | 887 |
|
---|
[3134] | 888 | double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
|
---|
[3115] | 889 |
|
---|
[3129] | 890 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
| 891 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
| 892 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
[3134] | 893 | double s=0.; int_8 n=0;
|
---|
[3129] | 894 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 895 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 896 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 897 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 898 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 899 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 900 | if(x+y+z>r2) continue;
|
---|
[3141] | 901 | int_8 ip = IndexR(ii,jj,ll);
|
---|
| 902 | s += 1.+data_[ip];
|
---|
[3115] | 903 | n++;
|
---|
| 904 | }
|
---|
| 905 | }
|
---|
| 906 | }
|
---|
| 907 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
| 908 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
| 909 | }
|
---|
| 910 | }
|
---|
| 911 | }
|
---|
| 912 |
|
---|
| 913 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 914 |
|
---|
| 915 | sum /= nsum;
|
---|
| 916 | sum2 = sum2/nsum - sum*sum;
|
---|
[3262] | 917 | if(lp_>0) cout<<"...nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
[3115] | 918 |
|
---|
| 919 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
[3262] | 920 | if(lp_>0) cout<<"...sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
[3115] | 921 |
|
---|
| 922 | return nsum;
|
---|
| 923 | }
|
---|
| 924 |
|
---|
| 925 | //-------------------------------------------------------
|
---|
[3134] | 926 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 927 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 928 | // -> vmin and vmax are considered as bad
|
---|
| 929 | {
|
---|
[3141] | 930 | check_array_alloc();
|
---|
[3115] | 931 |
|
---|
[3134] | 932 | int_8 nbad = 0;
|
---|
[3129] | 933 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 934 | int_8 ip = IndexR(i,j,l);
|
---|
| 935 | double v = data_[ip];
|
---|
[3115] | 936 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 937 | }
|
---|
| 938 |
|
---|
[3262] | 939 | if(lp_>0) cout<<"--- NumberOfBad "<<nbad<<" px out of ]"<<vmin<<","<<vmax<<"["<<endl;
|
---|
[3115] | 940 | return nbad;
|
---|
| 941 | }
|
---|
| 942 |
|
---|
[3320] | 943 | int_8 GeneFluct3D::MinMax(double& xmin,double& xmax,double vmin,double vmax)
|
---|
| 944 | // Calcul des valeurs xmin et xmax dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 945 | {
|
---|
| 946 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 947 | if(lp_>0) {
|
---|
| 948 | cout<<"--- MinMax";
|
---|
| 949 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
| 950 | cout<<endl;
|
---|
| 951 | }
|
---|
| 952 | check_array_alloc();
|
---|
| 953 |
|
---|
| 954 | int_8 n = 0;
|
---|
| 955 | xmin = xmax = data_[0];
|
---|
| 956 |
|
---|
| 957 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 958 | int_8 ip = IndexR(i,j,l);
|
---|
| 959 | double x = data_[ip];
|
---|
| 960 | if(tstval && (x<=vmin || x>=vmax)) continue;
|
---|
| 961 | if(x<xmin) xmin = x;
|
---|
| 962 | if(x>xmax) xmax = x;
|
---|
| 963 | n++;
|
---|
| 964 | }
|
---|
| 965 |
|
---|
| 966 | if(lp_>0) cout<<" n="<<n<<" min="<<xmin<<" max="<<xmax<<endl;
