source: Sophya/trunk/Cosmo/SimLSS/genefluct3d.cc@ 3368

Last change on this file since 3368 was 3365, checked in by cmv, 18 years ago

1./ grosses modifs de structure pour cmvdefsurv.cc
2./ PoissRandLimit enleve de geneutils.{h,cc} et mis dans srandgen.{h,cc}

cmv 29/10/2007

File size: 47.7 KB
RevLine 
[3115]1#include "machdefs.h"
2#include <iostream>
3#include <stdlib.h>
4#include <stdio.h>
5#include <string.h>
6#include <math.h>
7#include <unistd.h>
8
9#include "tarray.h"
10#include "pexceptions.h"
11#include "perandom.h"
12#include "srandgen.h"
13
[3141]14#include "fabtcolread.h"
15#include "fabtwriter.h"
16#include "fioarr.h"
17
18#include "arrctcast.h"
19
[3115]20#include "constcosmo.h"
21#include "geneutils.h"
[3199]22#include "schechter.h"
[3115]23
24#include "genefluct3d.h"
25
[3349]26#define WITH_FFTW_THREAD
[3115]27
28#define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
29
[3325]30namespace SOPHYA {
31
[3115]32//-------------------------------------------------------
[3349]33GeneFluct3D::GeneFluct3D(long nx,long ny,long nz,double dx,double dy,double dz
34 ,unsigned short nthread,int lp)
[3115]35{
[3349]36 init_default();
[3115]37
[3349]38 lp_ = lp;
39 nthread_ = nthread;
[3115]40
[3349]41 setsize(nx,ny,nz,dx,dy,dz);
42 setalloc();
43 setpointers(false);
44 init_fftw();
[3141]45}
46
[3349]47GeneFluct3D::GeneFluct3D(unsigned short nthread)
[3154]48{
[3349]49 init_default();
50 setsize(2,2,2,1.,1.,1.);
51 nthread_ = nthread;
52 setalloc();
53 setpointers(false);
54 init_fftw();
[3154]55}
56
[3349]57GeneFluct3D::~GeneFluct3D(void)
[3157]58{
[3349]59 delete_fftw();
[3157]60}
61
[3349]62//-------------------------------------------------------
63void GeneFluct3D::init_default(void)
[3157]64{
[3349]65 Nx_ = Ny_ = Nz_ = 0;
66 is_set_fftw_plan = false;
67 nthread_ = 0;
68 lp_ = 0;
69 array_allocated_ = false;
70 cosmo_ = NULL;
71 growth_ = NULL;
72 redsh_ref_ = -999.;
73 kredsh_ref_ = 0.;
74 dred_ref_ = -999.;
75 loscom_ref_ = -999.;
76 dtrc_ref_ = dlum_ref_ = dang_ref_ = -999.;
77 nu_ref_ = dnu_ref_ = -999.;
78 loscom_min_ = loscom_max_ = -999.;
79 loscom2zred_min_ = loscom2zred_max_ = 0.;
80 xobs_[0] = xobs_[1] = xobs_[2] = 0.;
81 zred_.resize(0);
82 loscom_.resize(0);
83 loscom2zred_.resize(0);
[3157]84}
85
[3141]86void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
87{
[3155]88 if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
89 <<" D="<<dx<<","<<dy<<","<<dz<<endl;
[3141]90 if(nx<=0 || dx<=0.) {
[3267]91 char *bla = "GeneFluct3D::setsize_Error: bad value(s) for nn/dx";
[3199]92 cout<<bla<<endl; throw ParmError(bla);
[3115]93 }
94
[3141]95 // Les tailles des tableaux
[3115]96 Nx_ = nx;
97 Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
98 Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
[3141]99 N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
[3115]100 NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
101 NCz_ = Nz_/2 +1;
102 NTz_ = 2*NCz_;
103
104 // le pas dans l'espace (Mpc)
105 Dx_ = dx;
106 Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
107 Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
[3141]108 D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
[3115]109 dVol_ = Dx_*Dy_*Dz_;
110 Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
111
112 // Le pas dans l'espace de Fourier (Mpc^-1)
113 Dkx_ = 2.*M_PI/(Nx_*Dx_);
114 Dky_ = 2.*M_PI/(Ny_*Dy_);
115 Dkz_ = 2.*M_PI/(Nz_*Dz_);
[3141]116 Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
[3115]117 Dk3_ = Dkx_*Dky_*Dkz_;
118
119 // La frequence de Nyquist en k (Mpc^-1)
120 Knyqx_ = M_PI/Dx_;
121 Knyqy_ = M_PI/Dy_;
122 Knyqz_ = M_PI/Dz_;
[3141]123 Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
124}
[3115]125
[3141]126void GeneFluct3D::setalloc(void)
127{
[3155]128 if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
[3141]129 // Dimensionnement du tableau complex<r_8>
130 // ATTENTION: TArray adresse en memoire a l'envers du C
131 // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
132 sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
133 try {
134 T_.ReSize(3,SzK_);
135 array_allocated_ = true;
[3255]136 if(lp_>1) cout<<" allocating: "<<T_.Size()*sizeof(complex<r_8>)/1.e6<<" Mo"<<endl;
[3141]137 } catch (...) {
[3155]138 cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
[3141]139 }
140 T_.SetMemoryMapping(BaseArray::CMemoryMapping);
[3115]141}
142
[3141]143void GeneFluct3D::setpointers(bool from_real)
144{
[3155]145 if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
[3141]146 if(from_real) T_ = ArrCastR2C(R_);
147 else R_ = ArrCastC2R(T_);
148 // On remplit les pointeurs
149 fdata_ = (fftw_complex *) (&T_(0,0,0));
150 data_ = (double *) (&R_(0,0,0));
151}
152
[3349]153void GeneFluct3D::init_fftw(void)
[3141]154{
[3349]155 if( is_set_fftw_plan ) delete_fftw();
[3141]156
[3154]157 // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
[3155]158 if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
[3349]159#ifdef WITH_FFTW_THREAD
[3154]160 if(nthread_>0) {
[3155]161 cout<<"...Computing with "<<nthread_<<" threads"<<endl;
[3154]162 fftw_init_threads();
163 fftw_plan_with_nthreads(nthread_);
164 }
165#endif
[3155]166 if(lp_>1) cout<<"...forward plan"<<endl;
[3154]167 pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
[3155]168 if(lp_>1) cout<<"...backward plan"<<endl;
[3154]169 pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
[3349]170 is_set_fftw_plan = true;
[3154]171}
[3141]172
[3349]173void GeneFluct3D::delete_fftw(void)
174{
175 if( !is_set_fftw_plan ) return;
176 fftw_destroy_plan(pf_);
177 fftw_destroy_plan(pb_);
178#ifdef WITH_FFTW_THREAD
179 if(nthread_>0) fftw_cleanup_threads();
180#endif
181 is_set_fftw_plan = false;
182}
183
184void GeneFluct3D::check_array_alloc(void)
185// Pour tester si le tableau T_ est alloue
186{
187 if(array_allocated_) return;
188 char bla[90];
189 sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
190 cout<<bla<<endl; throw ParmError(bla);
191}
192
[3157]193//-------------------------------------------------------
[3349]194void GeneFluct3D::SetObservator(double redshref,double kredshref)
195// L'observateur est au redshift z=0
196// est situe sur la "perpendiculaire" a la face x,y
197// issue du centre de cette face
198// Il faut positionner le cube sur l'axe des z cad des redshifts:
199// redshref = redshift de reference
200// Si redshref<0 alors redshref=0
201// kredshref = indice (en double) correspondant a ce redshift
202// Si kredshref<0 alors kredshref=nz/2 (milieu du cube)
203// Exemple: redshref=1.5 kredshref=250.75
204// -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
205{
206 if(redshref<0.) redshref = 0.;
207 if(kredshref<0.) {
208 if(Nz_<=0) {
209 char *bla = "GeneFluct3D::SetObservator_Error: for kredsh_ref<0 define cube geometry first";
210 cout<<bla<<endl; throw ParmError(bla);
211 }
212 kredshref = Nz_/2.;
213 }
214 redsh_ref_ = redshref;
215 kredsh_ref_ = kredshref;
216 if(lp_>0)
217 cout<<"--- GeneFluct3D::SetObservator zref="<<redsh_ref_<<" kref="<<kredsh_ref_<<endl;
218}
219
220void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
221{
222 cosmo_ = &cosmo;
223 if(lp_>1) cosmo_->Print();
224}
225
226void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
227{
228 growth_ = &growth;
229}
230
[3199]231long GeneFluct3D::LosComRedshift(double zinc,long npoints)
[3157]232// Given a position of the cube relative to the observer
233// and a cosmology
234// (SetObservator() and SetCosmology() should have been called !)
