[3115] | 1 | #include "machdefs.h"
|
---|
| 2 | #include <iostream>
|
---|
| 3 | #include <stdlib.h>
|
---|
| 4 | #include <stdio.h>
|
---|
| 5 | #include <string.h>
|
---|
| 6 | #include <math.h>
|
---|
| 7 | #include <unistd.h>
|
---|
| 8 |
|
---|
| 9 | #include "tarray.h"
|
---|
| 10 | #include "pexceptions.h"
|
---|
| 11 | #include "perandom.h"
|
---|
| 12 | #include "srandgen.h"
|
---|
| 13 |
|
---|
[3141] | 14 | #include "fabtcolread.h"
|
---|
| 15 | #include "fabtwriter.h"
|
---|
| 16 | #include "fioarr.h"
|
---|
| 17 |
|
---|
| 18 | #include "arrctcast.h"
|
---|
| 19 |
|
---|
[3115] | 20 | #include "constcosmo.h"
|
---|
| 21 | #include "geneutils.h"
|
---|
[3199] | 22 | #include "schechter.h"
|
---|
[3115] | 23 |
|
---|
| 24 | #include "genefluct3d.h"
|
---|
| 25 |
|
---|
[3518] | 26 | #if defined(GEN3D_FLOAT)
|
---|
| 27 | #define GEN3D_FFTW_INIT_THREADS fftwf_init_threads
|
---|
| 28 | #define GEN3D_FFTW_CLEANUP_THREADS fftwf_cleanup_threads
|
---|
| 29 | #define GEN3D_FFTW_PLAN_WITH_NTHREADS fftwf_plan_with_nthreads
|
---|
| 30 | #define GEN3D_FFTW_PLAN_DFT_R2C_3D fftwf_plan_dft_r2c_3d
|
---|
| 31 | #define GEN3D_FFTW_PLAN_DFT_C2R_3D fftwf_plan_dft_c2r_3d
|
---|
| 32 | #define GEN3D_FFTW_DESTROY_PLAN fftwf_destroy_plan
|
---|
| 33 | #define GEN3D_FFTW_EXECUTE fftwf_execute
|
---|
| 34 | #else
|
---|
| 35 | #define GEN3D_FFTW_INIT_THREADS fftw_init_threads
|
---|
| 36 | #define GEN3D_FFTW_CLEANUP_THREADS fftw_cleanup_threads
|
---|
| 37 | #define GEN3D_FFTW_PLAN_WITH_NTHREADS fftw_plan_with_nthreads
|
---|
| 38 | #define GEN3D_FFTW_PLAN_DFT_R2C_3D fftw_plan_dft_r2c_3d
|
---|
| 39 | #define GEN3D_FFTW_PLAN_DFT_C2R_3D fftw_plan_dft_c2r_3d
|
---|
| 40 | #define GEN3D_FFTW_DESTROY_PLAN fftw_destroy_plan
|
---|
| 41 | #define GEN3D_FFTW_EXECUTE fftw_execute
|
---|
| 42 | #endif
|
---|
[3115] | 43 |
|
---|
| 44 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 45 |
|
---|
[3325] | 46 | namespace SOPHYA {
|
---|
| 47 |
|
---|
[3115] | 48 | //-------------------------------------------------------
|
---|
[3349] | 49 | GeneFluct3D::GeneFluct3D(long nx,long ny,long nz,double dx,double dy,double dz
|
---|
| 50 | ,unsigned short nthread,int lp)
|
---|
[3115] | 51 | {
|
---|
[3349] | 52 | init_default();
|
---|
[3115] | 53 |
|
---|
[3349] | 54 | lp_ = lp;
|
---|
| 55 | nthread_ = nthread;
|
---|
[3115] | 56 |
|
---|
[3349] | 57 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 58 | setalloc();
|
---|
| 59 | setpointers(false);
|
---|
| 60 | init_fftw();
|
---|
[3141] | 61 | }
|
---|
| 62 |
|
---|
[3349] | 63 | GeneFluct3D::GeneFluct3D(unsigned short nthread)
|
---|
[3154] | 64 | {
|
---|
[3349] | 65 | init_default();
|
---|
| 66 | setsize(2,2,2,1.,1.,1.);
|
---|
| 67 | nthread_ = nthread;
|
---|
| 68 | setalloc();
|
---|
| 69 | setpointers(false);
|
---|
| 70 | init_fftw();
|
---|
[3154] | 71 | }
|
---|
| 72 |
|
---|
[3349] | 73 | GeneFluct3D::~GeneFluct3D(void)
|
---|
[3157] | 74 | {
|
---|
[3349] | 75 | delete_fftw();
|
---|
[3157] | 76 | }
|
---|
| 77 |
|
---|
[3349] | 78 | //-------------------------------------------------------
|
---|
| 79 | void GeneFluct3D::init_default(void)
|
---|
[3157] | 80 | {
|
---|
[3349] | 81 | Nx_ = Ny_ = Nz_ = 0;
|
---|
[3518] | 82 | is_set_fft_plan = false;
|
---|
[3349] | 83 | nthread_ = 0;
|
---|
| 84 | lp_ = 0;
|
---|
| 85 | array_allocated_ = false;
|
---|
| 86 | cosmo_ = NULL;
|
---|
| 87 | growth_ = NULL;
|
---|
| 88 | redsh_ref_ = -999.;
|
---|
| 89 | kredsh_ref_ = 0.;
|
---|
| 90 | dred_ref_ = -999.;
|
---|
| 91 | loscom_ref_ = -999.;
|
---|
| 92 | dtrc_ref_ = dlum_ref_ = dang_ref_ = -999.;
|
---|
| 93 | nu_ref_ = dnu_ref_ = -999.;
|
---|
| 94 | loscom_min_ = loscom_max_ = -999.;
|
---|
| 95 | loscom2zred_min_ = loscom2zred_max_ = 0.;
|
---|
| 96 | xobs_[0] = xobs_[1] = xobs_[2] = 0.;
|
---|
| 97 | zred_.resize(0);
|
---|
| 98 | loscom_.resize(0);
|
---|
| 99 | loscom2zred_.resize(0);
|
---|
[3157] | 100 | }
|
---|
| 101 |
|
---|
[3141] | 102 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 103 | {
|
---|
[3155] | 104 | if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
|
---|
| 105 | <<" D="<<dx<<","<<dy<<","<<dz<<endl;
|
---|
[3141] | 106 | if(nx<=0 || dx<=0.) {
|
---|
[3267] | 107 | char *bla = "GeneFluct3D::setsize_Error: bad value(s) for nn/dx";
|
---|
[3199] | 108 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3115] | 109 | }
|
---|
| 110 |
|
---|
[3141] | 111 | // Les tailles des tableaux
|
---|
[3115] | 112 | Nx_ = nx;
|
---|
| 113 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 114 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 115 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3115] | 116 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
| 117 | NCz_ = Nz_/2 +1;
|
---|
| 118 | NTz_ = 2*NCz_;
|
---|
| 119 |
|
---|
| 120 | // le pas dans l'espace (Mpc)
|
---|
| 121 | Dx_ = dx;
|
---|
| 122 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 123 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 124 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 125 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 126 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 127 |
|
---|
| 128 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 129 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 130 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 131 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 132 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 133 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 134 |
|
---|
| 135 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 136 | Knyqx_ = M_PI/Dx_;
|
---|
| 137 | Knyqy_ = M_PI/Dy_;
|
---|
| 138 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 139 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 140 | }
|
---|
[3115] | 141 |
|
---|
[3141] | 142 | void GeneFluct3D::setalloc(void)
|
---|
| 143 | {
|
---|
[3155] | 144 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
|
---|
[3141] | 145 | // Dimensionnement du tableau complex<r_8>
|
---|
| 146 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 147 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 148 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 149 | try {
|
---|
| 150 | T_.ReSize(3,SzK_);
|
---|
| 151 | array_allocated_ = true;
|
---|
[3518] | 152 | if(lp_>1) cout<<" allocating: "<<T_.Size()*sizeof(complex<GEN3D_TYPE>)/1.e6<<" Mo"<<endl;
|
---|
[3141] | 153 | } catch (...) {
|
---|
[3155] | 154 | cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
|
---|
[3141] | 155 | }
|
---|
| 156 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
[3115] | 157 | }
|
---|
| 158 |
|
---|
[3141] | 159 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 160 | {
|
---|
[3155] | 161 | if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
|
---|
[3141] | 162 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 163 | else R_ = ArrCastC2R(T_);
|
---|
| 164 | // On remplit les pointeurs
|
---|
[3518] | 165 | fdata_ = (GEN3D_FFTW_COMPLEX *) (&T_(0,0,0));
|
---|
| 166 | data_ = (GEN3D_TYPE *) (&R_(0,0,0));
|
---|
[3141] | 167 | }
|
---|
| 168 |
|
---|
[3349] | 169 | void GeneFluct3D::init_fftw(void)
|
---|
[3141] | 170 | {
|
---|
[3518] | 171 | if( is_set_fft_plan ) delete_fftw();
|
---|
[3141] | 172 |
|
---|
[3154] | 173 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3155] | 174 | if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
|
---|
[3349] | 175 | #ifdef WITH_FFTW_THREAD
|
---|
[3154] | 176 | if(nthread_>0) {
|
---|
[3155] | 177 | cout<<"...Computing with "<<nthread_<<" threads"<<endl;
|
---|
[3518] | 178 | GEN3D_FFTW_INIT_THREADS();
|
---|
| 179 | GEN3D_FFTW_PLAN_WITH_NTHREADS(nthread_);
|
---|
[3154] | 180 | }
|
---|
| 181 | #endif
|
---|
[3155] | 182 | if(lp_>1) cout<<"...forward plan"<<endl;
|
---|
[3518] | 183 | pf_ = GEN3D_FFTW_PLAN_DFT_R2C_3D(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
[3155] | 184 | if(lp_>1) cout<<"...backward plan"<<endl;
|
---|
[3518] | 185 | pb_ = GEN3D_FFTW_PLAN_DFT_C2R_3D(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
| 186 | is_set_fft_plan = true;
|
---|
[3154] | 187 | }
|
---|
[3141] | 188 |
|
---|
[3349] | 189 | void GeneFluct3D::delete_fftw(void)
|
---|
| 190 | {
|
---|
[3518] | 191 | if( !is_set_fft_plan ) return;
|
---|
| 192 | GEN3D_FFTW_DESTROY_PLAN(pf_);
|
---|
| 193 | GEN3D_FFTW_DESTROY_PLAN(pb_);
|
---|
[3349] | 194 | #ifdef WITH_FFTW_THREAD
|
---|
[3518] | 195 | if(nthread_>0) GEN3D_FFTW_CLEANUP_THREADS();
