[4047] | 1 | //#include "sopnamsp.h"
|
---|
[3115] | 2 | #include "machdefs.h"
|
---|
| 3 | #include <iostream>
|
---|
| 4 | #include <stdlib.h>
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <string.h>
|
---|
| 7 | #include <math.h>
|
---|
| 8 | #include <unistd.h>
|
---|
| 9 |
|
---|
| 10 | #include "tarray.h"
|
---|
| 11 | #include "pexceptions.h"
|
---|
| 12 | #include "perandom.h"
|
---|
| 13 | #include "srandgen.h"
|
---|
| 14 |
|
---|
[3141] | 15 | #include "fabtcolread.h"
|
---|
| 16 | #include "fabtwriter.h"
|
---|
| 17 | #include "fioarr.h"
|
---|
[3524] | 18 | #include "ntuple.h"
|
---|
[3141] | 19 |
|
---|
| 20 | #include "arrctcast.h"
|
---|
| 21 |
|
---|
[3115] | 22 | #include "constcosmo.h"
|
---|
| 23 | #include "geneutils.h"
|
---|
[3199] | 24 | #include "schechter.h"
|
---|
[3115] | 25 |
|
---|
| 26 | #include "genefluct3d.h"
|
---|
| 27 |
|
---|
[3518] | 28 | #if defined(GEN3D_FLOAT)
|
---|
| 29 | #define GEN3D_FFTW_INIT_THREADS fftwf_init_threads
|
---|
| 30 | #define GEN3D_FFTW_CLEANUP_THREADS fftwf_cleanup_threads
|
---|
| 31 | #define GEN3D_FFTW_PLAN_WITH_NTHREADS fftwf_plan_with_nthreads
|
---|
| 32 | #define GEN3D_FFTW_PLAN_DFT_R2C_3D fftwf_plan_dft_r2c_3d
|
---|
| 33 | #define GEN3D_FFTW_PLAN_DFT_C2R_3D fftwf_plan_dft_c2r_3d
|
---|
| 34 | #define GEN3D_FFTW_DESTROY_PLAN fftwf_destroy_plan
|
---|
| 35 | #define GEN3D_FFTW_EXECUTE fftwf_execute
|
---|
| 36 | #else
|
---|
| 37 | #define GEN3D_FFTW_INIT_THREADS fftw_init_threads
|
---|
| 38 | #define GEN3D_FFTW_CLEANUP_THREADS fftw_cleanup_threads
|
---|
| 39 | #define GEN3D_FFTW_PLAN_WITH_NTHREADS fftw_plan_with_nthreads
|
---|
| 40 | #define GEN3D_FFTW_PLAN_DFT_R2C_3D fftw_plan_dft_r2c_3d
|
---|
| 41 | #define GEN3D_FFTW_PLAN_DFT_C2R_3D fftw_plan_dft_c2r_3d
|
---|
| 42 | #define GEN3D_FFTW_DESTROY_PLAN fftw_destroy_plan
|
---|
| 43 | #define GEN3D_FFTW_EXECUTE fftw_execute
|
---|
| 44 | #endif
|
---|
[3115] | 45 |
|
---|
| 46 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
| 47 |
|
---|
[3325] | 48 | namespace SOPHYA {
|
---|
| 49 |
|
---|
[3115] | 50 | //-------------------------------------------------------
|
---|
[3349] | 51 | GeneFluct3D::GeneFluct3D(long nx,long ny,long nz,double dx,double dy,double dz
|
---|
| 52 | ,unsigned short nthread,int lp)
|
---|
[3115] | 53 | {
|
---|
[3349] | 54 | init_default();
|
---|
[3115] | 55 |
|
---|
[3349] | 56 | lp_ = lp;
|
---|
| 57 | nthread_ = nthread;
|
---|
[3115] | 58 |
|
---|
[3349] | 59 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 60 | setalloc();
|
---|
| 61 | setpointers(false);
|
---|
| 62 | init_fftw();
|
---|
[3141] | 63 | }
|
---|
| 64 |
|
---|
[3349] | 65 | GeneFluct3D::GeneFluct3D(unsigned short nthread)
|
---|
[3154] | 66 | {
|
---|
[3349] | 67 | init_default();
|
---|
| 68 | setsize(2,2,2,1.,1.,1.);
|
---|
| 69 | nthread_ = nthread;
|
---|
| 70 | setalloc();
|
---|
| 71 | setpointers(false);
|
---|
| 72 | init_fftw();
|
---|
[3154] | 73 | }
|
---|
| 74 |
|
---|
[3349] | 75 | GeneFluct3D::~GeneFluct3D(void)
|
---|
[3157] | 76 | {
|
---|
[3349] | 77 | delete_fftw();
|
---|
[3157] | 78 | }
|
---|
| 79 |
|
---|
[3349] | 80 | //-------------------------------------------------------
|
---|
| 81 | void GeneFluct3D::init_default(void)
|
---|
[3157] | 82 | {
|
---|
[3349] | 83 | Nx_ = Ny_ = Nz_ = 0;
|
---|
[3518] | 84 | is_set_fft_plan = false;
|
---|
[3349] | 85 | nthread_ = 0;
|
---|
| 86 | lp_ = 0;
|
---|
[3524] | 87 | array_allocated_ = false; array_type = 0;
|
---|
[3349] | 88 | cosmo_ = NULL;
|
---|
| 89 | growth_ = NULL;
|
---|
[3768] | 90 | good_dzinc_ = 0.01;
|
---|
| 91 | compute_pk_redsh_ref_ = -999.;
|
---|
[3349] | 92 | redsh_ref_ = -999.;
|
---|
| 93 | kredsh_ref_ = 0.;
|
---|
| 94 | dred_ref_ = -999.;
|
---|
[3770] | 95 | h_ref_ = -999.;
|
---|
[3349] | 96 | loscom_ref_ = -999.;
|
---|
| 97 | dtrc_ref_ = dlum_ref_ = dang_ref_ = -999.;