235// This routine filled:
236// the vector "zred_" of scanned redshift (by zinc increments)
237// the vector "loscom_" of corresponding los comoving distance
[3199]238// -- Input:
239// zinc : redshift increment for computation
240// npoints : number of points required for inverting loscom -> zred
[3157]241//
242{
[3199]243 if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
[3154]244
[3271]245 if(cosmo_ == NULL || redsh_ref_<0.) {
[3199]246 char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first";
247 cout<<bla<<endl; throw ParmError(bla);
[3157]248 }
249
[3271]250 // La distance angulaire/luminosite/Dnu au pixel de reference
251 dred_ref_ = Dz_/(cosmo_->Dhubble()/cosmo_->E(redsh_ref_));
252 loscom_ref_ = cosmo_->Dloscom(redsh_ref_);
253 dtrc_ref_ = cosmo_->Dtrcom(redsh_ref_);
254 dlum_ref_ = cosmo_->Dlum(redsh_ref_);
255 dang_ref_ = cosmo_->Dang(redsh_ref_);
256 nu_ref_ = Fr_HyperFin_Par/(1.+redsh_ref_); // GHz
257 dnu_ref_ = Fr_HyperFin_Par *dred_ref_/pow(1.+redsh_ref_,2.); // GHz
258 if(lp_>0) {
259 cout<<"...reference pixel redshref="<<redsh_ref_
260 <<", dredref="<<dred_ref_
261 <<", nuref="<<nu_ref_ <<" GHz"
262 <<", dnuref="<<dnu_ref_ <<" GHz"<<endl
263 <<" dlosc="<<loscom_ref_<<" Mpc com"
264 <<", dtrc="<<dtrc_ref_<<" Mpc com"
265 <<", dlum="<<dlum_ref_<<" Mpc"
266 <<", dang="<<dang_ref_<<" Mpc"<<endl;
267 }
268
[3199]269 // On calcule les coordonnees de l'observateur dans le repere du cube
270 // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
271 // L'observateur est sur un axe centre sur le milieu de la face Oxy
[3157]272 xobs_[0] = Nx_/2.*Dx_;
273 xobs_[1] = Ny_/2.*Dy_;
[3271]274 xobs_[2] = kredsh_ref_*Dz_ - loscom_ref_;
[3157]275
276 // L'observateur est-il dans le cube?
277 bool obs_in_cube = false;
278 if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
279
280 // Find MINIMUM los com distance to the observer:
281 // c'est le centre de la face a k=0
282 // (ou zero si l'observateur est dans le cube)
283 loscom_min_ = 0.;
284 if(!obs_in_cube) loscom_min_ = -xobs_[2];
285
[3271]286 // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
287 if(loscom_min_<=1.e-50)
288 for(int i=0;i<50;i++)
289 cout<<"ATTENTION TOUTES LES PARTIES DU CODE NE MARCHENT PAS POUR UN OBSERVATEUR DANS LE CUBE"<<endl;
290 // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
291
292
[3157]293 // Find MAXIMUM los com distance to the observer:
294 // ou que soit positionne l'observateur, la distance
295 // maximal est sur un des coins du cube
296 loscom_max_ = 0.;
297 for(long i=0;i<=1;i++) {
[3271]298 double dx2 = DXcom(i*(Nx_-1)); dx2 *= dx2;
[3157]299 for(long j=0;j<=1;j++) {
[3271]300 double dy2 = DYcom(j*(Ny_-1)); dy2 *= dy2;
[3157]301 for(long k=0;k<=1;k++) {
[3271]302 double dz2 = DZcom(k*(Nz_-1)); dz2 *= dz2;
[3157]303 dz2 = sqrt(dx2+dy2+dz2);
304 if(dz2>loscom_max_) loscom_max_ = dz2;
305 }
306 }
307 }
308 if(lp_>0) {
[3271]309 cout<<"...zref="<<redsh_ref_<<" kzref="<<kredsh_ref_<<" losref="<<loscom_ref_<<" Mpc\n"
[3157]310 <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
311 <<" in_cube="<<obs_in_cube
[3271]312 <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc (com)"<<endl;
[3157]313 }
314
[3199]315 // Fill the corresponding vectors for loscom and zred
[3267]316 // Be shure to have one dlc <loscom_min and one >loscom_max
[3199]317 if(zinc<=0.) zinc = 0.01;
[3157]318 for(double z=0.; ; z+=zinc) {
319 double dlc = cosmo_->Dloscom(z);
320 if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
321 zred_.push_back(z);
322 loscom_.push_back(dlc);
323 z += zinc;
[3199]324 if(dlc>loscom_max_) break; // on sort apres avoir stoque un dlc>dlcmax
[3157]325 }
326
327 if(lp_>0) {
[3199]328 long n = zred_.size();
329 cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
[3157]330 if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
331 if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
332 cout<<endl;
333 }
334
[3199]335 // Compute the parameters and tables needed for inversion loscom->zred
336 if(npoints<3) npoints = zred_.size();
337 InverseFunc invfun(zred_,loscom_);
338 invfun.ComputeParab(npoints,loscom2zred_);
339 loscom2zred_min_ = invfun.YMin();
340 loscom2zred_max_ = invfun.YMax();
341
342 if(lp_>0) {
343 long n = loscom2zred_.size();
344 cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
345 <<" los_min="<<loscom2zred_min_
346 <<" los_max="<<loscom2zred_max_
347 <<" -> zred=[";
348 if(n>0) cout<<loscom2zred_[0];
349 cout<<",";
350 if(n>1) cout<<loscom2zred_[n-1];
351 cout<<"]"<<endl;
352 if(lp_>1 && n>0)
353 for(int i=0;i<n;i++)
[3330]354 if(i<2 || abs(i-n/2)<2 || i>=n-2)
355 cout<<" i="<<i
356 <<" d="<<loscom2zred_min_+i*(loscom2zred_max_-loscom2zred_min_)/(n-1.)