|
---|
[3349] | 196 | #endif
|
---|
[3518] | 197 | is_set_fft_plan = false;
|
---|
[3349] | 198 | }
|
---|
| 199 |
|
---|
| 200 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 201 | // Pour tester si le tableau T_ est alloue
|
---|
| 202 | {
|
---|
| 203 | if(array_allocated_) return;
|
---|
| 204 | char bla[90];
|
---|
| 205 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
| 206 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 207 | }
|
---|
| 208 |
|
---|
[3157] | 209 | //-------------------------------------------------------
|
---|
[3349] | 210 | void GeneFluct3D::SetObservator(double redshref,double kredshref)
|
---|
| 211 | // L'observateur est au redshift z=0
|
---|
| 212 | // est situe sur la "perpendiculaire" a la face x,y
|
---|
| 213 | // issue du centre de cette face
|
---|
| 214 | // Il faut positionner le cube sur l'axe des z cad des redshifts:
|
---|
| 215 | // redshref = redshift de reference
|
---|
| 216 | // Si redshref<0 alors redshref=0
|
---|
| 217 | // kredshref = indice (en double) correspondant a ce redshift
|
---|
| 218 | // Si kredshref<0 alors kredshref=nz/2 (milieu du cube)
|
---|
| 219 | // Exemple: redshref=1.5 kredshref=250.75
|
---|
| 220 | // -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
|
---|
| 221 | {
|
---|
| 222 | if(redshref<0.) redshref = 0.;
|
---|
| 223 | if(kredshref<0.) {
|
---|
| 224 | if(Nz_<=0) {
|
---|
| 225 | char *bla = "GeneFluct3D::SetObservator_Error: for kredsh_ref<0 define cube geometry first";
|
---|
| 226 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 227 | }
|
---|
| 228 | kredshref = Nz_/2.;
|
---|
| 229 | }
|
---|
| 230 | redsh_ref_ = redshref;
|
---|
| 231 | kredsh_ref_ = kredshref;
|
---|
| 232 | if(lp_>0)
|
---|
| 233 | cout<<"--- GeneFluct3D::SetObservator zref="<<redsh_ref_<<" kref="<<kredsh_ref_<<endl;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
|
---|
| 237 | {
|
---|
| 238 | cosmo_ = &cosmo;
|
---|
| 239 | if(lp_>1) cosmo_->Print();
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
|
---|
| 243 | {
|
---|
| 244 | growth_ = &growth;
|
---|
| 245 | }
|
---|
| 246 |
|
---|
[3199] | 247 | long GeneFluct3D::LosComRedshift(double zinc,long npoints)
|
---|
[3157] | 248 | // Given a position of the cube relative to the observer
|
---|
| 249 | // and a cosmology
|
---|
| 250 | // (SetObservator() and SetCosmology() should have been called !)
|
---|
| 251 | // This routine filled:
|
---|
| 252 | // the vector "zred_" of scanned redshift (by zinc increments)
|
---|
| 253 | // the vector "loscom_" of corresponding los comoving distance
|
---|
[3199] | 254 | // -- Input:
|
---|
| 255 | // zinc : redshift increment for computation
|
---|
| 256 | // npoints : number of points required for inverting loscom -> zred
|
---|
[3157] | 257 | //
|
---|
| 258 | {
|
---|
[3199] | 259 | if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
|
---|
[3154] | 260 |
|
---|
[3271] | 261 | if(cosmo_ == NULL || redsh_ref_<0.) {
|
---|
[3199] | 262 | char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first";
|
---|
| 263 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 264 | }
|
---|
| 265 |
|
---|
[3271] | 266 | // La distance angulaire/luminosite/Dnu au pixel de reference
|
---|
| 267 | dred_ref_ = Dz_/(cosmo_->Dhubble()/cosmo_->E(redsh_ref_));
|
---|
| 268 | loscom_ref_ = cosmo_->Dloscom(redsh_ref_);
|
---|
| 269 | dtrc_ref_ = cosmo_->Dtrcom(redsh_ref_);
|
---|
| 270 | dlum_ref_ = cosmo_->Dlum(redsh_ref_);
|
---|
| 271 | dang_ref_ = cosmo_->Dang(redsh_ref_);
|
---|
| 272 | nu_ref_ = Fr_HyperFin_Par/(1.+redsh_ref_); // GHz
|
---|
| 273 | dnu_ref_ = Fr_HyperFin_Par *dred_ref_/pow(1.+redsh_ref_,2.); // GHz
|
---|
| 274 | if(lp_>0) {
|
---|
| 275 | cout<<"...reference pixel redshref="<<redsh_ref_
|
---|
| 276 | <<", dredref="<<dred_ref_
|
---|
| 277 | <<", nuref="<<nu_ref_ <<" GHz"
|
---|
| 278 | <<", dnuref="<<dnu_ref_ <<" GHz"<<endl
|
---|
| 279 | <<" dlosc="<<loscom_ref_<<" Mpc com"
|
---|
| 280 | <<", dtrc="<<dtrc_ref_<<" Mpc com"
|
---|
| 281 | <<", dlum="<<dlum_ref_<<" Mpc"
|
---|
| 282 | <<", dang="<<dang_ref_<<" Mpc"<<endl;
|
---|
| 283 | }
|
---|
| 284 |
|
---|
[3199] | 285 | // On calcule les coordonnees de l'observateur dans le repere du cube
|
---|
| 286 | // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
|
---|
| 287 | // L'observateur est sur un axe centre sur le milieu de la face Oxy
|
---|
[3157] | 288 | xobs_[0] = Nx_/2.*Dx_;
|
---|
| 289 | xobs_[1] = Ny_/2.*Dy_;
|
---|
[3271] | 290 | xobs_[2] = kredsh_ref_*Dz_ - loscom_ref_;
|
---|
[3157] | 291 |
|
---|
| 292 | // L'observateur est-il dans le cube?
|
---|
| 293 | bool obs_in_cube = false;
|
---|
| 294 | if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
|
---|
| 295 |
|
---|
| 296 | // Find MINIMUM los com distance to the observer:
|
---|
| 297 | // c'est le centre de la face a k=0
|
---|
| 298 | // (ou zero si l'observateur est dans le cube)
|
---|
| 299 | loscom_min_ = 0.;
|
---|
| 300 | if(!obs_in_cube) loscom_min_ = -xobs_[2];
|
---|
| 301 |
|
---|
[3271] | 302 | // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
|
---|
| 303 | if(loscom_min_<=1.e-50)
|
---|
| 304 | for(int i=0;i<50;i++)
|
---|
| 305 | cout<<"ATTENTION TOUTES LES PARTIES DU CODE NE MARCHENT PAS POUR UN OBSERVATEUR DANS LE CUBE"<<endl;
|
---|
| 306 | // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
|
---|
| 307 |
|
---|
| 308 |
|
---|
[3157] | 309 | // Find MAXIMUM los com distance to the observer:
|
---|
| 310 | // ou que soit positionne l'observateur, la distance
|
---|
| 311 | // maximal est sur un des coins du cube
|
---|
| 312 | loscom_max_ = 0.;
|
---|
| 313 | for(long i=0;i<=1;i++) {
|
---|
[3271] | 314 | double dx2 = DXcom(i*(Nx_-1)); dx2 *= dx2;
|
---|
[3157] | 315 | for(long j=0;j<=1;j++) {
|
---|
[3271] | 316 | double dy2 = DYcom(j*(Ny_-1)); dy2 *= dy2;
|
---|
[3157] | 317 | for(long k=0;k<=1;k++) {
|
---|
[3271] | 318 | double dz2 = DZcom(k*(Nz_-1)); dz2 *= dz2;
|
---|
[3157] | 319 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 320 | if(dz2>loscom_max_) loscom_max_ = dz2;
|
---|
| 321 | }
|
---|
| 322 | }
|
---|
| 323 | }
|
---|
| 324 | if(lp_>0) {
|
---|
[3271] | 325 | cout<<"...zref="<<redsh_ref_<<" kzref="<<kredsh_ref_<<" losref="<<loscom_ref_<<" Mpc\n"
|
---|
[3157] | 326 | <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
|
---|
| 327 | <<" in_cube="<<obs_in_cube
|
---|
[3271] | 328 | <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc (com)"<<endl;
|
---|
[3157] | 329 | }
|
---|
| 330 |
|
---|
[3199] | 331 | // Fill the corresponding vectors for loscom and zred
|
---|
[3267] | 332 | // Be shure to have one dlc <loscom_min and one >loscom_max
|
---|
[3199] | 333 | if(zinc<=0.) zinc = 0.01;
|
---|
[3157] | 334 | for(double z=0.; ; z+=zinc) {
|
---|
| 335 | double dlc = cosmo_->Dloscom(z);
|
---|
| 336 | if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
|
---|
| 337 | zred_.push_back(z);
|
---|
| 338 | loscom_.push_back(dlc);
|
---|
| 339 | z += zinc;
|
---|
[3199] | 340 | if(dlc>loscom_max_) break; // on sort apres avoir stoque un dlc>dlcmax
|
---|
[3157] | 341 | }
|
---|
| 342 |
|
---|
| 343 | if(lp_>0) {
|
---|
[3199] | 344 | long n = zred_.size();
|
---|
| 345 | cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
|
---|
[3157] | 346 | if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
|
---|
| 347 | if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
|
---|
| 348 | cout<<endl;
|
---|
| 349 | }
|
---|
| 350 |
|
---|
[3199] | 351 | // Compute the parameters and tables needed for inversion loscom->zred
|
---|
| 352 | if(npoints<3) npoints = zred_.size();
|
---|
| 353 | InverseFunc invfun(zred_,loscom_);
|
---|
| 354 | invfun.ComputeParab(npoints,loscom2zred_);
|
---|
| 355 | loscom2zred_min_ = invfun.YMin();
|
---|
| 356 | loscom2zred_max_ = invfun.YMax();
|
---|
| 357 |
|
---|
| 358 | if(lp_>0) {
|
---|
| 359 | long n = loscom2zred_.size();
|
---|
| 360 | cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
|
---|
| 361 | <<" los_min="<<loscom2zred_min_
|
---|
| 362 | <<" los_max="<<loscom2zred_max_
|
---|
| 363 | <<" -> zred=[";
|
---|
| 364 | if(n>0) cout<<loscom2zred_[0];
|
---|
| 365 | cout<<",";
|
---|
| 366 | if(n>1) cout<<loscom2zred_[n-1];
|
---|
| 367 | cout<<"]"<<endl;
|
---|
| 368 | if(lp_>1 && n>0)
|
---|
| 369 | for(int i=0;i<n;i++)
|
---|
[3330] | 370 | if(i<2 || abs(i-n/2)<2 || i>=n-2)
|
---|
| 371 | cout<<" i="<<i
|
---|
| 372 | <<" d="<<loscom2zred_min_+i*(loscom2zred_max_-loscom2zred_min_)/(n-1.)