|
---|
| 967 |
|
---|
| 968 | return n;
|
---|
| 969 | }
|
---|
| 970 |
|
---|
[3261] | 971 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax
|
---|
| 972 | ,bool useout,double vout)
|
---|
| 973 | // Calcul de mean,sigma2 dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 974 | // useout = false: ne pas utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 975 | // true : utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 976 | // en remplacant leurs valeurs par "vout"
|
---|
[3115] | 977 | {
|
---|
[3261] | 978 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 979 | if(lp_>0) {
|
---|
[3262] | 980 | cout<<"--- MeanSigma2";
|
---|
| 981 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
[3261] | 982 | if(useout) cout<<", useout="<<useout<<" vout="<<vout;
|
---|
| 983 | cout<<endl;
|
---|
| 984 | }
|
---|
[3141] | 985 | check_array_alloc();
|
---|
[3115] | 986 |
|
---|
[3134] | 987 | int_8 n = 0;
|
---|
[3115] | 988 | rm = rs2 = 0.;
|
---|
| 989 |
|
---|
[3129] | 990 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 991 | int_8 ip = IndexR(i,j,l);
|
---|
| 992 | double v = data_[ip];
|
---|
[3261] | 993 | if(tstval) {
|
---|
| 994 | if(v<=vmin || v>=vmax) {if(useout) v=vout; else continue;}
|
---|
| 995 | }
|
---|
[3115] | 996 | rm += v;
|
---|
| 997 | rs2 += v*v;
|
---|
| 998 | n++;
|
---|
| 999 | }
|
---|
| 1000 |
|
---|
| 1001 | if(n>1) {
|
---|
| 1002 | rm /= (double)n;
|
---|
| 1003 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 1004 | }
|
---|
| 1005 |
|
---|
[3261] | 1006 | if(lp_>0) cout<<" n="<<n<<" m="<<rm<<" s2="<<rs2<<" s="<<sqrt(fabs(rs2))<<endl;
|
---|
| 1007 |
|
---|
[3115] | 1008 | return n;
|
---|
| 1009 | }
|
---|
| 1010 |
|
---|
[3134] | 1011 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 1012 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
[3261] | 1013 | // cad set to "val0" if in [vmin,vmax] -> vmin and vmax are set to val0
|
---|
[3115] | 1014 | {
|
---|
[3141] | 1015 | check_array_alloc();
|
---|
[3115] | 1016 |
|
---|
[3134] | 1017 | int_8 nbad = 0;
|
---|
[3129] | 1018 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1019 | int_8 ip = IndexR(i,j,l);
|
---|
| 1020 | double v = data_[ip];
|
---|
| 1021 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 1022 | }
|
---|
| 1023 |
|
---|
[3262] | 1024 | if(lp_>0) cout<<"--- SetToVal "<<nbad<<" px set to="<<val0
|
---|
| 1025 | <<" because out of range=]"<<vmin<<","<<vmax<<"["<<endl;
|
---|
[3115] | 1026 | return nbad;
|
---|
| 1027 | }
|
---|
| 1028 |
|
---|
[3283] | 1029 | void GeneFluct3D::ScaleOffset(double scalecube,double offsetcube)
|
---|
| 1030 | // Replace "V" by "scalecube * ( V + offsetcube )"
|
---|
| 1031 | {
|
---|
[3284] | 1032 | if(lp_>0) cout<<"--- ScaleCube scale="<<scalecube<<" offset="<<offsetcube<<endl;
|
---|
[3283] | 1033 |
|
---|
| 1034 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1035 | int_8 ip = IndexR(i,j,l);
|
---|
| 1036 | data_[ip] = scalecube * ( data_[ip] + offsetcube );
|
---|
| 1037 | }
|
---|
| 1038 |
|
---|
| 1039 | return;
|
---|
| 1040 | }
|
---|
| 1041 |
|
---|
[3115] | 1042 | //-------------------------------------------------------
|
---|
| 1043 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 1044 | // d_rho/rho -> Mass (add one!)