357 <<" Mpc z="<<loscom2zred_[i]<<endl;
[3199]358 }
359
360 return zred_.size();
[3157]361}
362
[3115]363//-------------------------------------------------------
[3141]364void GeneFluct3D::WriteFits(string cfname,int bitpix)
365{
[3155]366 cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
[3141]367 try {
368 FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
369 fwrt.WriteKey("NX",Nx_," axe transverse 1");
370 fwrt.WriteKey("NY",Ny_," axe transverse 2");
371 fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
372 fwrt.WriteKey("DX",Dx_," Mpc");
373 fwrt.WriteKey("DY",Dy_," Mpc");
374 fwrt.WriteKey("DZ",Dz_," Mpc");
375 fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
376 fwrt.WriteKey("DKY",Dky_," Mpc^-1");
377 fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
[3271]378 fwrt.WriteKey("ZREF",redsh_ref_," reference redshift");
379 fwrt.WriteKey("KZREF",kredsh_ref_," reference redshift on z axe");
[3141]380 fwrt.Write(R_);
381 } catch (PThrowable & exc) {
382 cout<<"Exception : "<<(string)typeid(exc).name()
383 <<" - Msg= "<<exc.Msg()<<endl;
384 return;
385 } catch (...) {
386 cout<<" some other exception was caught !"<<endl;
387 return;
388 }
389}
390
391void GeneFluct3D::ReadFits(string cfname)
392{
[3155]393 cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
[3141]394 try {
395 FitsImg3DRead fimg(cfname.c_str(),0,5);
396 fimg.Read(R_);
397 long nx = fimg.ReadKeyL("NX");
398 long ny = fimg.ReadKeyL("NY");
399 long nz = fimg.ReadKeyL("NZ");
400 double dx = fimg.ReadKey("DX");
401 double dy = fimg.ReadKey("DY");
402 double dz = fimg.ReadKey("DZ");
[3154]403 double zref = fimg.ReadKey("ZREF");
404 double kzref = fimg.ReadKey("KZREF");
[3141]405 setsize(nx,ny,nz,dx,dy,dz);
406 setpointers(true);
[3154]407 init_fftw();
408 SetObservator(zref,kzref);
[3330]409 array_allocated_ = true;
[3141]410 } catch (PThrowable & exc) {
411 cout<<"Exception : "<<(string)typeid(exc).name()
412 <<" - Msg= "<<exc.Msg()<<endl;
413 return;
414 } catch (...) {
415 cout<<" some other exception was caught !"<<endl;
416 return;
417 }
418}
419
420void GeneFluct3D::WritePPF(string cfname,bool write_real)
421// On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
422{
[3155]423 cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
[3141]424 try {
425 R_.Info()["NX"] = (int_8)Nx_;
426 R_.Info()["NY"] = (int_8)Ny_;
427 R_.Info()["NZ"] = (int_8)Nz_;
428 R_.Info()["DX"] = (r_8)Dx_;
429 R_.Info()["DY"] = (r_8)Dy_;
430 R_.Info()["DZ"] = (r_8)Dz_;
[3271]431 R_.Info()["ZREF"] = (r_8)redsh_ref_;
432 R_.Info()["KZREF"] = (r_8)kredsh_ref_;
[3141]433 POutPersist pos(cfname.c_str());
434 if(write_real) pos << PPFNameTag("rgen") << R_;
435 else pos << PPFNameTag("pkgen") << T_;
436 } catch (PThrowable & exc) {
437 cout<<"Exception : "<<(string)typeid(exc).name()
438 <<" - Msg= "<<exc.Msg()<<endl;
439 return;
440 } catch (...) {
441 cout<<" some other exception was caught !"<<endl;
442 return;
443 }
444}
445
446void GeneFluct3D::ReadPPF(string cfname)
447{
[3155]448 cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
[3141]449 try {
450 bool from_real = true;
451 PInPersist pis(cfname.c_str());
452 string name_tag_k = "pkgen";
453 bool found_tag_k = pis.GotoNameTag("pkgen");
454 if(found_tag_k) {
[3262]455 cout<<" ...reading spectrum into TArray<complex <r_8> >"<<endl;
[3141]456 pis >> PPFNameTag("pkgen") >> T_;
457 from_real = false;
458 } else {
459 cout<<" ...reading space into TArray<r_8>"<<endl;
460 pis >> PPFNameTag("rgen") >> R_;
461 }
[3154]462 setpointers(from_real); // a mettre ici pour relire les DVInfo
[3141]463 int_8 nx = R_.Info()["NX"];
464 int_8 ny = R_.Info()["NY"];
465 int_8 nz = R_.Info()["NZ"];
466 r_8 dx = R_.Info()["DX"];
467 r_8 dy = R_.Info()["DY"];
468 r_8 dz = R_.Info()["DZ"];
[3154]469 r_8 zref = R_.Info()["ZREF"];
470 r_8 kzref = R_.Info()["KZREF"];
[3141]471 setsize(nx,ny,nz,dx,dy,dz);
[3154]472 init_fftw();
473 SetObservator(zref,kzref);
[3330]474 array_allocated_ = true;
[3141]475 } catch (PThrowable & exc) {
476 cout<<"Exception : "<<(string)typeid(exc).name()
477 <<" - Msg= "<<exc.Msg()<<endl;
478 return;
479 } catch (...) {
480 cout<<" some other exception was caught !"<<endl;
481 return;
482 }
483}
484
[3281]485void GeneFluct3D::WriteSlicePPF(string cfname)
486// On ecrit 3 tranches du cube selon chaque axe
487{
[3283]488 cout<<"--- GeneFluct3D::WriteSlicePPF: Writing Cube Slices "<<cfname<<endl;
[3281]489 try {
490
491 POutPersist pos(cfname.c_str());
492 TMatrix<r_4> S;
493 char str[16];
494 long i,j,l;
495
496 // Tranches en Z
497 for(int s=0;s<3;s++) {
498 S.ReSize(Nx_,Ny_);
499 if(s==0) l=0; else if(s==1) l=(Nz_+1)/2; else l=Nz_-1;
[3289]500 sprintf(str,"z%ld",l);
[3281]501 for(i=0;i<Nx_;i++) for(j=0;j<Ny_;j++) S(i,j)=data_[IndexR(i,j,l)];
502 pos<<PPFNameTag(str)<<S; S.RenewObjId();
503 }
504
505 // Tranches en Y
506 for(int s=0;s<3;s++) {
507 S.ReSize(Nz_,Nx_);
508 if(s==0) j=0; else if(s==1) j=(Ny_+1)/2; else j=Ny_-1;
[3289]509 sprintf(str,"y%ld",j);
[3281]510 for(i=0;i<Nx_;i++) for(l=0;l<Nz_;l++) S(l,i)=data_[IndexR(i,j,l)];
511 pos<<PPFNameTag(str)<<S; S.RenewObjId();
512 }
513
514 // Tranches en X
515 for(int s=0;s<3;s++) {
516 S.ReSize(Nz_,Ny_);
517 if(s==0) i=0; else if(s==1) i=(Nx_+1)/2; else i=Nx_-1;
[3289]518 sprintf(str,"x%ld",i);
[3281]519 for(j=0;j<Ny_;j++) for(l=0;l<Nz_;l++) S(l,j)=data_[IndexR(i,j,l)];
520 pos<<PPFNameTag(str)<<S; S.RenewObjId();
521 }
522
523 } catch (PThrowable & exc) {
524 cout<<"Exception : "<<(string)typeid(exc).name()
525 <<" - Msg= "<<exc.Msg()<<endl;
526 return;
527 } catch (...) {
528 cout<<" some other exception was caught !"<<endl;
529 return;
530 }
531}
532
[3141]533//-------------------------------------------------------
[3115]534void GeneFluct3D::Print(void)
535{
[3141]536 cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
[3115]537 cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
538 <<NRtot_<<endl;
539 cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
540 <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
541 cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
542 cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
543 <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
544 cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
545 cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
546 <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
547 cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
[3271]548 cout<<"Redshift "<<redsh_ref_<<" for z axe at k="<<kredsh_ref_<<endl;
[3115]549}
550
551//-------------------------------------------------------
[3141]552void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
[3115]553// cf ComputeFourier() mais avec autre methode de realisation du spectre
554// (attention on fait une fft pour realiser le spectre)
555{
556
557 // --- realisation d'un tableau de tirage gaussiens
[3155]558 if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
[3115]559 // On tient compte du pb de normalisation de FFTW3
560 double sntot = sqrt((double)NRtot_);
[3129]561 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]562 int_8 ip = IndexR(i,j,l);
563 data_[ip] = NorRand()/sntot;