|
---|
| 98 | nu_ref_ = dnu_ref_ = -999.;
|
---|
| 99 | loscom_min_ = loscom_max_ = -999.;
|
---|
| 100 | loscom2zred_min_ = loscom2zred_max_ = 0.;
|
---|
| 101 | xobs_[0] = xobs_[1] = xobs_[2] = 0.;
|
---|
| 102 | zred_.resize(0);
|
---|
| 103 | loscom_.resize(0);
|
---|
| 104 | loscom2zred_.resize(0);
|
---|
[3157] | 105 | }
|
---|
| 106 |
|
---|
[3141] | 107 | void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
| 108 | {
|
---|
[3155] | 109 | if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
|
---|
| 110 | <<" D="<<dx<<","<<dy<<","<<dz<<endl;
|
---|
[3141] | 111 | if(nx<=0 || dx<=0.) {
|
---|
[3572] | 112 | const char *bla = "GeneFluct3D::setsize_Error: bad value(s) for nn/dx";
|
---|
[3199] | 113 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3115] | 114 | }
|
---|
| 115 |
|
---|
[3141] | 116 | // Les tailles des tableaux
|
---|
[3115] | 117 | Nx_ = nx;
|
---|
| 118 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
| 119 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
[3141] | 120 | N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
|
---|
[3773] | 121 | NRtot_ = (int_8)Nx_*(int_8)Ny_*(int_8)Nz_; // nombre de pixels dans le survey
|
---|
[3115] | 122 | NCz_ = Nz_/2 +1;
|
---|
[3781] | 123 | NFcoef_ = (int_8)Nx_*(int_8)Ny_*(int_8)NCz_; // nombre de coeff de Fourier dans le survey
|
---|
[3115] | 124 | NTz_ = 2*NCz_;
|
---|
| 125 |
|
---|
| 126 | // le pas dans l'espace (Mpc)
|
---|
| 127 | Dx_ = dx;
|
---|
| 128 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
| 129 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
[3141] | 130 | D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
|
---|
[3115] | 131 | dVol_ = Dx_*Dy_*Dz_;
|
---|
| 132 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
| 133 |
|
---|
| 134 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
| 135 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
| 136 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
| 137 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
[3141] | 138 | Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
|
---|
[3115] | 139 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
| 140 |
|
---|
| 141 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
| 142 | Knyqx_ = M_PI/Dx_;
|
---|
| 143 | Knyqy_ = M_PI/Dy_;
|
---|
| 144 | Knyqz_ = M_PI/Dz_;
|
---|
[3141] | 145 | Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
|
---|
| 146 | }
|
---|
[3115] | 147 |
|
---|
[3141] | 148 | void GeneFluct3D::setalloc(void)
|
---|
| 149 | {
|
---|
[3521] | 150 | #if defined(GEN3D_FLOAT)
|
---|
| 151 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc FLOAT ---"<<endl;
|
---|
| 152 | #else
|
---|
| 153 | if(lp_>1) cout<<"--- GeneFluct3D::setalloc DOUBLE ---"<<endl;
|
---|
| 154 | #endif
|
---|
[3141] | 155 | // Dimensionnement du tableau complex<r_8>
|
---|
| 156 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
| 157 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
| 158 | sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
|
---|
| 159 | try {
|
---|
[3743] | 160 | T_.ReSize(3,SzK_);
|
---|
[3524] | 161 | array_allocated_ = true; array_type=0;
|
---|
[3518] | 162 | if(lp_>1) cout<<" allocating: "<<T_.Size()*sizeof(complex<GEN3D_TYPE>)/1.e6<<" Mo"<<endl;
|
---|
[3141] | 163 | } catch (...) {
|
---|
[3155] | 164 | cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
|
---|
[3141] | 165 | }
|
---|
[3115] | 166 | }
|
---|
| 167 |
|
---|
[3141] | 168 | void GeneFluct3D::setpointers(bool from_real)
|
---|
| 169 | {
|
---|
[3155] | 170 | if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
|
---|
[3141] | 171 | if(from_real) T_ = ArrCastR2C(R_);
|
---|
| 172 | else R_ = ArrCastC2R(T_);
|
---|
| 173 | // On remplit les pointeurs
|
---|
[3518] | 174 | fdata_ = (GEN3D_FFTW_COMPLEX *) (&T_(0,0,0));
|
---|
| 175 | data_ = (GEN3D_TYPE *) (&R_(0,0,0));