|
---|
| 1045 | {
|
---|
[3155] | 1046 | if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
|
---|
[3141] | 1047 | check_array_alloc();
|
---|
| 1048 |
|
---|
[3115] | 1049 |
|
---|
[3129] | 1050 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1051 | int_8 ip = IndexR(i,j,l);
|
---|
| 1052 | data_[ip] += 1.;
|
---|
[3115] | 1053 | }
|
---|
| 1054 | }
|
---|
| 1055 |
|
---|
| 1056 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
| 1057 | // do NOT treate negative or nul values
|
---|
| 1058 | {
|
---|
[3155] | 1059 | if(lp_>0) cout<<"--- TurnMass2MeanNumber ---"<<endl;
|
---|
[3115] | 1060 |
|
---|
[3262] | 1061 | double mall=0., mgood=0.;
|
---|
| 1062 | int_8 nall=0, ngood=0;
|
---|
| 1063 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1064 | int_8 ip = IndexR(i,j,l);
|
---|
| 1065 | mall += data_[ip]; nall++;
|
---|
| 1066 | if(data_[ip]>0.) {mgood += data_[ip]; ngood++;}
|
---|
| 1067 | }
|
---|
| 1068 | if(ngood>0) mgood /= (double)ngood;
|
---|
| 1069 | if(nall>0) mall /= (double)nall;
|
---|
| 1070 | if(lp_>0) cout<<"...ngood="<<ngood<<" mgood="<<mgood
|
---|
| 1071 | <<", nall="<<nall<<" mall="<<mall<<endl;
|
---|
| 1072 | if(ngood<=0 || mall<=0.) {
|
---|
| 1073 | cout<<"TurnMass2MeanNumber_Error: ngood="<<ngood<<" <=0 || mall="<<mall<<" <=0"<<endl;
|
---|
| 1074 | throw RangeCheckError("TurnMass2MeanNumber_Error: ngood<=0 || mall<=0");
|
---|
| 1075 | }
|
---|
[3115] | 1076 |
|
---|
| 1077 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
| 1078 | // On en met uniquement dans les pixels de masse >0.
|
---|
| 1079 | // On NE met PAS a zero les pixels <0
|
---|
| 1080 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
| 1081 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
| 1082 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
| 1083 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
[3262] | 1084 | // nb de gal a mettre ds 1 px:
|
---|
| 1085 | double dn = n_by_mpc3*Vol_/ (mgood/mall) /(double)ngood;
|
---|
[3155] | 1086 | if(lp_>0) cout<<"...galaxy density move from "
|
---|
| 1087 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
[3262] | 1088 |
|
---|
[3115] | 1089 | double sum = 0.;
|
---|
[3129] | 1090 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1091 | int_8 ip = IndexR(i,j,l);
|
---|
| 1092 | data_[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
| 1093 | if(data_[ip]>0.) sum += data_[ip]; // mais on ne les compte pas
|
---|
[3115] | 1094 | }
|
---|
[3262] | 1095 |
|
---|
[3155] | 1096 | if(lp_>0) cout<<sum<<"...galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
[3115] | 1097 |
|
---|
| 1098 | return sum;
|
---|
| 1099 | }
|
---|
| 1100 |
|
---|
| 1101 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 1102 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1103 | {
|
---|
[3155] | 1104 | if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
|
---|
[3141] | 1105 | check_array_alloc();
|
---|
| 1106 |
|
---|
[3115] | 1107 | double sum = 0.;
|
---|
[3129] | 1108 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1109 | int_8 ip = IndexR(i,j,l);
|
---|
| 1110 | double v = data_[ip];
|
---|
[3115] | 1111 | if(v>0.) {
|
---|
| 1112 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
[3141] | 1113 | data_[ip] = (double)dn;
|
---|
[3115] | 1114 | sum += (double)dn;
|
---|
| 1115 | }
|
---|
| 1116 | }
|
---|
[3155] | 1117 | if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 1118 |
|
---|
| 1119 | return sum;
|
---|
| 1120 | }
|
---|
| 1121 |
|
---|
| 1122 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 1123 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1124 | // INPUT:
|
---|
| 1125 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 1126 | // axeslog = false : retourne la masse
|
---|
| 1127 | // = true : retourne le log10(mass)
|
---|
| 1128 | // RETURN la masse totale
|
---|