[3115]564 }
565
566 // --- realisation d'un tableau de tirage gaussiens
[3155]567 if(lp_>0) cout<<"...before fft real ---"<<endl;
[3115]568 fftw_execute(pf_);
569
570 // --- On remplit avec une realisation
[3157]571 if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
[3115]572 T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
[3129]573 long lmod = Nx_/10; if(lmod<1) lmod=1;
574 for(long i=0;i<Nx_;i++) {
575 long ii = (i>Nx_/2) ? Nx_-i : i;
[3115]576 double kx = ii*Dkx_; kx *= kx;
[3155]577 if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
[3129]578 for(long j=0;j<Ny_;j++) {
579 long jj = (j>Ny_/2) ? Ny_-j : j;
[3115]580 double ky = jj*Dky_; ky *= ky;
[3129]581 for(long l=0;l<NCz_;l++) {
[3115]582 double kz = l*Dkz_; kz *= kz;
583 if(i==0 && j==0 && l==0) continue; // Suppression du continu
584 double k = sqrt(kx+ky+kz);
585 // cf normalisation: Peacock, Cosmology, formule 16.38 p504
[3141]586 double pk = pk_at_z(k)/Vol_;
[3115]587 // ici pas de "/2" a cause de la remarque ci-dessus
588 T_(l,j,i) *= sqrt(pk);
589 }
590 }
591 }
592
[3155]593 if(lp_>0) cout<<"...computing power"<<endl;
[3115]594 double p = compute_power_carte();
[3155]595 if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
[3115]596
597}
598
599//-------------------------------------------------------
[3141]600void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
601// Calcule une realisation du spectre "pk_at_z"
[3115]602// Attention: dans TArray le premier indice varie le + vite
603// Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
604// FFTW3: on note N=Nx*Ny*Nz
605// f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
606// sum(f(x_i)^2) = S
607// sum(F(nu_i)^2) = S*N
608// sum(fb(x_i)^2) = S*N^2
609{
610 // --- RaZ du tableau
611 T_ = complex<r_8>(0.);
612
613 // --- On remplit avec une realisation
[3155]614 if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
[3129]615 long lmod = Nx_/10; if(lmod<1) lmod=1;
616 for(long i=0;i<Nx_;i++) {
617 long ii = (i>Nx_/2) ? Nx_-i : i;
[3115]618 double kx = ii*Dkx_; kx *= kx;
[3155]619 if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
[3129]620 for(long j=0;j<Ny_;j++) {
621 long jj = (j>Ny_/2) ? Ny_-j : j;
[3115]622 double ky = jj*Dky_; ky *= ky;
[3129]623 for(long l=0;l<NCz_;l++) {
[3115]624 double kz = l*Dkz_; kz *= kz;
625 if(i==0 && j==0 && l==0) continue; // Suppression du continu
626 double k = sqrt(kx+ky+kz);
627 // cf normalisation: Peacock, Cosmology, formule 16.38 p504
[3141]628 double pk = pk_at_z(k)/Vol_;
[3115]629 // Explication de la division par 2: voir perandom.cc
630 // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
631 T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
632 }
633 }
634 }
635
636 manage_coefficients(); // gros effet pour les spectres que l'on utilise !
637
[3155]638 if(lp_>0) cout<<"...computing power"<<endl;
[3115]639 double p = compute_power_carte();
[3155]640 if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
[3115]641
642}
643
[3129]644long GeneFluct3D::manage_coefficients(void)
[3115]645// Take into account the real and complexe conjugate coefficients
646// because we want a realization of a real data in real space
647{
[3155]648 if(lp_>1) cout<<"...managing coefficients"<<endl;
[3141]649 check_array_alloc();
[3115]650
651 // 1./ Le Continu et Nyquist sont reels
[3129]652 long nreal = 0;
653 for(long kk=0;kk<2;kk++) {
654 long k=0; // continu
[3115]655 if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
[3129]656 for(long jj=0;jj<2;jj++) {
657 long j=0;
[3115]658 if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
[3129]659 for(long ii=0;ii<2;ii++) {
660 long i=0;
[3115]661 if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
[3141]662 int_8 ip = IndexC(i,j,k);
663 //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
664 fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
[3115]665 nreal++;
666 }
667 }
668 }
[3155]669 if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
[3115]670
671 // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
672
673 // a./ les lignes et colonnes du continu et de nyquist
[3129]674 long nconj1 = 0;
675 for(long kk=0;kk<2;kk++) {
676 long k=0; // continu
[3115]677 if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
[3129]678 for(long jj=0;jj<2;jj++) { // selon j
679 long j=0;
[3115]680 if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
[3129]681 for(long i=1;i<(Nx_+1)/2;i++) {
[3141]682 int_8 ip = IndexC(i,j,k);
683 int_8 ip1 = IndexC(Nx_-i,j,k);
684 fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
[3115]685 nconj1++;
686 }
687 }
[3129]688 for(long ii=0;ii<2;ii++) {
689 long i=0;
[3115]690 if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
[3129]691 for(long j=1;j<(Ny_+1)/2;j++) {
[3141]692 int_8 ip = IndexC(i,j,k);
693 int_8 ip1 = IndexC(i,Ny_-j,k);
694 fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
[3115]695 nconj1++;
696 }
697 }
698 }
[3155]699 if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
[3115]700
701 // b./ les lignes et colonnes hors continu et de nyquist
[3129]702 long nconj2 = 0;
703 for(long kk=0;kk<2;kk++) {
704 long k=0; // continu
[3115]705 if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
[3129]706 for(long j=1;j<(Ny_+1)/2;j++) {
[3115]707 if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
[3129]708 for(long i=1;i<Nx_;i++) {
[3115]709 if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
[3141]710 int_8 ip = IndexC(i,j,k);
711 int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
712 fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
[3115]713 nconj2++;
714 }
715 }
716 }
[3155]717 if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
[3115]718
[3155]719 if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
[3115]720
721 return nreal+nconj1+nconj2;
722}
723
724double GeneFluct3D::compute_power_carte(void)
725// Calcul la puissance de la realisation du spectre Pk
726{
[3141]727 check_array_alloc();
728
[3115]729 double s2 = 0.;
[3129]730 for(long l=0;l<NCz_;l++)
731 for(long j=0;j<Ny_;j++)
732 for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
[3115]733
734 double s20 = 0.;
[3129]735 for(long j=0;j<Ny_;j++)
736 for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
[3115]737
738 double s2n = 0.;
739 if(Nz_%2==0)
[3129]740 for(long j=0;j<Ny_;j++)
741 for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
[3115]742
743 return 2.*s2 -s20 -s2n;
744}
745
746//-------------------------------------------------------------------
747void GeneFluct3D::FilterByPixel(void)
748// Filtrage par la fonction fenetre du pixel (parallelepipede)
[3120]749// TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
[3115]750// e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
[3120]751// = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
752// Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
753// avec y = k_x*dx/2
[3115]754{
[3155]755 if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
[3141]756 check_array_alloc();
757
[3129]758 for(long i=0;i<Nx_;i++) {
759 long ii = (i>Nx_/2) ? Nx_-i : i;
[3120]760 double kx = ii*Dkx_ *Dx_/2;
[3330]761 double pk_x = pixelfilter(kx);
[3129]762 for(long j=0;j<Ny_;j++) {