|
---|
[3141] | 176 | }
|
---|
| 177 |
|
---|
[3349] | 178 | void GeneFluct3D::init_fftw(void)
|
---|
[3141] | 179 | {
|
---|
[3518] | 180 | if( is_set_fft_plan ) delete_fftw();
|
---|
[3141] | 181 |
|
---|
[3154] | 182 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
[3155] | 183 | if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
|
---|
[3349] | 184 | #ifdef WITH_FFTW_THREAD
|
---|
[3154] | 185 | if(nthread_>0) {
|
---|
[3155] | 186 | cout<<"...Computing with "<<nthread_<<" threads"<<endl;
|
---|
[3518] | 187 | GEN3D_FFTW_INIT_THREADS();
|
---|
| 188 | GEN3D_FFTW_PLAN_WITH_NTHREADS(nthread_);
|
---|
[3154] | 189 | }
|
---|
| 190 | #endif
|
---|
[3155] | 191 | if(lp_>1) cout<<"...forward plan"<<endl;
|
---|
[3518] | 192 | pf_ = GEN3D_FFTW_PLAN_DFT_R2C_3D(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
|
---|
[3155] | 193 | if(lp_>1) cout<<"...backward plan"<<endl;
|
---|
[3518] | 194 | pb_ = GEN3D_FFTW_PLAN_DFT_C2R_3D(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
|
---|
| 195 | is_set_fft_plan = true;
|
---|
[3154] | 196 | }
|
---|
[3141] | 197 |
|
---|
[3349] | 198 | void GeneFluct3D::delete_fftw(void)
|
---|
| 199 | {
|
---|
[3518] | 200 | if( !is_set_fft_plan ) return;
|
---|
| 201 | GEN3D_FFTW_DESTROY_PLAN(pf_);
|
---|
| 202 | GEN3D_FFTW_DESTROY_PLAN(pb_);
|
---|
[3349] | 203 | #ifdef WITH_FFTW_THREAD
|
---|
[3518] | 204 | if(nthread_>0) GEN3D_FFTW_CLEANUP_THREADS();
|
---|
[3349] | 205 | #endif
|
---|
[3518] | 206 | is_set_fft_plan = false;
|
---|
[3349] | 207 | }
|
---|
| 208 |
|
---|
| 209 | void GeneFluct3D::check_array_alloc(void)
|
---|
| 210 | // Pour tester si le tableau T_ est alloue
|
---|
| 211 | {
|
---|
| 212 | if(array_allocated_) return;
|
---|
| 213 | char bla[90];
|
---|
| 214 | sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
|
---|
| 215 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 216 | }
|
---|
| 217 |
|
---|
[3157] | 218 | //-------------------------------------------------------
|
---|
[3349] | 219 | void GeneFluct3D::SetObservator(double redshref,double kredshref)
|
---|
| 220 | // L'observateur est au redshift z=0
|
---|
| 221 | // est situe sur la "perpendiculaire" a la face x,y
|
---|
| 222 | // issue du centre de cette face
|
---|
| 223 | // Il faut positionner le cube sur l'axe des z cad des redshifts:
|
---|
| 224 | // redshref = redshift de reference
|
---|
| 225 | // Si redshref<0 alors redshref=0
|
---|
| 226 | // kredshref = indice (en double) correspondant a ce redshift
|
---|
| 227 | // Si kredshref<0 alors kredshref=nz/2 (milieu du cube)
|
---|
| 228 | // Exemple: redshref=1.5 kredshref=250.75
|
---|
| 229 | // -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
|
---|
| 230 | {
|
---|
| 231 | if(redshref<0.) redshref = 0.;
|
---|
| 232 | if(kredshref<0.) {
|
---|
| 233 | if(Nz_<=0) {
|
---|
[3572] | 234 | const char *bla = "GeneFluct3D::SetObservator_Error: for kredsh_ref<0 define cube geometry first";
|
---|
[3349] | 235 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 236 | }
|
---|
| 237 | kredshref = Nz_/2.;
|
---|
| 238 | }
|
---|
| 239 | redsh_ref_ = redshref;
|
---|
| 240 | kredsh_ref_ = kredshref;
|
---|
| 241 | if(lp_>0)
|
---|
| 242 | cout<<"--- GeneFluct3D::SetObservator zref="<<redsh_ref_<<" kref="<<kredsh_ref_<<endl;
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
|
---|
| 246 | {
|
---|
| 247 | cosmo_ = &cosmo;
|
---|
| 248 | if(lp_>1) cosmo_->Print();
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
|
---|
| 252 | {
|
---|
| 253 | growth_ = &growth;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
[3199] | 256 | long GeneFluct3D::LosComRedshift(double zinc,long npoints)
|
---|
[3157] | 257 | // Given a position of the cube relative to the observer
|
---|
| 258 | // and a cosmology
|
---|
| 259 | // (SetObservator() and SetCosmology() should have been called !)