|
---|
| 373 | <<" Mpc z="<<loscom2zred_[i]<<endl;
|
---|
[3199] | 374 | }
|
---|
| 375 |
|
---|
| 376 | return zred_.size();
|
---|
[3157] | 377 | }
|
---|
| 378 |
|
---|
[3115] | 379 | //-------------------------------------------------------
|
---|
[3141] | 380 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 381 | {
|
---|
[3155] | 382 | cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
[3141] | 383 | try {
|
---|
| 384 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
| 385 | fwrt.WriteKey("NX",Nx_," axe transverse 1");
|
---|
| 386 | fwrt.WriteKey("NY",Ny_," axe transverse 2");
|
---|
| 387 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
|
---|
| 388 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 389 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 390 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 391 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 392 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 393 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
[3271] | 394 | fwrt.WriteKey("ZREF",redsh_ref_," reference redshift");
|
---|
| 395 | fwrt.WriteKey("KZREF",kredsh_ref_," reference redshift on z axe");
|
---|
[3141] | 396 | fwrt.Write(R_);
|
---|
| 397 | } catch (PThrowable & exc) {
|
---|
| 398 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 399 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 400 | return;
|
---|
| 401 | } catch (...) {
|
---|
| 402 | cout<<" some other exception was caught !"<<endl;
|
---|
| 403 | return;
|
---|
| 404 | }
|
---|
| 405 | }
|
---|
| 406 |
|
---|
| 407 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 408 | {
|
---|
[3155] | 409 | cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 410 | try {
|
---|
| 411 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 412 | fimg.Read(R_);
|
---|
| 413 | long nx = fimg.ReadKeyL("NX");
|
---|
| 414 | long ny = fimg.ReadKeyL("NY");
|
---|
| 415 | long nz = fimg.ReadKeyL("NZ");
|
---|
| 416 | double dx = fimg.ReadKey("DX");
|
---|
| 417 | double dy = fimg.ReadKey("DY");
|
---|
| 418 | double dz = fimg.ReadKey("DZ");
|
---|
[3154] | 419 | double zref = fimg.ReadKey("ZREF");
|
---|
| 420 | double kzref = fimg.ReadKey("KZREF");
|
---|
[3141] | 421 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 422 | setpointers(true);
|
---|
[3154] | 423 | init_fftw();
|
---|
| 424 | SetObservator(zref,kzref);
|
---|
[3330] | 425 | array_allocated_ = true;
|
---|
[3141] | 426 | } catch (PThrowable & exc) {
|
---|
| 427 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 428 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 429 | return;
|
---|
| 430 | } catch (...) {
|
---|
| 431 | cout<<" some other exception was caught !"<<endl;
|
---|
| 432 | return;
|
---|
| 433 | }
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 437 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 438 | {
|
---|
[3155] | 439 | cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
[3141] | 440 | try {
|
---|
| 441 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 442 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 443 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 444 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 445 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 446 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
[3271] | 447 | R_.Info()["ZREF"] = (r_8)redsh_ref_;
|
---|
| 448 | R_.Info()["KZREF"] = (r_8)kredsh_ref_;
|
---|
[3141] | 449 | POutPersist pos(cfname.c_str());
|
---|
| 450 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 451 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 452 | } catch (PThrowable & exc) {
|
---|
| 453 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 454 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 455 | return;
|
---|
| 456 | } catch (...) {
|
---|
| 457 | cout<<" some other exception was caught !"<<endl;
|
---|
| 458 | return;
|
---|
| 459 | }
|
---|
| 460 | }
|
---|
| 461 |
|
---|
| 462 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 463 | {
|
---|
[3155] | 464 | cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 465 | try {
|
---|
| 466 | bool from_real = true;
|
---|
| 467 | PInPersist pis(cfname.c_str());
|
---|
| 468 | string name_tag_k = "pkgen";
|
---|
| 469 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 470 | if(found_tag_k) {
|
---|
[3262] | 471 | cout<<" ...reading spectrum into TArray<complex <r_8> >"<<endl;
|
---|
[3141] | 472 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 473 | from_real = false;
|
---|
| 474 | } else {
|
---|
| 475 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 476 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 477 | }
|
---|
[3154] | 478 | setpointers(from_real); // a mettre ici pour relire les DVInfo
|
---|
[3141] | 479 | int_8 nx = R_.Info()["NX"];
|
---|
| 480 | int_8 ny = R_.Info()["NY"];
|
---|
| 481 | int_8 nz = R_.Info()["NZ"];
|
---|
| 482 | r_8 dx = R_.Info()["DX"];
|
---|
| 483 | r_8 dy = R_.Info()["DY"];
|
---|
| 484 | r_8 dz = R_.Info()["DZ"];
|
---|
[3154] | 485 | r_8 zref = R_.Info()["ZREF"];
|
---|
| 486 | r_8 kzref = R_.Info()["KZREF"];
|
---|
[3141] | 487 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
[3154] | 488 | init_fftw();
|
---|
| 489 | SetObservator(zref,kzref);
|
---|
[3330] | 490 | array_allocated_ = true;
|
---|
[3141] | 491 | } catch (PThrowable & exc) {
|
---|
| 492 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 493 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 494 | return;
|
---|
| 495 | } catch (...) {
|
---|
| 496 | cout<<" some other exception was caught !"<<endl;
|
---|
| 497 | return;
|
---|
| 498 | }
|
---|
| 499 | }
|
---|
| 500 |
|
---|
[3281] | 501 | void GeneFluct3D::WriteSlicePPF(string cfname)
|
---|
| 502 | // On ecrit 3 tranches du cube selon chaque axe
|
---|
| 503 | {
|
---|
[3283] | 504 | cout<<"--- GeneFluct3D::WriteSlicePPF: Writing Cube Slices "<<cfname<<endl;
|
---|
[3281] | 505 | try {
|
---|
| 506 |
|
---|
| 507 | POutPersist pos(cfname.c_str());
|
---|
| 508 | TMatrix<r_4> S;
|
---|
| 509 | char str[16];
|
---|
| 510 | long i,j,l;
|
---|
| 511 |
|
---|
| 512 | // Tranches en Z
|
---|
| 513 | for(int s=0;s<3;s++) {
|
---|
| 514 | S.ReSize(Nx_,Ny_);
|
---|
| 515 | if(s==0) l=0; else if(s==1) l=(Nz_+1)/2; else l=Nz_-1;
|
---|
[3289] | 516 | sprintf(str,"z%ld",l);
|
---|
[3281] | 517 | for(i=0;i<Nx_;i++) for(j=0;j<Ny_;j++) S(i,j)=data_[IndexR(i,j,l)];
|
---|
| 518 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 519 | }
|
---|
| 520 |
|
---|
| 521 | // Tranches en Y
|
---|
| 522 | for(int s=0;s<3;s++) {
|
---|
| 523 | S.ReSize(Nz_,Nx_);
|
---|
| 524 | if(s==0) j=0; else if(s==1) j=(Ny_+1)/2; else j=Ny_-1;
|
---|
[3289] | 525 | sprintf(str,"y%ld",j);
|
---|
[3281] | 526 | for(i=0;i<Nx_;i++) for(l=0;l<Nz_;l++) S(l,i)=data_[IndexR(i,j,l)];
|
---|
| 527 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 528 | }
|
---|
| 529 |
|
---|
| 530 | // Tranches en X
|
---|
| 531 | for(int s=0;s<3;s++) {
|
---|
| 532 | S.ReSize(Nz_,Ny_);
|
---|
| 533 | if(s==0) i=0; else if(s==1) i=(Nx_+1)/2; else i=Nx_-1;
|
---|
[3289] | 534 | sprintf(str,"x%ld",i);
|
---|
[3281] | 535 | for(j=0;j<Ny_;j++) for(l=0;l<Nz_;l++) S(l,j)=data_[IndexR(i,j,l)];
|
---|
| 536 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 537 | }
|
---|
| 538 |
|
---|
| 539 | } catch (PThrowable & exc) {
|
---|
| 540 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 541 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 542 | return;
|
---|
| 543 | } catch (...) {
|
---|
| 544 | cout<<" some other exception was caught !"<<endl;
|
---|
| 545 | return;
|
---|
| 546 | }
|
---|
| 547 | }
|
---|
| 548 |
|
---|
[3141] | 549 | //-------------------------------------------------------
|
---|
[3115] | 550 | void GeneFluct3D::Print(void)
|
---|
| 551 | {
|
---|
[3141] | 552 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 553 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 554 | <<NRtot_<<endl;
|
---|
| 555 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 556 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
| 557 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
| 558 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 559 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 560 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 561 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 562 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 563 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
[3271] | 564 | cout<<"Redshift "<<redsh_ref_<<" for z axe at k="<<kredsh_ref_<<endl;
|
---|
[3115] | 565 | }
|
---|
| 566 |
|
---|
| 567 | //-------------------------------------------------------
|
---|
[3141] | 568 | void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
|
---|
[3115] | 569 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 570 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 571 | {
|
---|
| 572 |
|
---|
| 573 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 574 | if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
|
---|
[3115] | 575 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 576 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 577 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 578 | int_8 ip = IndexR(i,j,l);
|
---|