763 long jj = (j>Ny_/2) ? Ny_-j : j;
[3120]764 double ky = jj*Dky_ *Dy_/2;
[3330]765 double pk_y = pixelfilter(ky);
[3129]766 for(long l=0;l<NCz_;l++) {
[3120]767 double kz = l*Dkz_ *Dz_/2;
[3141]768 double pk_z = pixelfilter(kz);
769 T_(l,j,i) *= pk_x*pk_y*pk_z;
[3115]770 }
771 }
772 }
773
774}
775
776//-------------------------------------------------------------------
[3331]777void GeneFluct3D::ApplyGrowthFactor(int type_evol)
[3157]778// Apply Growth to real space
779// Using the correspondance between redshift and los comoving distance
780// describe in vector "zred_" "loscom_"
[3331]781// type_evol = 1 : evolution de la puissance du bruit avec la distance a l'observateur
782// 2 : evolution de la puissance du bruit avec la distance du plan Z
783// (tous les pixels d'un plan Z sont mis au meme redshift z que celui du milieu)
[3157]784{
[3331]785 if(lp_>0) cout<<"--- ApplyGrowthFactor: evol="<<type_evol<<endl;
[3157]786 check_array_alloc();
787
788 if(growth_ == NULL) {
[3199]789 char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
790 cout<<bla<<endl; throw ParmError(bla);
[3157]791 }
[3331]792 if(type_evol<1 || type_evol>2) {
793 char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: bad type_evol value";
794 cout<<bla<<endl; throw ParmError(bla);
795 }
[3157]796
[3199]797 InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
[3157]798 unsigned short ok;
799
800 //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
801 for(long i=0;i<Nx_;i++) {
[3331]802 double dx2 = DXcom(i); dx2 *= dx2;
[3157]803 for(long j=0;j<Ny_;j++) {
[3331]804 double dy2 = DYcom(j); dy2 *= dy2;
[3157]805 for(long l=0;l<Nz_;l++) {
[3331]806 double dz = DZcom(l);
807 if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
808 else dz = fabs(dz); // tous les plans Z au meme redshift
809 double z = interpinv(dz);
[3157]810 //CHECK: hgr.Add(z);
811 double dzgr = (*growth_)(z); // interpolation par morceau
812 //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
813 //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
814 int_8 ip = IndexR(i,j,l);
815 data_[ip] *= dzgr;
816 }
817 }
818 }
819
820 //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
821
822}
823
824//-------------------------------------------------------------------
[3115]825void GeneFluct3D::ComputeReal(void)
826// Calcule une realisation dans l'espace reel
827{
[3155]828 if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
[3141]829 check_array_alloc();
[3115]830
831 // On fait la FFT
832 fftw_execute(pb_);
833}
834
835//-------------------------------------------------------------------
836void GeneFluct3D::ReComputeFourier(void)
837{
[3155]838 if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
[3141]839 check_array_alloc();
[3115]840
841 // On fait la FFT
842 fftw_execute(pf_);
843 // On corrige du pb de la normalisation de FFTW3
844 double v = (double)NRtot_;
[3129]845 for(long i=0;i<Nx_;i++)
846 for(long j=0;j<Ny_;j++)
847 for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
[3115]848
849}
850
851//-------------------------------------------------------------------
[3141]852int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
853// Compute spectrum from "T" and fill HistoErr "herr"
[3115]854// T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
855// cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
856{
[3155]857 if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
[3141]858 check_array_alloc();
[3115]859
[3141]860 if(herr.NBins()<0) return -1;
861 herr.Zero();
[3115]862
863 // Attention a l'ordre
[3129]864 for(long i=0;i<Nx_;i++) {
865 long ii = (i>Nx_/2) ? Nx_-i : i;
[3115]866 double kx = ii*Dkx_; kx *= kx;
[3129]867 for(long j=0;j<Ny_;j++) {
868 long jj = (j>Ny_/2) ? Ny_-j : j;
[3115]869 double ky = jj*Dky_; ky *= ky;
[3129]870 for(long l=0;l<NCz_;l++) {
[3330]871 double kz = l*Dkz_;
872 double k = sqrt(kx+ky+kz*kz);
[3115]873 double pk = MODULE2(T_(l,j,i));
[3141]874 herr.Add(k,pk);
[3115]875 }
876 }
877 }
[3150]878 herr.ToVariance();
[3115]879
880 // renormalize to directly compare to original spectrum
881 double norm = Vol_;
[3141]882 herr *= norm;
[3115]883
884 return 0;
885}
886
[3141]887int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
888{
[3155]889 if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
[3141]890 check_array_alloc();
891
892 if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
893 herr.Zero();
894
895 // Attention a l'ordre
896 for(long i=0;i<Nx_;i++) {
897 long ii = (i>Nx_/2) ? Nx_-i : i;
898 double kx = ii*Dkx_; kx *= kx;
899 for(long j=0;j<Ny_;j++) {
900 long jj = (j>Ny_/2) ? Ny_-j : j;
901 double ky = jj*Dky_; ky *= ky;
902 double kt = sqrt(kx+ky);
903 for(long l=0;l<NCz_;l++) {
904 double kz = l*Dkz_;
905 double pk = MODULE2(T_(l,j,i));
906 herr.Add(kt,kz,pk);
907 }
908 }
909 }
[3150]910 herr.ToVariance();
[3141]911
912 // renormalize to directly compare to original spectrum
913 double norm = Vol_;
914 herr *= norm;
915
916 return 0;
917}
918
[3330]919//-------------------------------------------------------------------
920int GeneFluct3D::ComputeSpectrum(HistoErr& herr,double sigma,bool pixcor)
921// Compute spectrum from "T" and fill HistoErr "herr"
922// AVEC la soustraction du niveau de bruit et la correction par filterpixel()
923// Si on ne fait pas ca, alors on obtient un spectre non-isotrope!
924//
925// T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
926// cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
927{
928 if(lp_>0) cout<<"--- ComputeSpectrum: sigma="<<sigma<<endl;
929 check_array_alloc();
930
931 if(sigma<=0.) sigma = 0.;
932 double sigma2 = sigma*sigma / (double)NRtot_;
933
934 if(herr.NBins()<0) return -1;
935 herr.Zero();
936
937 TVector<r_8> vfz(NCz_);
938 if(pixcor) // kz = l*Dkz_
939 for(long l=0;l<NCz_;l++) {vfz(l)=pixelfilter(l*Dkz_ *Dz_/2); vfz(l)*=vfz(l);}
940
941 // Attention a l'ordre
942 for(long i=0;i<Nx_;i++) {
943 long ii = (i>Nx_/2) ? Nx_-i : i;
944 double kx = ii*Dkx_;
945 double fx = (pixcor) ? pixelfilter(kx*Dx_/2): 1.;
946 kx *= kx; fx *= fx;
947 for(long j=0;j<Ny_;j++) {
948 long jj = (j>Ny_/2) ? Ny_-j : j;
949 double ky = jj*Dky_;
950 double fy = (pixcor) ? pixelfilter(ky*Dy_/2): 1.;
951 ky *= ky; fy *= fy;
952 for(long l=0;l<NCz_;l++) {
953 double kz = l*Dkz_;
954 double k = sqrt(kx+ky+kz*kz);
955 double pk = MODULE2(T_(l,j,i)) - sigma2;
956 double fz = (pixcor) ? vfz(l): 1.;
957 double f = fx*fy*fz;
958 if(f>0.) herr.Add(k,pk/f);
959 }
960 }
961 }
962 herr.ToVariance();
[3351]963 for(int i=0;i<herr.NBins();i++) herr(i) += sigma2;
[3330]964
965 // renormalize to directly compare to original spectrum
966 double norm = Vol_;
967 herr *= norm;
968
969 return 0;
970}
971
972int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr,double sigma,bool pixcor)
973// AVEC la soustraction du niveau de bruit et la correction par filterpixel()
974{
975 if(lp_>0) cout<<"--- ComputeSpectrum2D: sigma="<<sigma<<endl;
976 check_array_alloc();
977
978 if(sigma<=0.) sigma = 0.;
979 double sigma2 = sigma*sigma / (double)NRtot_;
980
981 if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
982 herr.Zero();
983
984 TVector<r_8> vfz(NCz_);