|
---|
| 260 | // This routine filled:
|
---|
| 261 | // the vector "zred_" of scanned redshift (by zinc increments)
|
---|
| 262 | // the vector "loscom_" of corresponding los comoving distance
|
---|
[3199] | 263 | // -- Input:
|
---|
| 264 | // zinc : redshift increment for computation
|
---|
| 265 | // npoints : number of points required for inverting loscom -> zred
|
---|
[3157] | 266 | //
|
---|
| 267 | {
|
---|
[3768] | 268 | if(zinc<=0.) zinc = good_dzinc_;
|
---|
[3199] | 269 | if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
|
---|
[3154] | 270 |
|
---|
[3768] | 271 | if(cosmo_ == NULL || growth_==NULL || redsh_ref_<0.) {
|
---|
| 272 | const char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator, Cosmology and Growth first";
|
---|
[3199] | 273 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 274 | }
|
---|
| 275 |
|
---|
[3271] | 276 | // La distance angulaire/luminosite/Dnu au pixel de reference
|
---|
| 277 | dred_ref_ = Dz_/(cosmo_->Dhubble()/cosmo_->E(redsh_ref_));
|
---|
| 278 | loscom_ref_ = cosmo_->Dloscom(redsh_ref_);
|
---|
| 279 | dtrc_ref_ = cosmo_->Dtrcom(redsh_ref_);
|
---|
| 280 | dlum_ref_ = cosmo_->Dlum(redsh_ref_);
|
---|
| 281 | dang_ref_ = cosmo_->Dang(redsh_ref_);
|
---|
[3770] | 282 | h_ref_ = cosmo_->H(redsh_ref_);
|
---|
[3768] | 283 | growth_ref_ = (*growth_)(redsh_ref_);
|
---|
| 284 | dsdz_growth_ref_ = growth_->DsDz(redsh_ref_,zinc);
|
---|
[3271] | 285 | nu_ref_ = Fr_HyperFin_Par/(1.+redsh_ref_); // GHz
|
---|
| 286 | dnu_ref_ = Fr_HyperFin_Par *dred_ref_/pow(1.+redsh_ref_,2.); // GHz
|
---|
| 287 | if(lp_>0) {
|
---|
| 288 | cout<<"...reference pixel redshref="<<redsh_ref_
|
---|
| 289 | <<", dredref="<<dred_ref_
|
---|
| 290 | <<", nuref="<<nu_ref_ <<" GHz"
|
---|
| 291 | <<", dnuref="<<dnu_ref_ <<" GHz"<<endl
|
---|
[3770] | 292 | <<" H="<<h_ref_<<" km/s/Mpc"
|
---|
[3768] | 293 | <<", D="<<growth_ref_
|
---|
| 294 | <<", dD/dz="<<dsdz_growth_ref_<<endl
|
---|
[3271] | 295 | <<" dlosc="<<loscom_ref_<<" Mpc com"
|
---|
| 296 | <<", dtrc="<<dtrc_ref_<<" Mpc com"
|
---|
| 297 | <<", dlum="<<dlum_ref_<<" Mpc"
|
---|
| 298 | <<", dang="<<dang_ref_<<" Mpc"<<endl;
|
---|
| 299 | }
|
---|
| 300 |
|
---|
[3199] | 301 | // On calcule les coordonnees de l'observateur dans le repere du cube
|
---|
| 302 | // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
|
---|
| 303 | // L'observateur est sur un axe centre sur le milieu de la face Oxy
|
---|
[3157] | 304 | xobs_[0] = Nx_/2.*Dx_;
|
---|
| 305 | xobs_[1] = Ny_/2.*Dy_;
|
---|
[3271] | 306 | xobs_[2] = kredsh_ref_*Dz_ - loscom_ref_;
|
---|
[3157] | 307 |
|
---|
| 308 | // L'observateur est-il dans le cube?