| 579 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 580 | }
|
---|
| 581 |
|
---|
| 582 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 583 | if(lp_>0) cout<<"...before fft real ---"<<endl;
|
---|
[3518] | 584 | GEN3D_FFTW_EXECUTE(pf_);
|
---|
[3115] | 585 |
|
---|
| 586 | // --- On remplit avec une realisation
|
---|
[3157] | 587 | if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
|
---|
[3518] | 588 | T_(0,0,0) = complex<GEN3D_TYPE>(0.); // on coupe le continue et on l'initialise
|
---|
[3129] | 589 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 590 | for(long i=0;i<Nx_;i++) {
|
---|
| 591 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 592 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 593 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 594 | for(long j=0;j<Ny_;j++) {
|
---|
| 595 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 596 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 597 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 598 | double kz = l*Dkz_; kz *= kz;
|
---|
| 599 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 600 | double k = sqrt(kx+ky+kz);
|
---|
| 601 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 602 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 603 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 604 | T_(l,j,i) *= sqrt(pk);
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 |
|
---|
[3155] | 609 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 610 | double p = compute_power_carte();
|
---|
[3155] | 611 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 612 |
|
---|
| 613 | }
|
---|
| 614 |
|
---|
| 615 | //-------------------------------------------------------
|
---|
[3141] | 616 | void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
|
---|
| 617 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 618 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 619 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 620 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 621 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 622 | // sum(f(x_i)^2) = S
|
---|
| 623 | // sum(F(nu_i)^2) = S*N
|
---|
| 624 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 625 | {
|
---|
| 626 | // --- RaZ du tableau
|
---|
[3518] | 627 | T_ = complex<GEN3D_TYPE>(0.);
|
---|
[3115] | 628 |
|
---|
| 629 | // --- On remplit avec une realisation
|
---|
[3155] | 630 | if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
|
---|
[3129] | 631 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
| 632 | for(long i=0;i<Nx_;i++) {
|
---|
| 633 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 634 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3155] | 635 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
[3129] | 636 | for(long j=0;j<Ny_;j++) {
|
---|
| 637 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 638 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 639 | for(long l=0;l<NCz_;l++) {
|
---|
[3115] | 640 | double kz = l*Dkz_; kz *= kz;
|
---|
| 641 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 642 | double k = sqrt(kx+ky+kz);
|
---|
| 643 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 644 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 645 | // Explication de la division par 2: voir perandom.cc
|
---|
| 646 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
| 647 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
| 648 | }
|
---|
| 649 | }
|
---|
| 650 | }
|
---|
| 651 |
|
---|
| 652 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 653 |
|
---|
[3155] | 654 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 655 | double p = compute_power_carte();
|
---|
[3155] | 656 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 657 |
|
---|
| 658 | }
|
---|
| 659 |
|
---|
[3129] | 660 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 661 | // Take into account the real and complexe conjugate coefficients
|
---|
| 662 | // because we want a realization of a real data in real space
|
---|
| 663 | {
|
---|
[3155] | 664 | if(lp_>1) cout<<"...managing coefficients"<<endl;
|
---|
[3141] | 665 | check_array_alloc();
|
---|
[3115] | 666 |
|
---|
| 667 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3129] | 668 | long nreal = 0;
|
---|
| 669 | for(long kk=0;kk<2;kk++) {
|
---|
| 670 | long k=0; // continu
|
---|
[3115] | 671 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 672 | for(long jj=0;jj<2;jj++) {
|
---|
| 673 | long j=0;
|
---|
[3115] | 674 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 675 | for(long ii=0;ii<2;ii++) {
|
---|
| 676 | long i=0;
|
---|
[3115] | 677 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 678 | int_8 ip = IndexC(i,j,k);
|
---|
| 679 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 680 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 681 | nreal++;
|
---|
| 682 | }
|
---|
| 683 | }
|
---|
| 684 | }
|
---|
[3155] | 685 | if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
[3115] | 686 |
|
---|
| 687 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 688 |
|
---|
| 689 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3129] | 690 | long nconj1 = 0;
|
---|
| 691 | for(long kk=0;kk<2;kk++) {
|
---|
| 692 | long k=0; // continu
|
---|
[3115] | 693 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 694 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 695 | long j=0;
|
---|
[3115] | 696 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 697 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 698 | int_8 ip = IndexC(i,j,k);
|
---|
| 699 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 700 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 701 | nconj1++;
|
---|
| 702 | }
|
---|
| 703 | }
|
---|
[3129] | 704 | for(long ii=0;ii<2;ii++) {
|
---|
| 705 | long i=0;
|
---|
[3115] | 706 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 707 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 708 | int_8 ip = IndexC(i,j,k);
|
---|
| 709 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 710 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 711 | nconj1++;
|
---|
| 712 | }
|
---|
| 713 | }
|
---|
| 714 | }
|
---|
[3155] | 715 | if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
[3115] | 716 |
|
---|
| 717 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3129] | 718 | long nconj2 = 0;
|
---|
| 719 | for(long kk=0;kk<2;kk++) {
|
---|
| 720 | long k=0; // continu
|
---|
[3115] | 721 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 722 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 723 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 724 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 725 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 726 | int_8 ip = IndexC(i,j,k);
|
---|
| 727 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 728 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 729 | nconj2++;
|
---|
| 730 | }
|
---|
| 731 | }
|
---|
| 732 | }
|
---|
[3155] | 733 | if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
[3115] | 734 |
|
---|
[3155] | 735 | if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
[3115] | 736 |
|
---|
| 737 | return nreal+nconj1+nconj2;
|
---|
| 738 | }
|
---|
| 739 |
|
---|
| 740 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 741 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 742 | {
|
---|
[3141] | 743 | check_array_alloc();
|
---|
| 744 |
|
---|
[3115] | 745 | double s2 = 0.;
|
---|
[3129] | 746 | for(long l=0;l<NCz_;l++)
|
---|
| 747 | for(long j=0;j<Ny_;j++)
|
---|
| 748 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 749 |
|
---|
| 750 | double s20 = 0.;
|
---|
[3129] | 751 | for(long j=0;j<Ny_;j++)
|
---|
| 752 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 753 |
|
---|
| 754 | double s2n = 0.;
|
---|
| 755 | if(Nz_%2==0)
|
---|
[3129] | 756 | for(long j=0;j<Ny_;j++)
|
---|
| 757 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 758 |
|
---|
| 759 | return 2.*s2 -s20 -s2n;
|
---|
| 760 | }
|
---|
| 761 |
|
---|
| 762 | //-------------------------------------------------------------------
|
---|
| 763 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 764 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 765 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 766 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 767 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 768 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 769 | // avec y = k_x*dx/2
|
---|
[3115] | 770 | {
|
---|
[3155] | 771 | if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
|
---|
[3141] | 772 | check_array_alloc();
|
---|
| 773 |
|
---|
[3129] | 774 | for(long i=0;i<Nx_;i++) {
|
---|
| 775 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3120] | 776 | double kx = ii*Dkx_ *Dx_/2;
|
---|
[3330] | 777 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 778 | for(long j=0;j<Ny_;j++) {
|
---|
| 779 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3120] | 780 | double ky = jj*Dky_ *Dy_/2;
|
---|
[3330] | 781 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 782 | for(long l=0;l<NCz_;l++) {
|
---|
[3120] | 783 | double kz = l*Dkz_ *Dz_/2;
|
---|
[3141] | 784 | double pk_z = pixelfilter(kz);
|
---|
| 785 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 786 | }
|
---|
| 787 | }
|
---|
| 788 | }
|
---|
| 789 |
|