| 1129 | {
|
---|
[3155] | 1130 | if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
|
---|
[3141] | 1131 | check_array_alloc();
|
---|
| 1132 |
|
---|
[3115] | 1133 | double sum = 0.;
|
---|
[3129] | 1134 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1135 | int_8 ip = IndexR(i,j,l);
|
---|
| 1136 | double v = data_[ip];
|
---|
[3115] | 1137 | if(v>0.) {
|
---|
[3129] | 1138 | long ngal = long(v+0.1);
|
---|
[3141] | 1139 | data_[ip] = 0.;
|
---|
[3129] | 1140 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 1141 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 1142 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 1143 | data_[ip] += m;
|
---|
[3115] | 1144 | }
|
---|
[3141] | 1145 | sum += data_[ip];
|
---|
[3115] | 1146 | }
|
---|
| 1147 | }
|
---|
[3155] | 1148 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 1149 |
|
---|
| 1150 | return sum;
|
---|
| 1151 | }
|
---|
| 1152 |
|
---|
[3320] | 1153 | double GeneFluct3D::TurnNGal2MassQuick(SchechterMassDist& schmdist)
|
---|
| 1154 | // idem TurnNGal2Mass mais beaucoup plus rapide
|
---|
| 1155 | {
|
---|
| 1156 | if(lp_>0) cout<<"--- TurnNGal2MassQuick ---"<<endl;
|
---|
| 1157 | check_array_alloc();
|
---|
| 1158 |
|
---|
| 1159 | double sum = 0.;
|
---|
| 1160 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1161 | int_8 ip = IndexR(i,j,l);
|
---|
| 1162 | double v = data_[ip];
|
---|
| 1163 | if(v>0.) {
|
---|
| 1164 | long ngal = long(v+0.1);
|
---|
| 1165 | data_[ip] = schmdist.TirMass(ngal);
|
---|
| 1166 | sum += data_[ip];
|
---|
| 1167 | }
|
---|
| 1168 | }
|
---|
| 1169 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
| 1170 |
|
---|
| 1171 | return sum;
|
---|
| 1172 | }
|
---|
| 1173 |
|
---|
[3199] | 1174 | void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
|
---|
[3196] | 1175 | // Add AGN flux into simulation:
|
---|
| 1176 | // --- Procedure:
|
---|
| 1177 | // 1. lancer "cmvdefsurv" avec les parametres du survey
|
---|
[3199] | 1178 | // (au redshift de reference du survey)
|
---|
[3196] | 1179 | // et recuperer l'angle solide "angsol sr" du pixel elementaire
|
---|
| 1180 | // au centre du cube.
|
---|
| 1181 | // 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
|
---|
| 1182 | // 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
|
---|
| 1183 | // cad une moyenne <log10(S)> et un sigma "sig"
|
---|
[3199] | 1184 | // Attention: la distribution n'est pas gaussienne les "mean,sigma"
|
---|
| 1185 | // de l'histo ne sont pas vraiment ce que l'on veut
|
---|
[3196] | 1186 | // --- Limitations actuelle du code:
|
---|
[3271] | 1187 | // . les AGN sont supposes evoluer avec la meme loi de puissance pour tout theta,phi
|
---|
[3199] | 1188 | // . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
|
---|
| 1189 | // . la distribution est approximee a une gaussienne
|
---|
| 1190 | // ... C'est une approximation pour un observateur loin du centre du cube
|
---|
| 1191 | // et pour un cube peu epais / distance observateur
|
---|
[3196] | 1192 | // --- Parametres de la routine:
|
---|
[3271] | 1193 | // llfy : c'est le <log10(S)> du flux depose par les AGN
|
---|
| 1194 | // dans l'angle solide du pixel elementaire de reference du cube
|
---|
| 1195 | // lsigma : c'est le sigma de la distribution des log10(S)
|
---|
| 1196 | // powlaw : c'est la pente de la distribution cad que le flux "lmsol"
|
---|
[3199] | 1197 | // et considere comme le flux a 1.4GHz et qu'on suppose une loi
|
---|
| 1198 | // F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
|
---|
[3196] | 1199 | // - Comme on est en echelle log10():
|
---|
| 1200 | // on tire log10(Msol) + X
|
---|
| 1201 | // ou X est une realisation sur une gaussienne de variance "sig^2"
|
---|
| 1202 | // La masse realisee est donc: Msol*10^X
|
---|
| 1203 | // - Pas de probleme de pixel negatif car on a une multiplication!