|
---|
| 309 | bool obs_in_cube = false;
|
---|
| 310 | if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
|
---|
| 311 |
|
---|
| 312 | // Find MINIMUM los com distance to the observer:
|
---|
| 313 | // c'est le centre de la face a k=0
|
---|
| 314 | // (ou zero si l'observateur est dans le cube)
|
---|
| 315 | loscom_min_ = 0.;
|
---|
| 316 | if(!obs_in_cube) loscom_min_ = -xobs_[2];
|
---|
| 317 |
|
---|
[3271] | 318 | // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
|
---|
| 319 | if(loscom_min_<=1.e-50)
|
---|
[3746] | 320 | for(int i=0;i<10;i++)
|
---|
[3271] | 321 | cout<<"ATTENTION TOUTES LES PARTIES DU CODE NE MARCHENT PAS POUR UN OBSERVATEUR DANS LE CUBE"<<endl;
|
---|
| 322 | // TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED TO BE FIXED
|
---|
| 323 |
|
---|
| 324 |
|
---|
[3157] | 325 | // Find MAXIMUM los com distance to the observer:
|
---|
| 326 | // ou que soit positionne l'observateur, la distance
|
---|
| 327 | // maximal est sur un des coins du cube
|
---|
| 328 | loscom_max_ = 0.;
|
---|
| 329 | for(long i=0;i<=1;i++) {
|
---|
[3271] | 330 | double dx2 = DXcom(i*(Nx_-1)); dx2 *= dx2;
|
---|
[3157] | 331 | for(long j=0;j<=1;j++) {
|
---|
[3271] | 332 | double dy2 = DYcom(j*(Ny_-1)); dy2 *= dy2;
|
---|
[3157] | 333 | for(long k=0;k<=1;k++) {
|
---|
[3271] | 334 | double dz2 = DZcom(k*(Nz_-1)); dz2 *= dz2;
|
---|
[3157] | 335 | dz2 = sqrt(dx2+dy2+dz2);
|
---|
| 336 | if(dz2>loscom_max_) loscom_max_ = dz2;
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 | }
|
---|
| 340 | if(lp_>0) {
|
---|
[3271] | 341 | cout<<"...zref="<<redsh_ref_<<" kzref="<<kredsh_ref_<<" losref="<<loscom_ref_<<" Mpc\n"
|
---|
[3157] | 342 | <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
|
---|
| 343 | <<" in_cube="<<obs_in_cube
|
---|
[3271] | 344 | <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc (com)"<<endl;
|
---|
[3157] | 345 | }
|
---|
| 346 |
|
---|
[3199] | 347 | // Fill the corresponding vectors for loscom and zred
|
---|
[3768] | 348 | // Be shure to have one dlc<loscom_min and one dlc>loscom_max
|
---|
[3746] | 349 | double zmin = 0., dlcmin=0.;
|
---|
| 350 | while(1) {
|
---|
| 351 | if(lp_>0)
|
---|
| 352 | cout<<"...Filling zred starting at zmin="<<zmin<<" with zinc="<<zinc
|
---|
| 353 | <<", loscom_min-max=["<<loscom_min_<<","<<loscom_max_<<"]"<<endl;
|
---|
| 354 | zred_.resize(0); loscom_.resize(0);
|
---|
| 355 | for(double z=zmin; ; z+=zinc) {
|
---|
| 356 | double dlc = cosmo_->Dloscom(z);
|
---|
| 357 | if(dlc<loscom_min_) {
|
---|
| 358 | dlcmin = dlc;
|
---|
| 359 | zmin = z;
|
---|
| 360 | zred_.resize(0); loscom_.resize(0);
|
---|
| 361 | }
|
---|
| 362 | zred_.push_back(z);
|
---|
| 363 | loscom_.push_back(dlc);
|
---|
| 364 | z += zinc;
|
---|
| 365 | if(dlc>loscom_max_) {
|
---|
| 366 | if(lp_>0)
|
---|
| 367 | cout<<" Min: z="<<zmin<<" dlc="<<dlcmin<<", Max: z="<<z<<" dlc="<<dlc<<endl;
|
---|
| 368 | break; // on sort apres avoir stoque un dlc>dlcmax
|
---|
| 369 | }
|
---|
| 370 | }
|
---|
| 371 | if(zred_.size()>=10) break;
|
---|
| 372 | zinc /= 10.;
|
---|
| 373 | cout<<" not enough points ("<<zred_.size()<<") for zref, retry with zinc="<<zinc<<endl;
|
---|
[3157] | 374 | }
|
---|
| 375 |
|
---|
| 376 | if(lp_>0) {
|
---|
[3199] | 377 | long n = zred_.size();
|
---|
| 378 | cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
|
---|
[3157] | 379 | if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
|
---|
| 380 | if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
|
---|
| 381 | cout<<endl;
|
---|
| 382 | }
|
---|
| 383 |
|
---|
[3199] | 384 | // Compute the parameters and tables needed for inversion loscom->zred
|
---|
| 385 | if(npoints<3) npoints = zred_.size();
|
---|
| 386 | InverseFunc invfun(zred_,loscom_);
|
---|
| 387 | invfun.ComputeParab(npoints,loscom2zred_);
|
---|
| 388 | loscom2zred_min_ = invfun.YMin();
|
---|
| 389 | loscom2zred_max_ = invfun.YMax();
|
---|
| 390 |
|
---|
| 391 | if(lp_>0) {
|
---|
| 392 | long n = loscom2zred_.size();
|
---|
| 393 | cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
|
---|
| 394 | <<" los_min="<<loscom2zred_min_
|
---|
| 395 | <<" los_max="<<loscom2zred_max_
|
---|
| 396 | <<" -> zred=[";
|
---|
| 397 | if(n>0) cout<<loscom2zred_[0];
|
---|
| 398 | cout<<",";
|
---|
| 399 | if(n>1) cout<<loscom2zred_[n-1];
|
---|
| 400 | cout<<"]"<<endl;
|
---|
| 401 | if(lp_>1 && n>0)
|
---|
| 402 | for(int i=0;i<n;i++)
|
---|
[3330] | 403 | if(i<2 || abs(i-n/2)<2 || i>=n-2)
|
---|
| 404 | cout<<" i="<<i
|
---|
| 405 | <<" d="<<loscom2zred_min_+i*(loscom2zred_max_-loscom2zred_min_)/(n-1.)