---|
| 790 | }
|
---|
| 791 |
|
---|
| 792 | //-------------------------------------------------------------------
|
---|
[3331] | 793 | void GeneFluct3D::ApplyGrowthFactor(int type_evol)
|
---|
[3157] | 794 | // Apply Growth to real space
|
---|
| 795 | // Using the correspondance between redshift and los comoving distance
|
---|
| 796 | // describe in vector "zred_" "loscom_"
|
---|
[3516] | 797 | // type_evol = 1 : evolution avec la distance a l'observateur
|
---|
| 798 | // 2 : evolution avec la distance du plan Z
|
---|
[3331] | 799 | // (tous les pixels d'un plan Z sont mis au meme redshift z que celui du milieu)
|
---|
[3157] | 800 | {
|
---|
[3331] | 801 | if(lp_>0) cout<<"--- ApplyGrowthFactor: evol="<<type_evol<<endl;
|
---|
[3157] | 802 | check_array_alloc();
|
---|
| 803 |
|
---|
| 804 | if(growth_ == NULL) {
|
---|
[3199] | 805 | char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
|
---|
| 806 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 807 | }
|
---|
[3331] | 808 | if(type_evol<1 || type_evol>2) {
|
---|
| 809 | char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: bad type_evol value";
|
---|
| 810 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 811 | }
|
---|
[3157] | 812 |
|
---|
[3199] | 813 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3157] | 814 | unsigned short ok;
|
---|
| 815 |
|
---|
| 816 | //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
|
---|
| 817 | for(long i=0;i<Nx_;i++) {
|
---|
[3331] | 818 | double dx2 = DXcom(i); dx2 *= dx2;
|
---|
[3157] | 819 | for(long j=0;j<Ny_;j++) {
|
---|
[3331] | 820 | double dy2 = DYcom(j); dy2 *= dy2;
|
---|
[3157] | 821 | for(long l=0;l<Nz_;l++) {
|
---|
[3331] | 822 | double dz = DZcom(l);
|
---|
| 823 | if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
|
---|
| 824 | else dz = fabs(dz); // tous les plans Z au meme redshift
|
---|
| 825 | double z = interpinv(dz);
|
---|
[3157] | 826 | //CHECK: hgr.Add(z);
|
---|
| 827 | double dzgr = (*growth_)(z); // interpolation par morceau
|
---|
| 828 | //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
|
---|
| 829 | //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
|
---|
| 830 | int_8 ip = IndexR(i,j,l);
|
---|
| 831 | data_[ip] *= dzgr;
|
---|
| 832 | }
|
---|
| 833 | }
|
---|
| 834 | }
|
---|
| 835 |
|
---|
| 836 | //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
|
---|
| 837 |
|
---|
| 838 | }
|
---|
| 839 |
|
---|
| 840 | //-------------------------------------------------------------------
|
---|
[3115] | 841 | void GeneFluct3D::ComputeReal(void)
|
---|
| 842 | // Calcule une realisation dans l'espace reel
|
---|
| 843 | {
|
---|
[3155] | 844 | if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
|
---|
[3141] | 845 | check_array_alloc();
|
---|
[3115] | 846 |
|
---|
| 847 | // On fait la FFT
|
---|
[3518] | 848 | GEN3D_FFTW_EXECUTE(pb_);
|
---|
[3115] | 849 | }
|
---|
| 850 |
|
---|
| 851 | //-------------------------------------------------------------------
|
---|
| 852 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 853 | {
|
---|
[3155] | 854 | if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
|
---|
[3141] | 855 | check_array_alloc();
|
---|
[3115] | 856 |
|
---|
| 857 | // On fait la FFT
|
---|
[3518] | 858 | GEN3D_FFTW_EXECUTE(pf_);
|
---|
[3115] | 859 | // On corrige du pb de la normalisation de FFTW3
|
---|
| 860 | double v = (double)NRtot_;
|
---|
[3129] | 861 | for(long i=0;i<Nx_;i++)
|
---|
| 862 | for(long j=0;j<Ny_;j++)
|
---|
| 863 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
[3115] | 864 |
|
---|
| 865 | }
|
---|
| 866 |
|
---|
| 867 | //-------------------------------------------------------------------
|
---|
[3141] | 868 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 869 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 870 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 871 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 872 | {
|
---|
[3155] | 873 | if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
|
---|
[3141] | 874 | check_array_alloc();
|
---|
[3115] | 875 |
|
---|
[3141] | 876 | if(herr.NBins()<0) return -1;
|
---|
| 877 | herr.Zero();
|
---|
[3115] | 878 |
|
---|
| 879 | // Attention a l'ordre
|
---|
[3129] | 880 | for(long i=0;i<Nx_;i++) {
|
---|
| 881 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
[3115] | 882 | double kx = ii*Dkx_; kx *= kx;
|
---|
[3129] | 883 | for(long j=0;j<Ny_;j++) {
|
---|
| 884 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
[3115] | 885 | double ky = jj*Dky_; ky *= ky;
|
---|
[3129] | 886 | for(long l=0;l<NCz_;l++) {
|
---|
[3330] | 887 | double kz = l*Dkz_;
|
---|
| 888 | double k = sqrt(kx+ky+kz*kz);
|
---|
[3115] | 889 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 890 | herr.Add(k,pk);
|
---|
[3115] | 891 | }
|
---|
| 892 | }
|
---|
| 893 | }
|
---|
[3150] | 894 | herr.ToVariance();
|
---|
[3115] | 895 |
|
---|
| 896 | // renormalize to directly compare to original spectrum
|
---|
| 897 | double norm = Vol_;
|
---|
[3141] | 898 | herr *= norm;
|
---|
[3115] | 899 |
|
---|
| 900 | return 0;
|
---|
| 901 | }
|
---|
| 902 |
|
---|
[3141] | 903 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 904 | {
|
---|
[3155] | 905 | if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
|
---|
[3141] | 906 | check_array_alloc();
|
---|
| 907 |
|
---|
| 908 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 909 | herr.Zero();
|
---|
| 910 |
|
---|
| 911 | // Attention a l'ordre
|
---|
| 912 | for(long i=0;i<Nx_;i++) {
|
---|
| 913 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 914 | double kx = ii*Dkx_; kx *= kx;
|
---|
| 915 | for(long j=0;j<Ny_;j++) {
|
---|
| 916 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 917 | double ky = jj*Dky_; ky *= ky;
|
---|
| 918 | double kt = sqrt(kx+ky);
|
---|
| 919 | for(long l=0;l<NCz_;l++) {
|
---|
| 920 | double kz = l*Dkz_;
|
---|
| 921 | double pk = MODULE2(T_(l,j,i));
|
---|
| 922 | herr.Add(kt,kz,pk);
|
---|
| 923 | }
|
---|
| 924 | }
|
---|
| 925 | }
|
---|
[3150] | 926 | herr.ToVariance();
|
---|
[3141] | 927 |
|
---|
| 928 | // renormalize to directly compare to original spectrum
|
---|
| 929 | double norm = Vol_;
|
---|
| 930 | herr *= norm;
|
---|
| 931 |
|
---|
| 932 | return 0;
|
---|
| 933 | }
|
---|
| 934 |
|
---|
[3330] | 935 | //-------------------------------------------------------------------
|
---|
| 936 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr,double sigma,bool pixcor)
|
---|
| 937 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
| 938 | // AVEC la soustraction du niveau de bruit et la correction par filterpixel()
|
---|
| 939 | // Si on ne fait pas ca, alors on obtient un spectre non-isotrope!
|
---|
| 940 | //
|
---|
| 941 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 942 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 943 | {
|
---|
| 944 | if(lp_>0) cout<<"--- ComputeSpectrum: sigma="<<sigma<<endl;
|
---|
| 945 | check_array_alloc();
|
---|
| 946 |
|
---|
| 947 | if(sigma<=0.) sigma = 0.;
|
---|
| 948 | double sigma2 = sigma*sigma / (double)NRtot_;
|
---|
| 949 |
|
---|
| 950 | if(herr.NBins()<0) return -1;
|
---|
| 951 | herr.Zero();
|
---|
| 952 |
|
---|
| 953 | TVector<r_8> vfz(NCz_);
|
---|
| 954 | if(pixcor) // kz = l*Dkz_
|
---|
| 955 | for(long l=0;l<NCz_;l++) {vfz(l)=pixelfilter(l*Dkz_ *Dz_/2); vfz(l)*=vfz(l);}
|
---|
| 956 |
|
---|
| 957 | // Attention a l'ordre
|
---|
| 958 | for(long i=0;i<Nx_;i++) {
|
---|
| 959 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 960 | double kx = ii*Dkx_;
|
---|
| 961 | double fx = (pixcor) ? pixelfilter(kx*Dx_/2): 1.;
|
---|
| 962 | kx *= kx; fx *= fx;
|
---|
| 963 | for(long j=0;j<Ny_;j++) {
|
---|
| 964 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 965 | double ky = jj*Dky_;
|
---|
| 966 | double fy = (pixcor) ? pixelfilter(ky*Dy_/2): 1.;
|
---|
| 967 | ky *= ky; fy *= fy;
|
---|
| 968 | for(long l=0;l<NCz_;l++) {
|
---|
| 969 | double kz = l*Dkz_;
|
---|
| 970 | double k = sqrt(kx+ky+kz*kz);
|
---|
| 971 | double pk = MODULE2(T_(l,j,i)) - sigma2;
|
---|
| 972 | double fz = (pixcor) ? vfz(l): 1.;
|
---|
| 973 | double f = fx*fy*fz;
|
---|
| 974 | if(f>0.) herr.Add(k,pk/f);
|
---|
| 975 | }
|
---|
| 976 | }
|
---|
| 977 | }
|
---|
| 978 | herr.ToVariance();
|
---|
[3351] | 979 | for(int i=0;i<herr.NBins();i++) herr(i) += sigma2;
|
---|
[3330] | 980 |
|
---|
| 981 | // renormalize to directly compare to original spectrum
|
---|
| 982 | double norm = Vol_;
|
---|
| 983 | herr *= norm;
|
---|
| 984 |
|
---|
| 985 | return 0;
|
---|
| 986 | }
|
---|
| 987 |
|
---|
| 988 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr,double sigma,bool pixcor)
|
---|
| 989 | // AVEC la soustraction du niveau de bruit et la correction par filterpixel()
|
---|
| 990 | {
|
---|
| 991 | if(lp_>0) cout<<"--- ComputeSpectrum2D: sigma="<<sigma<<endl;
|
---|
| 992 | check_array_alloc();
|
---|
| 993 |
|
---|
| 994 | if(sigma<=0.) sigma = 0.;
|
---|
| 995 | double sigma2 = sigma*sigma / (double)NRtot_;
|
---|
| 996 |
|
---|
| 997 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 998 | herr.Zero();
|
---|
| 999 |
|
---|
| 1000 | TVector<r_8> vfz(NCz_);
|
---|
| 1001 | if(pixcor) // kz = l*Dkz_
|
---|
| 1002 | for(long l=0;l<NCz_;l++) {vfz(l)=pixelfilter(l*Dkz_ *Dz_/2); vfz(l)*=vfz(l);}
|
---|
| 1003 |