985 if(pixcor) // kz = l*Dkz_
986 for(long l=0;l<NCz_;l++) {vfz(l)=pixelfilter(l*Dkz_ *Dz_/2); vfz(l)*=vfz(l);}
987
988 // Attention a l'ordre
989 for(long i=0;i<Nx_;i++) {
990 long ii = (i>Nx_/2) ? Nx_-i : i;
991 double kx = ii*Dkx_;
992 double fx = (pixcor) ? pixelfilter(kx*Dx_/2) : 1.;
993 kx *= kx; fx *= fx;
994 for(long j=0;j<Ny_;j++) {
995 long jj = (j>Ny_/2) ? Ny_-j : j;
996 double ky = jj*Dky_;
997 double fy = (pixcor) ? pixelfilter(ky*Dy_/2) : 1.;
998 ky *= ky; fy *= fy;
999 double kt = sqrt(kx+ky);
1000 for(long l=0;l<NCz_;l++) {
1001 double kz = l*Dkz_;
1002 double pk = MODULE2(T_(l,j,i)) - sigma2;
1003 double fz = (pixcor) ? vfz(l): 1.;
1004 double f = fx*fy*fz;
1005 if(f>0.) herr.Add(kt,kz,pk/f);
1006 }
1007 }
1008 }
1009 herr.ToVariance();
[3351]1010 for(int i=0;i<herr.NBinX();i++)
1011 for(int j=0;j<herr.NBinY();j++) herr(i,j) += sigma2;
[3330]1012
1013 // renormalize to directly compare to original spectrum
1014 double norm = Vol_;
1015 herr *= norm;
1016
1017 return 0;
1018}
1019
[3115]1020//-------------------------------------------------------
[3134]1021int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
[3115]1022// Recompute MASS variance in spherical top-hat (rayon=R)
[3353]1023// Par definition: SigmaR^2 = <(M-<M>)^2>/<M>^2
1024// ou M = masse dans sphere de rayon R
[3354]1025// --- ATTENTION: la variance calculee a une tres grande dispersion
1026// (surtout si le volume du cube est petit). Pour verifier
1027// que le sigmaR calcule par cette methode est en accord avec
1028// le sigmaR en input, il faut faire plusieurs simulations (~100)
1029// et regarder la moyenne des sigmaR reconstruits
[3115]1030{
[3262]1031 if(lp_>0) cout<<"--- VarianceFrReal R="<<R<<endl;
[3141]1032 check_array_alloc();
1033
[3353]1034 long dnx = long(R/Dx_)+1; if(dnx<=0) dnx = 1;
1035 long dny = long(R/Dy_)+1; if(dny<=0) dny = 1;
1036 long dnz = long(R/Dz_)+1; if(dnz<=0) dnz = 1;
[3155]1037 if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
[3115]1038
[3353]1039 double sum=0., sum2=0., sn=0., r2 = R*R;
1040 int_8 nsum=0;
[3115]1041
[3353]1042 for(long i=dnx;i<Nx_-dnx;i+=2*dnx) {
1043 for(long j=dny;j<Ny_-dny;j+=2*dny) {
1044 for(long l=dnz;l<Nz_-dnz;l+=2*dnz) {
1045 double m=0.; int_8 n=0;
[3129]1046 for(long ii=i-dnx;ii<=i+dnx;ii++) {
[3115]1047 double x = (ii-i)*Dx_; x *= x;
[3129]1048 for(long jj=j-dny;jj<=j+dny;jj++) {
[3115]1049 double y = (jj-j)*Dy_; y *= y;
[3129]1050 for(long ll=l-dnz;ll<=l+dnz;ll++) {
[3115]1051 double z = (ll-l)*Dz_; z *= z;
1052 if(x+y+z>r2) continue;
[3141]1053 int_8 ip = IndexR(ii,jj,ll);
[3353]1054 m += 1.+data_[ip]; // 1+drho/rho
[3115]1055 n++;
1056 }
1057 }
1058 }
[3353]1059 if(n>0) {sum += m; sum2 += m*m; nsum++; sn += n;}
1060 //cout<<i<<","<<j<<","<<l<<" n="<<n<<" m="<<m<<" sum="<<sum<<" sum2="<<sum2<<endl;
[3115]1061 }
1062 }
1063 }
1064
1065 if(nsum<=1) {var=0.; return nsum;}
1066 sum /= nsum;
1067 sum2 = sum2/nsum - sum*sum;
[3353]1068 sn /= nsum;
1069 if(lp_>0) cout<<"...<n>="<<sn<<", nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
1070 var = sum2/(sum*sum); // <dM^2>/<M>^2
1071 if(lp_>0) cout<<"...sigmaR^2 = <(M-<M>)^2>/<M>^2 = "<<var
1072 <<" -> sigmaR = "<<sqrt(var)<<endl;
[3115]1073
1074 return nsum;
1075}
1076
1077//-------------------------------------------------------
[3134]1078int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
[3115]1079// number of pixels outside of ]vmin,vmax[ extremites exclues
1080// -> vmin and vmax are considered as bad
1081{
[3141]1082 check_array_alloc();
[3115]1083
[3134]1084 int_8 nbad = 0;
[3129]1085 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]1086 int_8 ip = IndexR(i,j,l);
1087 double v = data_[ip];
[3115]1088 if(v<=vmin || v>=vmax) nbad++;
1089 }
1090
[3358]1091 if(lp_>0) cout<<"--- NumberOfBad "<<nbad<<" px out of ]"<<vmin<<","<<vmax
1092 <<"[ i.e. frac="<<nbad/(double)NRtot_<<endl;
[3115]1093 return nbad;
1094}
1095
[3320]1096int_8 GeneFluct3D::MinMax(double& xmin,double& xmax,double vmin,double vmax)
1097// Calcul des valeurs xmin et xmax dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
1098{
1099 bool tstval = (vmax>vmin)? true: false;
1100 if(lp_>0) {
1101 cout<<"--- MinMax";
1102 if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
1103 cout<<endl;
1104 }
1105 check_array_alloc();
1106
1107 int_8 n = 0;
1108 xmin = xmax = data_[0];
1109
1110 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1111 int_8 ip = IndexR(i,j,l);
1112 double x = data_[ip];
1113 if(tstval && (x<=vmin || x>=vmax)) continue;
1114 if(x<xmin) xmin = x;
1115 if(x>xmax) xmax = x;
1116 n++;
1117 }
1118
1119 if(lp_>0) cout<<" n="<<n<<" min="<<xmin<<" max="<<xmax<<endl;
1120
1121 return n;
1122}
1123
[3261]1124int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax
1125 ,bool useout,double vout)
1126// Calcul de mean,sigma2 dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
1127// useout = false: ne pas utiliser les pixels hors limites pour calculer mean,sigma2
1128// true : utiliser les pixels hors limites pour calculer mean,sigma2
1129// en remplacant leurs valeurs par "vout"
[3115]1130{
[3261]1131 bool tstval = (vmax>vmin)? true: false;
1132 if(lp_>0) {
[3262]1133 cout<<"--- MeanSigma2";
1134 if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
[3261]1135 if(useout) cout<<", useout="<<useout<<" vout="<<vout;
1136 cout<<endl;
1137 }
[3141]1138 check_array_alloc();
[3115]1139
[3134]1140 int_8 n = 0;
[3115]1141 rm = rs2 = 0.;
1142
[3129]1143 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]1144 int_8 ip = IndexR(i,j,l);
1145 double v = data_[ip];
[3261]1146 if(tstval) {
1147 if(v<=vmin || v>=vmax) {if(useout) v=vout; else continue;}
1148 }
[3115]1149 rm += v;
1150 rs2 += v*v;
1151 n++;
1152 }
1153
1154 if(n>1) {
1155 rm /= (double)n;
1156 rs2 = rs2/(double)n - rm*rm;
1157 }
1158
[3261]1159 if(lp_>0) cout<<" n="<<n<<" m="<<rm<<" s2="<<rs2<<" s="<<sqrt(fabs(rs2))<<endl;
1160
[3115]1161 return n;
1162}
1163
[3134]1164int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
[3115]1165// set to "val0" if out of range ]vmin,vmax[ extremites exclues
[3261]1166// cad set to "val0" if in [vmin,vmax] -> vmin and vmax are set to val0
[3115]1167{
[3141]1168 check_array_alloc();
[3115]1169
[3134]1170 int_8 nbad = 0;
[3129]1171 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]1172 int_8 ip = IndexR(i,j,l);
1173 double v = data_[ip];
1174 if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
[3115]1175 }
1176
[3262]1177 if(lp_>0) cout<<"--- SetToVal "<<nbad<<" px set to="<<val0
1178 <<" because out of range=]"<<vmin<<","<<vmax<<"["<<endl;
[3115]1179 return nbad;
1180}
1181
[3283]1182void GeneFluct3D::ScaleOffset(double scalecube,double offsetcube)
1183// Replace "V" by "scalecube * ( V + offsetcube )"
1184{
[3284]1185 if(lp_>0) cout<<"--- ScaleCube scale="<<scalecube<<" offset="<<offsetcube<<endl;
[3283]1186
1187 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1188 int_8 ip = IndexR(i,j,l);
1189 data_[ip] = scalecube * ( data_[ip] + offsetcube );
1190 }
1191
1192 return;
1193}
1194
[3115]1195//-------------------------------------------------------
1196void GeneFluct3D::TurnFluct2Mass(void)
1197// d_rho/rho -> Mass (add one!)