|
---|
| 406 | <<" Mpc z="<<loscom2zred_[i]<<endl;
|
---|
[3199] | 407 | }
|
---|
| 408 |
|
---|
[3768] | 409 |
|
---|
| 410 | // Compute the table for D'(z)/D(z) where D'(z)=dD/dEta (Eta is conformal time)
|
---|
| 411 | zredmin_dpsd_ = zred_[0];
|
---|
| 412 | zredmax_dpsd_ = zred_[zred_.size()-1];
|
---|
| 413 | long nptd = long(sqrt(Nx_*Nx_ + Ny_*Ny_ +Nz_*Nz_));
|
---|
| 414 | if(nptd<10) nptd = 10;
|
---|
| 415 | good_dzinc_ = (zredmax_dpsd_ - zredmin_dpsd_)/nptd;
|
---|
| 416 | if(lp_>0) cout<<"...good_dzinc changed to "<<good_dzinc_<<endl;
|
---|
| 417 | dpsdfrzred_.resize(0);
|
---|
| 418 | double dz = (zredmax_dpsd_ - zredmin_dpsd_)/(nptd-1);
|
---|
| 419 | int nmod = nptd/5; if(nmod==0) nmod = 1;
|
---|
| 420 | if(lp_>0) cout<<"...Compute table D'/D on "<<nptd<<" pts for z["
|
---|
| 421 | <<zredmin_dpsd_<<","<<zredmax_dpsd_<<"]"<<endl;
|
---|
| 422 | for(int i=0;i<nptd;i++) {
|
---|
| 423 | double z = zredmin_dpsd_ + i*dz;
|
---|
[3799] | 424 | double om = cosmo_->Omatter(z);
|
---|
| 425 | double h = cosmo_->H(z);
|
---|
| 426 | double dsdz = growth_->DsDz(z,good_dzinc_);
|
---|
| 427 | double d = (*growth_)(z);
|
---|
| 428 | double v = -h * (1.+z) * dsdz / d;
|
---|
[3768] | 429 | dpsdfrzred_.push_back(v);
|
---|
[3799] | 430 | if(lp_ && (i%nmod==0 || i==nptd-1))
|
---|
| 431 | cout<<" z="<<z<<" H="<<h<<" Beta="<<-(1.+z)*dsdz/d
|
---|
| 432 | <<" (Om^0.6="<<pow(om,0.6)
|
---|
| 433 | <<") -H*(1+z)*D'/D="<<v<<" km/s/Mpc"<<endl;
|
---|
[3768] | 434 | }
|
---|
| 435 |
|
---|
[3199] | 436 | return zred_.size();
|
---|
[3157] | 437 | }
|
---|
| 438 |
|
---|
[3115] | 439 | //-------------------------------------------------------
|
---|
[3141] | 440 | void GeneFluct3D::WriteFits(string cfname,int bitpix)
|
---|
| 441 | {
|
---|
[3155] | 442 | cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
|
---|
[3141] | 443 | try {
|
---|
| 444 | FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
|
---|
[3790] | 445 | fwrt.WriteKey("NX",Nx_," axe transverse 1"); // NAXIS3
|
---|
| 446 | fwrt.WriteKey("NY",Ny_," axe transverse 2"); // NAXIS2
|
---|
| 447 | fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)"); // NAXIS1
|
---|
[3141] | 448 | fwrt.WriteKey("DX",Dx_," Mpc");
|
---|
| 449 | fwrt.WriteKey("DY",Dy_," Mpc");
|
---|
| 450 | fwrt.WriteKey("DZ",Dz_," Mpc");
|
---|
| 451 | fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
|
---|
| 452 | fwrt.WriteKey("DKY",Dky_," Mpc^-1");
|
---|
| 453 | fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
|
---|
[3768] | 454 | fwrt.WriteKey("ZREFPK",compute_pk_redsh_ref_," Pk computed redshift");
|
---|
[3271] | 455 | fwrt.WriteKey("ZREF",redsh_ref_," reference redshift");
|
---|
| 456 | fwrt.WriteKey("KZREF",kredsh_ref_," reference redshift on z axe");
|
---|
[3770] | 457 | fwrt.WriteKey("HREF",h_ref_," ref H(z)");
|
---|
[3768] | 458 | fwrt.WriteKey("Growth",Dref()," growth at reference redshift");
|
---|
| 459 | fwrt.WriteKey("GrowthPk",DrefPk()," growth at Pk computed redshift");
|
---|
[3141] | 460 | fwrt.Write(R_);
|
---|
| 461 | } catch (PThrowable & exc) {
|
---|