|
---|
| 1004 | // Attention a l'ordre
|
---|
| 1005 | for(long i=0;i<Nx_;i++) {
|
---|
| 1006 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
| 1007 | double kx = ii*Dkx_;
|
---|
| 1008 | double fx = (pixcor) ? pixelfilter(kx*Dx_/2) : 1.;
|
---|
| 1009 | kx *= kx; fx *= fx;
|
---|
| 1010 | for(long j=0;j<Ny_;j++) {
|
---|
| 1011 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
| 1012 | double ky = jj*Dky_;
|
---|
| 1013 | double fy = (pixcor) ? pixelfilter(ky*Dy_/2) : 1.;
|
---|
| 1014 | ky *= ky; fy *= fy;
|
---|
| 1015 | double kt = sqrt(kx+ky);
|
---|
| 1016 | for(long l=0;l<NCz_;l++) {
|
---|
| 1017 | double kz = l*Dkz_;
|
---|
| 1018 | double pk = MODULE2(T_(l,j,i)) - sigma2;
|
---|
| 1019 | double fz = (pixcor) ? vfz(l): 1.;
|
---|
| 1020 | double f = fx*fy*fz;
|
---|
| 1021 | if(f>0.) herr.Add(kt,kz,pk/f);
|
---|
| 1022 | }
|
---|
| 1023 | }
|
---|
| 1024 | }
|
---|
| 1025 | herr.ToVariance();
|
---|
[3351] | 1026 | for(int i=0;i<herr.NBinX();i++)
|
---|
| 1027 | for(int j=0;j<herr.NBinY();j++) herr(i,j) += sigma2;
|
---|
[3330] | 1028 |
|
---|
| 1029 | // renormalize to directly compare to original spectrum
|
---|
| 1030 | double norm = Vol_;
|
---|
| 1031 | herr *= norm;
|
---|
| 1032 |
|
---|
| 1033 | return 0;
|
---|
| 1034 | }
|
---|
| 1035 |
|
---|
[3115] | 1036 | //-------------------------------------------------------
|
---|
[3134] | 1037 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 1038 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
[3353] | 1039 | // Par definition: SigmaR^2 = <(M-<M>)^2>/<M>^2
|
---|
| 1040 | // ou M = masse dans sphere de rayon R
|
---|
[3354] | 1041 | // --- ATTENTION: la variance calculee a une tres grande dispersion
|
---|
| 1042 | // (surtout si le volume du cube est petit). Pour verifier
|
---|
| 1043 | // que le sigmaR calcule par cette methode est en accord avec
|
---|
| 1044 | // le sigmaR en input, il faut faire plusieurs simulations (~100)
|
---|
| 1045 | // et regarder la moyenne des sigmaR reconstruits
|
---|
[3115] | 1046 | {
|
---|
[3262] | 1047 | if(lp_>0) cout<<"--- VarianceFrReal R="<<R<<endl;
|
---|
[3141] | 1048 | check_array_alloc();
|
---|
| 1049 |
|
---|
[3353] | 1050 | long dnx = long(R/Dx_)+1; if(dnx<=0) dnx = 1;
|
---|
| 1051 | long dny = long(R/Dy_)+1; if(dny<=0) dny = 1;
|
---|
| 1052 | long dnz = long(R/Dz_)+1; if(dnz<=0) dnz = 1;
|
---|
[3155] | 1053 | if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
[3115] | 1054 |
|
---|
[3353] | 1055 | double sum=0., sum2=0., sn=0., r2 = R*R;
|
---|
| 1056 | int_8 nsum=0;
|
---|
[3115] | 1057 |
|
---|
[3353] | 1058 | for(long i=dnx;i<Nx_-dnx;i+=2*dnx) {
|
---|
| 1059 | for(long j=dny;j<Ny_-dny;j+=2*dny) {
|
---|
| 1060 | for(long l=dnz;l<Nz_-dnz;l+=2*dnz) {
|
---|
| 1061 | double m=0.; int_8 n=0;
|
---|
[3129] | 1062 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 1063 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 1064 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 1065 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 1066 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 1067 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 1068 | if(x+y+z>r2) continue;
|
---|
[3141] | 1069 | int_8 ip = IndexR(ii,jj,ll);
|
---|
[3353] | 1070 | m += 1.+data_[ip]; // 1+drho/rho
|
---|
[3115] | 1071 | n++;
|
---|
| 1072 | }
|
---|
| 1073 | }
|
---|
| 1074 | }
|
---|
[3353] | 1075 | if(n>0) {sum += m; sum2 += m*m; nsum++; sn += n;}
|
---|
| 1076 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" m="<<m<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
[3115] | 1077 | }
|
---|
| 1078 | }
|
---|
| 1079 | }
|
---|
| 1080 |
|
---|
| 1081 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 1082 | sum /= nsum;
|
---|
| 1083 | sum2 = sum2/nsum - sum*sum;
|
---|
[3353] | 1084 | sn /= nsum;
|
---|
| 1085 | if(lp_>0) cout<<"...<n>="<<sn<<", nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
| 1086 | var = sum2/(sum*sum); // <dM^2>/<M>^2
|
---|
| 1087 | if(lp_>0) cout<<"...sigmaR^2 = <(M-<M>)^2>/<M>^2 = "<<var
|
---|
| 1088 | <<" -> sigmaR = "<<sqrt(var)<<endl;
|
---|
[3115] | 1089 |
|
---|
| 1090 | return nsum;
|
---|
| 1091 | }
|
---|
| 1092 |
|
---|
| 1093 | //-------------------------------------------------------
|
---|
[3134] | 1094 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 1095 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 1096 | // -> vmin and vmax are considered as bad
|
---|
| 1097 | {
|
---|
[3141] | 1098 | check_array_alloc();
|
---|
[3115] | 1099 |
|
---|
[3134] | 1100 | int_8 nbad = 0;
|
---|
[3129] | 1101 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1102 | int_8 ip = IndexR(i,j,l);
|
---|
| 1103 | double v = data_[ip];
|
---|
[3115] | 1104 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 1105 | }
|
---|
| 1106 |
|
---|
[3358] | 1107 | if(lp_>0) cout<<"--- NumberOfBad "<<nbad<<" px out of ]"<<vmin<<","<<vmax
|
---|
| 1108 | <<"[ i.e. frac="<<nbad/(double)NRtot_<<endl;
|
---|
[3115] | 1109 | return nbad;
|
---|
| 1110 | }
|
---|
| 1111 |
|
---|
[3320] | 1112 | int_8 GeneFluct3D::MinMax(double& xmin,double& xmax,double vmin,double vmax)
|
---|
| 1113 | // Calcul des valeurs xmin et xmax dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 1114 | {
|
---|
| 1115 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 1116 | if(lp_>0) {
|
---|
| 1117 | cout<<"--- MinMax";
|
---|
| 1118 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
| 1119 | cout<<endl;
|
---|
| 1120 | }
|
---|
| 1121 | check_array_alloc();
|
---|
| 1122 |
|
---|
| 1123 | int_8 n = 0;
|
---|
| 1124 | xmin = xmax = data_[0];
|
---|
| 1125 |
|
---|
| 1126 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1127 | int_8 ip = IndexR(i,j,l);
|
---|
| 1128 | double x = data_[ip];
|
---|
| 1129 | if(tstval && (x<=vmin || x>=vmax)) continue;
|
---|
| 1130 | if(x<xmin) xmin = x;
|
---|
| 1131 | if(x>xmax) xmax = x;
|
---|
| 1132 | n++;
|
---|
| 1133 | }
|
---|
| 1134 |
|
---|
| 1135 | if(lp_>0) cout<<" n="<<n<<" min="<<xmin<<" max="<<xmax<<endl;
|
---|
| 1136 |
|
---|
| 1137 | return n;
|
---|
| 1138 | }
|
---|
| 1139 |
|
---|
[3261] | 1140 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax
|
---|
| 1141 | ,bool useout,double vout)
|
---|
| 1142 | // Calcul de mean,sigma2 dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 1143 | // useout = false: ne pas utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 1144 | // true : utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 1145 | // en remplacant leurs valeurs par "vout"
|
---|
[3115] | 1146 | {
|
---|
[3261] | 1147 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 1148 | if(lp_>0) {
|
---|
[3262] | 1149 | cout<<"--- MeanSigma2";
|
---|
| 1150 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
[3261] | 1151 | if(useout) cout<<", useout="<<useout<<" vout="<<vout;
|
---|
| 1152 | cout<<endl;
|
---|
| 1153 | }
|
---|
[3141] | 1154 | check_array_alloc();
|
---|
[3115] | 1155 |
|
---|
[3134] | 1156 | int_8 n = 0;
|
---|
[3115] | 1157 | rm = rs2 = 0.;
|
---|
| 1158 |
|
---|
[3129] | 1159 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1160 | int_8 ip = IndexR(i,j,l);
|
---|
| 1161 | double v = data_[ip];
|
---|
[3261] | 1162 | if(tstval) {
|
---|
| 1163 | if(v<=vmin || v>=vmax) {if(useout) v=vout; else continue;}
|
---|
| 1164 | }
|
---|
[3115] | 1165 | rm += v;
|
---|
| 1166 | rs2 += v*v;
|
---|
| 1167 | n++;
|
---|
| 1168 | }
|
---|
| 1169 |
|
---|
| 1170 | if(n>1) {
|
---|
| 1171 | rm /= (double)n;
|
---|
| 1172 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 1173 | }
|
---|
| 1174 |
|
---|
[3261] | 1175 | if(lp_>0) cout<<" n="<<n<<" m="<<rm<<" s2="<<rs2<<" s="<<sqrt(fabs(rs2))<<endl;
|
---|
| 1176 |
|
---|
[3115] | 1177 | return n;
|
---|
| 1178 | }
|
---|
| 1179 |
|
---|
[3134] | 1180 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 1181 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
[3261] | 1182 | // cad set to "val0" if in [vmin,vmax] -> vmin and vmax are set to val0
|
---|
[3115] | 1183 | {
|
---|
[3141] | 1184 | check_array_alloc();
|
---|
[3115] | 1185 |
|
---|
[3134] | 1186 | int_8 nbad = 0;
|
---|
[3129] | 1187 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1188 | int_8 ip = IndexR(i,j,l);
|
---|
| 1189 | double v = data_[ip];
|
---|
| 1190 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 1191 | }
|
---|
| 1192 |
|
---|
[3262] | 1193 | if(lp_>0) cout<<"--- SetToVal "<<nbad<<" px set to="<<val0
|
---|
| 1194 | <<" because out of range=]"<<vmin<<","<<vmax<<"["<<endl;
|
---|
[3115] | 1195 | return nbad;
|
---|
| 1196 | }
|
---|
| 1197 |
|
---|
[3283] | 1198 | void GeneFluct3D::ScaleOffset(double scalecube,double offsetcube)
|
---|
| 1199 | // Replace "V" by "scalecube * ( V + offsetcube )"
|
---|
| 1200 | {
|
---|
[3284] | 1201 | if(lp_>0) cout<<"--- ScaleCube scale="<<scalecube<<" offset="<<offsetcube<<endl;
|
---|
[3283] | 1202 |
|
---|
| 1203 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1204 | int_8 ip = IndexR(i,j,l);
|
---|
| 1205 | data_[ip] = scalecube * ( data_[ip] + offsetcube );
|
---|
| 1206 | }
|
---|
| 1207 |
|
---|
| 1208 | return;
|
---|
| 1209 | }
|
---|
| 1210 |
|
---|
[3115] | 1211 | //-------------------------------------------------------
|
---|
| 1212 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 1213 | // d_rho/rho -> Mass (add one!)