1198{
[3155]1199 if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
[3141]1200 check_array_alloc();
1201
[3115]1202
[3129]1203 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]1204 int_8 ip = IndexR(i,j,l);
1205 data_[ip] += 1.;
[3115]1206 }
1207}
1208
[3358]1209double GeneFluct3D::TurnFluct2MeanNumber(double val_by_mpc3)
[3365]1210// ATTENTION: la gestion des pixels<0 proposee ici induit une perte de variance
1211// sur la carte, le spectre Pk reconstruit sera plus faible!
1212// L'effet sera d'autant plus grand que le nombre de pixels<0 sera grand.
[3329]1213{
[3358]1214 if(lp_>0) cout<<"--- TurnFluct2MeanNumber : "<<val_by_mpc3<<" quantity (gal or mass)/Mpc^3"<<endl;
[3329]1215
[3358]1216 // First convert dRho/Rho into 1+dRho/Rho
1217 int_8 nball = 0; double sumall = 0., sumall2 = 0.;
[3329]1218 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1219 int_8 ip = IndexR(i,j,l);
[3358]1220 data_[ip] += 1.;
1221 nball++; sumall += data_[ip]; sumall2 += data_[ip]*data_[ip];
[3329]1222 }
[3358]1223 if(nball>2) {
1224 sumall /= (double)nball;
1225 sumall2 = sumall2/(double)nball - sumall*sumall;
1226 if(lp_>0) cout<<"1+dRho/Rho: mean="<<sumall<<" variance="<<sumall2
1227 <<" -> "<<sqrt(fabs(sumall2))<<endl;
[3329]1228 }
1229
[3358]1230 // Find contribution for positive pixels
1231 int_8 nbpos = 0; double sumpos = 0. , sumpos2 = 0.;
1232 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1233 int_8 ip = IndexR(i,j,l);
1234 double v = data_[ip];
1235 if(data_[ip]>0.) {nbpos++; sumpos += v; sumpos2 += v*v;}
1236 }
1237 if(nbpos<1) {
1238 cout<<"TurnFluct2MeanNumber_Error: nbpos<1"<<endl;
1239 throw RangeCheckError("TurnFluct2MeanNumber_Error: nbpos<1");
1240 }
1241 sumpos2 = sumpos2/nball - sumpos*sumpos/(nball*nball);
1242 if(lp_>0)
1243 cout<<"1+dRho/Rho with v<0 set to zero: mean="<<sumpos/nball
1244 <<" variance="<<sumpos2<<" -> "<<sqrt(fabs(sumpos2))<<endl;
1245 cout<<"Sum of positive values: sumpos="<<sumpos
1246 <<" (n(v>0) = "<<nbpos<<" frac(v>0)="<<nbpos/(double)NRtot_<<")"<<endl;
[3329]1247
[3358]1248 // - Mettre exactement val_by_mpc3*Vol galaxies (ou Msol) dans notre survey
1249 // - Uniquement dans les pixels de masse >0.
1250 // - Mise a zero des pixels <0
1251 double dn = val_by_mpc3 * Vol_ / sumpos;
1252 if(lp_>0) cout<<"...density move from "
1253 <<val_by_mpc3*dVol_<<" to "<<dn<<" / pixel"<<endl;
1254
[3329]1255 double sum = 0.;
1256 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1257 int_8 ip = IndexR(i,j,l);
1258 if(data_[ip]<=0.) data_[ip] = 0.;
1259 else {
[3349]1260 data_[ip] *= dn;
1261 sum += data_[ip];
[3329]1262 }
1263 }
1264
[3358]1265 if(lp_>0) cout<<"...quantity put into survey "<<sum<<" / "<<val_by_mpc3*Vol_<<endl;
[3329]1266
1267 return sum;
1268}
1269
[3115]1270double GeneFluct3D::ApplyPoisson(void)
1271// do NOT treate negative or nul mass -> let it as it is
1272{
[3155]1273 if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
[3141]1274 check_array_alloc();
1275
[3115]1276 double sum = 0.;
[3129]1277 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]1278 int_8 ip = IndexR(i,j,l);
1279 double v = data_[ip];
[3115]1280 if(v>0.) {
1281 unsigned long dn = PoissRandLimit(v,10.);
[3141]1282 data_[ip] = (double)dn;
[3115]1283 sum += (double)dn;
1284 }
1285 }
[3155]1286 if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
[3115]1287
1288 return sum;
1289}
1290
1291double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
1292// do NOT treate negative or nul mass -> let it as it is
1293// INPUT:
1294// massdist : distribution de masse (m*dn/dm)
1295// axeslog = false : retourne la masse
1296// = true : retourne le log10(mass)
1297// RETURN la masse totale
1298{
[3155]1299 if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
[3141]1300 check_array_alloc();
1301
[3115]1302 double sum = 0.;
[3129]1303 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
[3141]1304 int_8 ip = IndexR(i,j,l);
1305 double v = data_[ip];
[3115]1306 if(v>0.) {
[3129]1307 long ngal = long(v+0.1);
[3141]1308 data_[ip] = 0.;
[3129]1309 for(long i=0;i<ngal;i++) {
[3115]1310 double m = massdist.RandomInterp(); // massdist.Random();
1311 if(axeslog) m = pow(10.,m);
[3141]1312 data_[ip] += m;
[3115]1313 }
[3141]1314 sum += data_[ip];
[3115]1315 }
1316 }
[3155]1317 if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
[3115]1318
1319 return sum;
1320}
1321
[3320]1322double GeneFluct3D::TurnNGal2MassQuick(SchechterMassDist& schmdist)
1323// idem TurnNGal2Mass mais beaucoup plus rapide
1324{
1325 if(lp_>0) cout<<"--- TurnNGal2MassQuick ---"<<endl;
1326 check_array_alloc();
1327
1328 double sum = 0.;
1329 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1330 int_8 ip = IndexR(i,j,l);
1331 double v = data_[ip];
1332 if(v>0.) {
1333 long ngal = long(v+0.1);
1334 data_[ip] = schmdist.TirMass(ngal);
1335 sum += data_[ip];
1336 }
1337 }
1338 if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
1339
1340 return sum;
1341}
1342
[3349]1343void GeneFluct3D::AddNoise2Real(double snoise,int type_evol)
1344// add noise to every pixels (meme les <=0 !)