| 462 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 463 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 464 | return;
|
---|
| 465 | } catch (...) {
|
---|
| 466 | cout<<" some other exception was caught !"<<endl;
|
---|
| 467 | return;
|
---|
| 468 | }
|
---|
| 469 | }
|
---|
| 470 |
|
---|
| 471 | void GeneFluct3D::ReadFits(string cfname)
|
---|
| 472 | {
|
---|
[3155] | 473 | cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 474 | try {
|
---|
| 475 | FitsImg3DRead fimg(cfname.c_str(),0,5);
|
---|
| 476 | fimg.Read(R_);
|
---|
[3790] | 477 | long nx = fimg.ReadKeyL("NX"); // NAXIS3
|
---|
| 478 | long ny = fimg.ReadKeyL("NY"); // NAXIS2
|
---|
| 479 | long nz = fimg.ReadKeyL("NZ"); // NAXIS1
|
---|
[3141] | 480 | double dx = fimg.ReadKey("DX");
|
---|
| 481 | double dy = fimg.ReadKey("DY");
|
---|
| 482 | double dz = fimg.ReadKey("DZ");
|
---|
[3768] | 483 | double pkzref = fimg.ReadKey("ZREFPK");
|
---|
[3154] | 484 | double zref = fimg.ReadKey("ZREF");
|
---|
| 485 | double kzref = fimg.ReadKey("KZREF");
|
---|
[3141] | 486 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
| 487 | setpointers(true);
|
---|
[3154] | 488 | init_fftw();
|
---|
| 489 | SetObservator(zref,kzref);
|
---|
[3330] | 490 | array_allocated_ = true;
|
---|
[3768] | 491 | compute_pk_redsh_ref_ = pkzref;
|
---|
[3141] | 492 | } catch (PThrowable & exc) {
|
---|
| 493 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 494 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 495 | return;
|
---|
| 496 | } catch (...) {
|
---|
| 497 | cout<<" some other exception was caught !"<<endl;
|
---|
| 498 | return;
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
| 501 |
|
---|
| 502 | void GeneFluct3D::WritePPF(string cfname,bool write_real)
|
---|
| 503 | // On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
|
---|
| 504 | {
|
---|
[3155] | 505 | cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
|
---|
[3141] | 506 | try {
|
---|
| 507 | R_.Info()["NX"] = (int_8)Nx_;
|
---|
| 508 | R_.Info()["NY"] = (int_8)Ny_;
|
---|
| 509 | R_.Info()["NZ"] = (int_8)Nz_;
|
---|
| 510 | R_.Info()["DX"] = (r_8)Dx_;
|
---|
| 511 | R_.Info()["DY"] = (r_8)Dy_;
|
---|
| 512 | R_.Info()["DZ"] = (r_8)Dz_;
|
---|
[3768] | 513 | R_.Info()["ZREFPK"] = (r_8)compute_pk_redsh_ref_;
|
---|
[3271] | 514 | R_.Info()["ZREF"] = (r_8)redsh_ref_;
|
---|
| 515 | R_.Info()["KZREF"] = (r_8)kredsh_ref_;
|
---|
[3770] | 516 | R_.Info()["HREF"] = (r_8)h_ref_;
|
---|
[3768] | 517 | R_.Info()["Growth"] = (r_8)Dref();
|
---|
| 518 | R_.Info()["GrowthPk"] = (r_8)DrefPk();
|
---|
[3141] | 519 | POutPersist pos(cfname.c_str());
|
---|
| 520 | if(write_real) pos << PPFNameTag("rgen") << R_;
|
---|
| 521 | else pos << PPFNameTag("pkgen") << T_;
|
---|
| 522 | } catch (PThrowable & exc) {
|
---|
| 523 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 524 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 525 | return;
|
---|
| 526 | } catch (...) {
|
---|
| 527 | cout<<" some other exception was caught !"<<endl;
|
---|
| 528 | return;
|
---|
| 529 | }
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | void GeneFluct3D::ReadPPF(string cfname)