|
---|
| 1214 | {
|
---|
[3155] | 1215 | if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
|
---|
[3141] | 1216 | check_array_alloc();
|
---|
| 1217 |
|
---|
[3115] | 1218 |
|
---|
[3129] | 1219 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1220 | int_8 ip = IndexR(i,j,l);
|
---|
| 1221 | data_[ip] += 1.;
|
---|
[3115] | 1222 | }
|
---|
| 1223 | }
|
---|
| 1224 |
|
---|
[3358] | 1225 | double GeneFluct3D::TurnFluct2MeanNumber(double val_by_mpc3)
|
---|
[3365] | 1226 | // ATTENTION: la gestion des pixels<0 proposee ici induit une perte de variance
|
---|
| 1227 | // sur la carte, le spectre Pk reconstruit sera plus faible!
|
---|
| 1228 | // L'effet sera d'autant plus grand que le nombre de pixels<0 sera grand.
|
---|
[3329] | 1229 | {
|
---|
[3358] | 1230 | if(lp_>0) cout<<"--- TurnFluct2MeanNumber : "<<val_by_mpc3<<" quantity (gal or mass)/Mpc^3"<<endl;
|
---|
[3329] | 1231 |
|
---|
[3358] | 1232 | // First convert dRho/Rho into 1+dRho/Rho
|
---|
| 1233 | int_8 nball = 0; double sumall = 0., sumall2 = 0.;
|
---|
[3329] | 1234 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1235 | int_8 ip = IndexR(i,j,l);
|
---|
[3358] | 1236 | data_[ip] += 1.;
|
---|
| 1237 | nball++; sumall += data_[ip]; sumall2 += data_[ip]*data_[ip];
|
---|
[3329] | 1238 | }
|
---|
[3358] | 1239 | if(nball>2) {
|
---|
| 1240 | sumall /= (double)nball;
|
---|
| 1241 | sumall2 = sumall2/(double)nball - sumall*sumall;
|
---|
| 1242 | if(lp_>0) cout<<"1+dRho/Rho: mean="<<sumall<<" variance="<<sumall2
|
---|
| 1243 | <<" -> "<<sqrt(fabs(sumall2))<<endl;
|
---|
[3329] | 1244 | }
|
---|
| 1245 |
|
---|
[3358] | 1246 | // Find contribution for positive pixels
|
---|
| 1247 | int_8 nbpos = 0; double sumpos = 0. , sumpos2 = 0.;
|
---|
| 1248 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1249 | int_8 ip = IndexR(i,j,l);
|
---|
| 1250 | double v = data_[ip];
|
---|
| 1251 | if(data_[ip]>0.) {nbpos++; sumpos += v; sumpos2 += v*v;}
|
---|
| 1252 | }
|
---|
| 1253 | if(nbpos<1) {
|
---|
| 1254 | cout<<"TurnFluct2MeanNumber_Error: nbpos<1"<<endl;
|
---|
| 1255 | throw RangeCheckError("TurnFluct2MeanNumber_Error: nbpos<1");
|
---|
| 1256 | }
|
---|
| 1257 | sumpos2 = sumpos2/nball - sumpos*sumpos/(nball*nball);
|
---|
| 1258 | if(lp_>0)
|
---|
| 1259 | cout<<"1+dRho/Rho with v<0 set to zero: mean="<<sumpos/nball
|
---|
| 1260 | <<" variance="<<sumpos2<<" -> "<<sqrt(fabs(sumpos2))<<endl;
|
---|
| 1261 | cout<<"Sum of positive values: sumpos="<<sumpos
|
---|
| 1262 | <<" (n(v>0) = "<<nbpos<<" frac(v>0)="<<nbpos/(double)NRtot_<<")"<<endl;
|
---|
[3329] | 1263 |
|
---|
[3358] | 1264 | // - Mettre exactement val_by_mpc3*Vol galaxies (ou Msol) dans notre survey
|
---|
| 1265 | // - Uniquement dans les pixels de masse >0.
|
---|
| 1266 | // - Mise a zero des pixels <0
|
---|
| 1267 | double dn = val_by_mpc3 * Vol_ / sumpos;
|
---|
| 1268 | if(lp_>0) cout<<"...density move from "
|
---|
| 1269 | <<val_by_mpc3*dVol_<<" to "<<dn<<" / pixel"<<endl;
|
---|
| 1270 |
|
---|
[3329] | 1271 | double sum = 0.;
|
---|
| 1272 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1273 | int_8 ip = IndexR(i,j,l);
|
---|
| 1274 | if(data_[ip]<=0.) data_[ip] = 0.;
|
---|
| 1275 | else {
|
---|
[3349] | 1276 | data_[ip] *= dn;
|
---|
| 1277 | sum += data_[ip];
|
---|
[3329] | 1278 | }
|
---|
| 1279 | }
|
---|
| 1280 |
|
---|
[3358] | 1281 | if(lp_>0) cout<<"...quantity put into survey "<<sum<<" / "<<val_by_mpc3*Vol_<<endl;
|
---|
[3329] | 1282 |
|
---|
| 1283 | return sum;
|
---|
| 1284 | }
|
---|
| 1285 |
|
---|
[3115] | 1286 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 1287 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1288 | {
|
---|
[3155] | 1289 | if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
|
---|
[3141] | 1290 | check_array_alloc();
|
---|
| 1291 |
|
---|
[3115] | 1292 | double sum = 0.;
|
---|
[3129] | 1293 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1294 | int_8 ip = IndexR(i,j,l);
|
---|
| 1295 | double v = data_[ip];
|
---|
[3115] | 1296 | if(v>0.) {
|
---|
| 1297 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
[3141] | 1298 | data_[ip] = (double)dn;
|
---|
[3115] | 1299 | sum += (double)dn;
|
---|
| 1300 | }
|
---|
| 1301 | }
|
---|
[3155] | 1302 | if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 1303 |
|
---|
| 1304 | return sum;
|
---|
| 1305 | }
|
---|
| 1306 |
|
---|
| 1307 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 1308 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1309 | // INPUT:
|
---|
| 1310 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 1311 | // axeslog = false : retourne la masse
|
---|
| 1312 | // = true : retourne le log10(mass)
|
---|
| 1313 | // RETURN la masse totale
|
---|
| 1314 | {
|
---|
[3155] | 1315 | if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
|
---|
[3141] | 1316 | check_array_alloc();
|
---|
| 1317 |
|
---|
[3115] | 1318 | double sum = 0.;
|
---|
[3129] | 1319 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1320 | int_8 ip = IndexR(i,j,l);
|
---|
| 1321 | double v = data_[ip];
|
---|
[3115] | 1322 | if(v>0.) {
|
---|
[3129] | 1323 | long ngal = long(v+0.1);
|
---|
[3141] | 1324 | data_[ip] = 0.;
|
---|
[3129] | 1325 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 1326 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 1327 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 1328 | data_[ip] += m;
|
---|
[3115] | 1329 | }
|
---|
[3141] | 1330 | sum += data_[ip];
|
---|
[3115] | 1331 | }
|
---|
| 1332 | }
|
---|
[3155] | 1333 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 1334 |
|
---|
| 1335 | return sum;
|
---|
| 1336 | }
|
---|
| 1337 |
|
---|
[3320] | 1338 | double GeneFluct3D::TurnNGal2MassQuick(SchechterMassDist& schmdist)
|
---|
| 1339 | // idem TurnNGal2Mass mais beaucoup plus rapide
|
---|
| 1340 | {
|
---|
| 1341 | if(lp_>0) cout<<"--- TurnNGal2MassQuick ---"<<endl;
|
---|
| 1342 | check_array_alloc();
|
---|
| 1343 |
|
---|
| 1344 | double sum = 0.;
|
---|
| 1345 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1346 | int_8 ip = IndexR(i,j,l);
|
---|
| 1347 | double v = data_[ip];
|
---|
| 1348 | if(v>0.) {
|
---|
| 1349 | long ngal = long(v+0.1);
|
---|
| 1350 | data_[ip] = schmdist.TirMass(ngal);
|
---|
| 1351 | sum += data_[ip];
|
---|
| 1352 | }
|
---|
| 1353 | }
|
---|
| 1354 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
| 1355 |
|
---|
| 1356 | return sum;
|
---|
| 1357 | }
|
---|
| 1358 |
|
---|
[3349] | 1359 | void GeneFluct3D::AddNoise2Real(double snoise,int type_evol)
|
---|
| 1360 | // add noise to every pixels (meme les <=0 !)