1345// type_evol = 0 : pas d'evolution de la puissance du bruit
1346// 1 : evolution de la puissance du bruit avec la distance a l'observateur
1347// 2 : evolution de la puissance du bruit avec la distance du plan Z
1348// (tous les plans Z sont mis au meme redshift z de leur milieu)
1349{
1350 if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<" evol="<<type_evol<<endl;
1351 check_array_alloc();
1352
1353 if(type_evol<0) type_evol = 0;
1354 if(type_evol>2) {
1355 char *bla = "GeneFluct3D::AddNoise2Real_Error: bad type_evol value";
1356 cout<<bla<<endl; throw ParmError(bla);
1357 }
1358
1359 vector<double> correction;
1360 InterpFunc *intercor = NULL;
1361
1362 if(type_evol>0) {
1363 // Sigma_Noise(en mass) :
1364 // Slim ~ 1/sqrt(DNu) * sqrt(nlobe) en W/m^2Hz
1365 // Flim ~ sqrt(DNu) * sqrt(nlobe) en W/m^2
1366 // Mlim ~ sqrt(DNu) * (Dlum)^2 * sqrt(nlobe) en Msol
1367 // nlobe ~ 1/Dtrcom^2
1368 // Mlim ~ sqrt(DNu) * (Dlum)^2 / Dtrcom
1369 if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
1370 char *bla = "GeneFluct3D::AddNoise2Real_Error: set Observator and Cosmology first";
1371 cout<<bla<<endl; throw ParmError(bla);
1372 }
1373 InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
1374 long nsz = loscom2zred_.size(), nszmod=((nsz>10)? nsz/10: 1);
1375 for(long i=0;i<nsz;i++) {
1376 double d = interpinv.X(i);
1377 double zred = interpinv(d);
1378 double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
1379 double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
1380 double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
1381 double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
1382 double corr = sqrt(dnu/dnu_ref_) * pow(dlum/dlum_ref_,2.) * dtrc_ref_/dtrc;
1383 if(lp_>0 && (i==0 || i==nsz-1 || i%nszmod==0))
1384 cout<<"i="<<i<<" d="<<d<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
1385 <<" dtrc="<<dtrc<<" dlum="<<dlum<<" -> cor="<<corr<<endl;
1386 correction.push_back(corr);
1387 }
1388 intercor = new InterpFunc(loscom2zred_min_,loscom2zred_max_,correction);
1389 }
1390
1391 double corrlim[2] = {1.,1.};
1392 for(long i=0;i<Nx_;i++) {
1393 double dx2 = DXcom(i); dx2 *= dx2;
1394 for(long j=0;j<Ny_;j++) {
1395 double dy2 = DYcom(j); dy2 *= dy2;
1396 for(long l=0;l<Nz_;l++) {
1397 double corr = 1.;
1398 if(type_evol>0) {
1399 double dz = DZcom(l);
1400 if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
1401 else dz = fabs(dz); // tous les plans Z au meme redshift
1402 corr = (*intercor)(dz);
1403 if(corr<corrlim[0]) corrlim[0]=corr; else if(corr>corrlim[1]) corrlim[1]=corr;
1404 }
1405 int_8 ip = IndexR(i,j,l);
1406 data_[ip] += snoise*corr*NorRand();
1407 }
1408 }
1409 }
1410 if(type_evol>0)
1411 cout<<"correction factor range: ["<<corrlim[0]<<","<<corrlim[1]<<"]"<<endl;
1412
1413 if(intercor!=NULL) delete intercor;
1414}
1415
1416} // Fin namespace SOPHYA
1417
1418
1419
1420
1421/*********************************************************************
[3199]1422void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
[3196]1423// Add AGN flux into simulation:
1424// --- Procedure:
1425// 1. lancer "cmvdefsurv" avec les parametres du survey
[3199]1426// (au redshift de reference du survey)
[3196]1427// et recuperer l'angle solide "angsol sr" du pixel elementaire
1428// au centre du cube.
1429// 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
1430// 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
1431// cad une moyenne <log10(S)> et un sigma "sig"
[3199]1432// Attention: la distribution n'est pas gaussienne les "mean,sigma"
1433// de l'histo ne sont pas vraiment ce que l'on veut
[3196]1434// --- Limitations actuelle du code:
[3271]1435// . les AGN sont supposes evoluer avec la meme loi de puissance pour tout theta,phi
[3199]1436// . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
1437// . la distribution est approximee a une gaussienne
1438// ... C'est une approximation pour un observateur loin du centre du cube
1439// et pour un cube peu epais / distance observateur
[3196]1440// --- Parametres de la routine:
[3271]1441// llfy : c'est le <log10(S)> du flux depose par les AGN
1442// dans l'angle solide du pixel elementaire de reference du cube
1443// lsigma : c'est le sigma de la distribution des log10(S)
1444// powlaw : c'est la pente de la distribution cad que le flux "lmsol"
[3199]1445// et considere comme le flux a 1.4GHz et qu'on suppose une loi
1446// F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
[3196]1447// - Comme on est en echelle log10():
1448// on tire log10(Msol) + X
1449// ou X est une realisation sur une gaussienne de variance "sig^2"
1450// La masse realisee est donc: Msol*10^X
1451// - Pas de probleme de pixel negatif car on a une multiplication!
1452{
[3199]1453 if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
[3196]1454 check_array_alloc();
1455
[3271]1456 if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
[3199]1457 char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
1458 cout<<bla<<endl; throw ParmError(bla);
1459 }
[3196]1460
[3271]1461 // Le flux des AGN en Jy et en mass solaire
1462 double fagnref = pow(10.,lfjy)*(dnu_ref_*1.e9); // Jy.Hz = W/m^2
1463 double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlum_ref_); // Msol
1464 if(lp_>0)
1465 cout<<"Au pixel de ref: fagnref="<<fagnref
1466 <<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
[3196]1467
[3199]1468 if(powlaw!=0.) {
[3271]1469 // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
1470 magnref *= pow(1/(1.+redsh_ref_),powlaw);
[3199]1471 if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
1472 }
1473
1474 // Les infos en fonction de l'indice "l" selon Oz
1475 vector<double> correction;
1476 InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
[3271]1477 long nzmod = ((Nz_>10)?Nz_/10:1);
[3199]1478 for(long l=0;l<Nz_;l++) {
[3271]1479 double z = fabs(DZcom(l));
[3199]1480 double zred = interpinv(z);
[3271]1481 double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
[3199]1482 double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
1483 double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
1484 double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
[3271]1485 // on a: Mass ~ DNu * Dlum^2 / Dtrcom^2
1486 double corr = dnu/dnu_ref_*pow(dtrc_ref_/dtrc*dlum/dlum_ref_,2.);
1487 // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
1488 if(powlaw!=0.) corr *= pow((1.+redsh_ref_)/(1.+zred),powlaw);
[3199]1489 correction.push_back(corr);
[3271]1490 if(lp_>0 && (l==0 || l==Nz_-1 || l%nzmod==0)) {
1491 cout<<"l="<<l<<" z="<<z<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
1492 <<" dtrc="<<dtrc<<" dlum="<<dlum
1493 <<" -> cor="<<corr<<endl;
[3199]1494 }
1495 }
1496
1497 double sum=0., sum2=0., nsum=0.;
1498 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
1499 double a = lsigma*NorRand();
1500 a = magnref*pow(10.,a);
1501 // On met le meme tirage le long de Oz (indice k)
1502 for(long l=0;l<Nz_;l++) {
1503 int_8 ip = IndexR(i,j,l);
1504 data_[ip] += a*correction[l];
1505 }
1506 sum += a; sum2 += a*a; nsum += 1.;
1507 }
1508
1509 if(lp_>0 && nsum>1.) {
[3196]1510 sum /= nsum;
1511 sum2 = sum2/nsum - sum*sum;
1512 cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
1513 }
1514
1515}
[3349]1516*********************************************************************/
Note: See TracBrowser for help on using the repository browser.