|
---|
| 1204 | {
|
---|
[3199] | 1205 | if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
|
---|
[3196] | 1206 | check_array_alloc();
|
---|
| 1207 |
|
---|
[3271] | 1208 | if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
|
---|
[3199] | 1209 | char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
|
---|
| 1210 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1211 | }
|
---|
[3196] | 1212 |
|
---|
[3271] | 1213 | // Le flux des AGN en Jy et en mass solaire
|
---|
| 1214 | double fagnref = pow(10.,lfjy)*(dnu_ref_*1.e9); // Jy.Hz = W/m^2
|
---|
| 1215 | double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlum_ref_); // Msol
|
---|
| 1216 | if(lp_>0)
|
---|
| 1217 | cout<<"Au pixel de ref: fagnref="<<fagnref
|
---|
| 1218 | <<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
|
---|
[3196] | 1219 |
|
---|
[3199] | 1220 | if(powlaw!=0.) {
|
---|
[3271] | 1221 | // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
|
---|
| 1222 | magnref *= pow(1/(1.+redsh_ref_),powlaw);
|
---|
[3199] | 1223 | if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
|
---|
| 1224 | }
|
---|
| 1225 |
|
---|
| 1226 | // Les infos en fonction de l'indice "l" selon Oz
|
---|
| 1227 | vector<double> correction;
|
---|
| 1228 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3271] | 1229 | long nzmod = ((Nz_>10)?Nz_/10:1);
|
---|
[3199] | 1230 | for(long l=0;l<Nz_;l++) {
|
---|
[3271] | 1231 | double z = fabs(DZcom(l));
|
---|
[3199] | 1232 | double zred = interpinv(z);
|
---|
[3271] | 1233 | double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
|
---|
[3199] | 1234 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1235 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1236 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
[3271] | 1237 | // on a: Mass ~ DNu * Dlum^2 / Dtrcom^2
|
---|
| 1238 | double corr = dnu/dnu_ref_*pow(dtrc_ref_/dtrc*dlum/dlum_ref_,2.);
|
---|
| 1239 | // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
|
---|
| 1240 | if(powlaw!=0.) corr *= pow((1.+redsh_ref_)/(1.+zred),powlaw);
|
---|
[3199] | 1241 | correction.push_back(corr);
|
---|
[3271] | 1242 | if(lp_>0 && (l==0 || l==Nz_-1 || l%nzmod==0)) {
|
---|
| 1243 | cout<<"l="<<l<<" z="<<z<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
|
---|
| 1244 | <<" dtrc="<<dtrc<<" dlum="<<dlum
|
---|
| 1245 | <<" -> cor="<<corr<<endl;
|
---|
[3199] | 1246 | }
|
---|
| 1247 | }
|
---|
| 1248 |
|
---|
| 1249 | double sum=0., sum2=0., nsum=0.;
|
---|
| 1250 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
|
---|
| 1251 | double a = lsigma*NorRand();
|
---|
| 1252 | a = magnref*pow(10.,a);
|
---|
| 1253 | // On met le meme tirage le long de Oz (indice k)
|
---|
| 1254 | for(long l=0;l<Nz_;l++) {
|
---|
| 1255 | int_8 ip = IndexR(i,j,l);
|
---|
| 1256 | data_[ip] += a*correction[l];
|
---|
| 1257 | }
|
---|
| 1258 | sum += a; sum2 += a*a; nsum += 1.;
|
---|
| 1259 | }
|
---|
| 1260 |
|
---|
| 1261 | if(lp_>0 && nsum>1.) {
|
---|
[3196] | 1262 | sum /= nsum;
|
---|
| 1263 | sum2 = sum2/nsum - sum*sum;
|
---|
| 1264 | cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
|
---|
| 1265 | }
|
---|
| 1266 |
|
---|
| 1267 | }
|
---|
| 1268 |
|
---|
[3267] | 1269 | void GeneFluct3D::AddNoise2Real(double snoise,bool with_evol)
|
---|
[3115] | 1270 | // add noise to every pixels (meme les <=0 !)