|
---|
| 1361 | // type_evol = 0 : pas d'evolution de la puissance du bruit
|
---|
| 1362 | // 1 : evolution de la puissance du bruit avec la distance a l'observateur
|
---|
| 1363 | // 2 : evolution de la puissance du bruit avec la distance du plan Z
|
---|
| 1364 | // (tous les plans Z sont mis au meme redshift z de leur milieu)
|
---|
| 1365 | {
|
---|
| 1366 | if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<" evol="<<type_evol<<endl;
|
---|
| 1367 | check_array_alloc();
|
---|
| 1368 |
|
---|
| 1369 | if(type_evol<0) type_evol = 0;
|
---|
| 1370 | if(type_evol>2) {
|
---|
| 1371 | char *bla = "GeneFluct3D::AddNoise2Real_Error: bad type_evol value";
|
---|
| 1372 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1373 | }
|
---|
| 1374 |
|
---|
| 1375 | vector<double> correction;
|
---|
| 1376 | InterpFunc *intercor = NULL;
|
---|
| 1377 |
|
---|
| 1378 | if(type_evol>0) {
|
---|
| 1379 | // Sigma_Noise(en mass) :
|
---|
| 1380 | // Slim ~ 1/sqrt(DNu) * sqrt(nlobe) en W/m^2Hz
|
---|
| 1381 | // Flim ~ sqrt(DNu) * sqrt(nlobe) en W/m^2
|
---|
| 1382 | // Mlim ~ sqrt(DNu) * (Dlum)^2 * sqrt(nlobe) en Msol
|
---|
| 1383 | // nlobe ~ 1/Dtrcom^2
|
---|
| 1384 | // Mlim ~ sqrt(DNu) * (Dlum)^2 / Dtrcom
|
---|
| 1385 | if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
|
---|
| 1386 | char *bla = "GeneFluct3D::AddNoise2Real_Error: set Observator and Cosmology first";
|
---|
| 1387 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1388 | }
|
---|
| 1389 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
| 1390 | long nsz = loscom2zred_.size(), nszmod=((nsz>10)? nsz/10: 1);
|
---|
| 1391 | for(long i=0;i<nsz;i++) {
|
---|
| 1392 | double d = interpinv.X(i);
|
---|
| 1393 | double zred = interpinv(d);
|
---|
| 1394 | double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
|
---|
| 1395 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1396 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1397 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
| 1398 | double corr = sqrt(dnu/dnu_ref_) * pow(dlum/dlum_ref_,2.) * dtrc_ref_/dtrc;
|
---|
| 1399 | if(lp_>0 && (i==0 || i==nsz-1 || i%nszmod==0))
|
---|
| 1400 | cout<<"i="<<i<<" d="<<d<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
|
---|
| 1401 | <<" dtrc="<<dtrc<<" dlum="<<dlum<<" -> cor="<<corr<<endl;
|
---|
| 1402 | correction.push_back(corr);
|
---|
| 1403 | }
|
---|
| 1404 | intercor = new InterpFunc(loscom2zred_min_,loscom2zred_max_,correction);
|
---|
| 1405 | }
|
---|
| 1406 |
|
---|
| 1407 | double corrlim[2] = {1.,1.};
|
---|
| 1408 | for(long i=0;i<Nx_;i++) {
|
---|
| 1409 | double dx2 = DXcom(i); dx2 *= dx2;
|
---|
| 1410 | for(long j=0;j<Ny_;j++) {
|
---|
| 1411 | double dy2 = DYcom(j); dy2 *= dy2;
|
---|
| 1412 | for(long l=0;l<Nz_;l++) {
|
---|
| 1413 | double corr = 1.;
|
---|
| 1414 | if(type_evol>0) {
|
---|
| 1415 | double dz = DZcom(l);
|
---|
| 1416 | if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
|
---|
| 1417 | else dz = fabs(dz); // tous les plans Z au meme redshift
|
---|
| 1418 | corr = (*intercor)(dz);
|
---|
| 1419 | if(corr<corrlim[0]) corrlim[0]=corr; else if(corr>corrlim[1]) corrlim[1]=corr;
|
---|
| 1420 | }
|
---|
| 1421 | int_8 ip = IndexR(i,j,l);
|
---|
| 1422 | data_[ip] += snoise*corr*NorRand();
|
---|
| 1423 | }
|
---|
| 1424 | }
|
---|
| 1425 | }
|
---|
| 1426 | if(type_evol>0)
|
---|
| 1427 | cout<<"correction factor range: ["<<corrlim[0]<<","<<corrlim[1]<<"]"<<endl;
|
---|
| 1428 |
|
---|
| 1429 | if(intercor!=NULL) delete intercor;
|
---|
| 1430 | }
|
---|
| 1431 |
|
---|
| 1432 | } // Fin namespace SOPHYA
|
---|
| 1433 |
|
---|
| 1434 |
|
---|
| 1435 |
|
---|
| 1436 |
|
---|
| 1437 | /*********************************************************************
|
---|
[3199] | 1438 | void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
|
---|
[3196] | 1439 | // Add AGN flux into simulation:
|
---|
| 1440 | // --- Procedure:
|
---|
| 1441 | // 1. lancer "cmvdefsurv" avec les parametres du survey
|
---|
[3199] | 1442 | // (au redshift de reference du survey)
|
---|
[3196] | 1443 | // et recuperer l'angle solide "angsol sr" du pixel elementaire
|
---|
| 1444 | // au centre du cube.
|
---|
| 1445 | // 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
|
---|
| 1446 | // 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
|
---|
| 1447 | // cad une moyenne <log10(S)> et un sigma "sig"
|
---|
[3199] | 1448 | // Attention: la distribution n'est pas gaussienne les "mean,sigma"
|
---|
| 1449 | // de l'histo ne sont pas vraiment ce que l'on veut
|
---|
[3196] | 1450 | // --- Limitations actuelle du code:
|
---|
[3271] | 1451 | // . les AGN sont supposes evoluer avec la meme loi de puissance pour tout theta,phi
|
---|
[3199] | 1452 | // . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
|
---|
| 1453 | // . la distribution est approximee a une gaussienne
|
---|
| 1454 | // ... C'est une approximation pour un observateur loin du centre du cube
|
---|
| 1455 | // et pour un cube peu epais / distance observateur
|
---|
[3196] | 1456 | // --- Parametres de la routine:
|
---|
[3271] | 1457 | // llfy : c'est le <log10(S)> du flux depose par les AGN
|
---|
| 1458 | // dans l'angle solide du pixel elementaire de reference du cube
|
---|
| 1459 | // lsigma : c'est le sigma de la distribution des log10(S)
|
---|
| 1460 | // powlaw : c'est la pente de la distribution cad que le flux "lmsol"
|
---|
[3199] | 1461 | // et considere comme le flux a 1.4GHz et qu'on suppose une loi
|
---|
| 1462 | // F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
|
---|
[3196] | 1463 | // - Comme on est en echelle log10():
|
---|
| 1464 | // on tire log10(Msol) + X
|
---|
| 1465 | // ou X est une realisation sur une gaussienne de variance "sig^2"
|
---|
| 1466 | // La masse realisee est donc: Msol*10^X
|
---|
| 1467 | // - Pas de probleme de pixel negatif car on a une multiplication!
|
---|
| 1468 | {
|
---|
[3199] | 1469 | if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
|
---|
[3196] | 1470 | check_array_alloc();
|
---|
| 1471 |
|
---|
[3271] | 1472 | if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
|
---|
[3199] | 1473 | char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
|
---|
| 1474 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1475 | }
|
---|
[3196] | 1476 |
|
---|
[3271] | 1477 | // Le flux des AGN en Jy et en mass solaire
|
---|
| 1478 | double fagnref = pow(10.,lfjy)*(dnu_ref_*1.e9); // Jy.Hz = W/m^2
|
---|
| 1479 | double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlum_ref_); // Msol
|
---|
| 1480 | if(lp_>0)
|
---|
| 1481 | cout<<"Au pixel de ref: fagnref="<<fagnref
|
---|
| 1482 | <<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
|
---|
[3196] | 1483 |
|
---|
[3199] | 1484 | if(powlaw!=0.) {
|
---|
[3271] | 1485 | // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
|
---|
| 1486 | magnref *= pow(1/(1.+redsh_ref_),powlaw);
|
---|
[3199] | 1487 | if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
|
---|
| 1488 | }
|
---|
| 1489 |
|
---|
| 1490 | // Les infos en fonction de l'indice "l" selon Oz
|
---|
| 1491 | vector<double> correction;
|
---|
| 1492 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3271] | 1493 | long nzmod = ((Nz_>10)?Nz_/10:1);
|
---|
[3199] | 1494 | for(long l=0;l<Nz_;l++) {
|
---|
[3271] | 1495 | double z = fabs(DZcom(l));
|
---|
[3199] | 1496 | double zred = interpinv(z);
|
---|
[3271] | 1497 | double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
|
---|
[3199] | 1498 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1499 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1500 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
[3271] | 1501 | // on a: Mass ~ DNu * Dlum^2 / Dtrcom^2
|
---|
| 1502 | double corr = dnu/dnu_ref_*pow(dtrc_ref_/dtrc*dlum/dlum_ref_,2.);
|
---|
| 1503 | // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
|
---|
| 1504 | if(powlaw!=0.) corr *= pow((1.+redsh_ref_)/(1.+zred),powlaw);
|
---|
[3199] | 1505 | correction.push_back(corr);
|
---|
[3271] | 1506 | if(lp_>0 && (l==0 || l==Nz_-1 || l%nzmod==0)) {
|
---|
| 1507 | cout<<"l="<<l<<" z="<<z<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
|
---|
| 1508 | <<" dtrc="<<dtrc<<" dlum="<<dlum
|
---|
| 1509 | <<" -> cor="<<corr<<endl;
|
---|
[3199] | 1510 | }
|
---|
| 1511 | }
|
---|
| 1512 |
|
---|
| 1513 | double sum=0., sum2=0., nsum=0.;
|
---|
| 1514 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
|
---|
| 1515 | double a = lsigma*NorRand();
|
---|
| 1516 | a = magnref*pow(10.,a);
|
---|
| 1517 | // On met le meme tirage le long de Oz (indice k)
|
---|
| 1518 | for(long l=0;l<Nz_;l++) {
|
---|
| 1519 | int_8 ip = IndexR(i,j,l);
|
---|
| 1520 | data_[ip] += a*correction[l];
|
---|
| 1521 | }
|
---|
| 1522 | sum += a; sum2 += a*a; nsum += 1.;
|
---|
| 1523 | }
|
---|
| 1524 |
|
---|
| 1525 | if(lp_>0 && nsum>1.) {
|
---|
[3196] | 1526 | sum /= nsum;
|
---|
| 1527 | sum2 = sum2/nsum - sum*sum;
|
---|
| 1528 | cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
|
---|
| 1529 | }
|
---|
| 1530 |
|
---|
| 1531 | }
|
---|
[3349] | 1532 | *********************************************************************/
|
---|