|
---|
| 1271 | {
|
---|
[3267] | 1272 | if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<" evol="<<with_evol<<endl;
|
---|
[3141] | 1273 | check_array_alloc();
|
---|
| 1274 |
|
---|
[3271] | 1275 | vector<double> correction;
|
---|
| 1276 | InterpFunc *intercor = NULL;
|
---|
| 1277 |
|
---|
| 1278 | if(with_evol) {
|
---|
| 1279 | // Sigma_Noise(en mass) :
|
---|
| 1280 | // Slim ~ 1/sqrt(DNu) * sqrt(nlobe) en W/m^2Hz
|
---|
| 1281 | // Flim ~ sqrt(DNu) * sqrt(nlobe) en W/m^2
|
---|
| 1282 | // Mlim ~ sqrt(DNu) * (Dlum)^2 * sqrt(nlobe) en Msol
|
---|
| 1283 | // nlobe ~ 1/Dtrcom^2
|
---|
| 1284 | // Mlim ~ sqrt(DNu) * (Dlum)^2 / Dtrcom
|
---|
| 1285 | if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
|
---|
| 1286 | char *bla = "GeneFluct3D::AddNoise2Real_Error: set Observator and Cosmology first";
|
---|
| 1287 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1288 | }
|
---|
| 1289 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
| 1290 | long nsz = loscom2zred_.size(), nszmod=((nsz>10)? nsz/10: 1);
|
---|
| 1291 | for(long i=0;i<nsz;i++) {
|
---|
| 1292 | double d = interpinv.X(i);
|
---|
| 1293 | double zred = interpinv(d);
|
---|
| 1294 | double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
|
---|
| 1295 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1296 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1297 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
| 1298 | double corr = sqrt(dnu/dnu_ref_) * pow(dlum/dlum_ref_,2.) * dtrc_ref_/dtrc;
|
---|
| 1299 | if(lp_>0 && (i==0 || i==nsz-1 || i%nszmod==0))
|
---|
| 1300 | cout<<"i="<<i<<" d="<<d<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
|
---|
| 1301 | <<" dtrc="<<dtrc<<" dlum="<<dlum<<" -> cor="<<corr<<endl;
|
---|
| 1302 | correction.push_back(corr);
|
---|
| 1303 | }
|
---|
| 1304 | intercor = new InterpFunc(loscom2zred_min_,loscom2zred_max_,correction);
|
---|
| 1305 | }
|
---|
| 1306 |
|
---|
| 1307 | double dx2=0., dy2=0., dz2=0.;
|
---|
[3199] | 1308 | for(long i=0;i<Nx_;i++) {
|
---|
[3271] | 1309 | dx2 = DXcom(i); dx2 *= dx2;
|
---|
[3199] | 1310 | for(long j=0;j<Ny_;j++) {
|
---|
[3271] | 1311 | dy2 = DYcom(j); dy2 *= dy2;
|
---|
[3267] | 1312 | for(long l=0;l<Nz_;l++) {
|
---|
[3271] | 1313 | double corr = 1.;
|
---|
| 1314 | if(with_evol) {
|
---|
| 1315 | dz2 = DZcom(l); dz2 *= dz2; dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 1316 | corr = (*intercor)(dz2);
|
---|
| 1317 | }
|
---|
[3267] | 1318 | int_8 ip = IndexR(i,j,l);
|
---|
[3271] | 1319 | data_[ip] += snoise*corr*NorRand();
|
---|
[3199] | 1320 | }
|
---|
| 1321 | }
|
---|
| 1322 | }
|
---|
| 1323 |
|
---|
[3271] | 1324 | if(intercor!=NULL) delete intercor;
|
---|
[3199] | 1325 | }
|
---|
[3325] | 1326 |
|
---|
| 1327 | } // Fin namespace SOPHYA
|
---|