|
---|
| 533 | {
|
---|
[3155] | 534 | cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
|
---|
[3141] | 535 | try {
|
---|
| 536 | bool from_real = true;
|
---|
| 537 | PInPersist pis(cfname.c_str());
|
---|
| 538 | string name_tag_k = "pkgen";
|
---|
| 539 | bool found_tag_k = pis.GotoNameTag("pkgen");
|
---|
| 540 | if(found_tag_k) {
|
---|
[3262] | 541 | cout<<" ...reading spectrum into TArray<complex <r_8> >"<<endl;
|
---|
[3141] | 542 | pis >> PPFNameTag("pkgen") >> T_;
|
---|
| 543 | from_real = false;
|
---|
| 544 | } else {
|
---|
| 545 | cout<<" ...reading space into TArray<r_8>"<<endl;
|
---|
| 546 | pis >> PPFNameTag("rgen") >> R_;
|
---|
| 547 | }
|
---|
[3154] | 548 | setpointers(from_real); // a mettre ici pour relire les DVInfo
|
---|
[3141] | 549 | int_8 nx = R_.Info()["NX"];
|
---|
| 550 | int_8 ny = R_.Info()["NY"];
|
---|
| 551 | int_8 nz = R_.Info()["NZ"];
|
---|
| 552 | r_8 dx = R_.Info()["DX"];
|
---|
| 553 | r_8 dy = R_.Info()["DY"];
|
---|
| 554 | r_8 dz = R_.Info()["DZ"];
|
---|
[3768] | 555 | r_8 pkzref = R_.Info()["ZREFPK"];
|
---|
[3154] | 556 | r_8 zref = R_.Info()["ZREF"];
|
---|
| 557 | r_8 kzref = R_.Info()["KZREF"];
|
---|
[3141] | 558 | setsize(nx,ny,nz,dx,dy,dz);
|
---|
[3154] | 559 | init_fftw();
|
---|
| 560 | SetObservator(zref,kzref);
|
---|
[3330] | 561 | array_allocated_ = true;
|
---|
[3768] | 562 | compute_pk_redsh_ref_ = pkzref;
|
---|
[3141] | 563 | } catch (PThrowable & exc) {
|
---|
| 564 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 565 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 566 | return;
|
---|
| 567 | } catch (...) {
|
---|
| 568 | cout<<" some other exception was caught !"<<endl;
|
---|
| 569 | return;
|
---|
| 570 | }
|
---|
| 571 | }
|
---|
| 572 |
|
---|
[3281] | 573 | void GeneFluct3D::WriteSlicePPF(string cfname)
|
---|
| 574 | // On ecrit 3 tranches du cube selon chaque axe
|
---|
| 575 | {
|
---|
[3283] | 576 | cout<<"--- GeneFluct3D::WriteSlicePPF: Writing Cube Slices "<<cfname<<endl;
|
---|
[3281] | 577 | try {
|
---|
| 578 |
|
---|
| 579 | POutPersist pos(cfname.c_str());
|
---|
| 580 | TMatrix<r_4> S;
|
---|
| 581 | char str[16];
|
---|
| 582 | long i,j,l;
|
---|
| 583 |
|
---|
| 584 | // Tranches en Z
|
---|
| 585 | for(int s=0;s<3;s++) {
|
---|
| 586 | S.ReSize(Nx_,Ny_);
|
---|
| 587 | if(s==0) l=0; else if(s==1) l=(Nz_+1)/2; else l=Nz_-1;
|
---|
[3289] | 588 | sprintf(str,"z%ld",l);
|
---|
[3281] | 589 | for(i=0;i<Nx_;i++) for(j=0;j<Ny_;j++) S(i,j)=data_[IndexR(i,j,l)];
|
---|
| 590 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 591 | }
|
---|
| 592 |
|
---|
| 593 | // Tranches en Y
|
---|
| 594 | for(int s=0;s<3;s++) {
|
---|
| 595 | S.ReSize(Nz_,Nx_);
|
---|
| 596 | if(s==0) j=0; else if(s==1) j=(Ny_+1)/2; else j=Ny_-1;
|
---|
[3289] | 597 | sprintf(str,"y%ld",j);
|
---|
[3281] | 598 | for(i=0;i<Nx_;i++) for(l=0;l<Nz_;l++) S(l,i)=data_[IndexR(i,j,l)];
|
---|
| 599 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 | // Tranches en X
|
---|
| 603 | for(int s=0;s<3;s++) {
|
---|
| 604 | S.ReSize(Nz_,Ny_);
|
---|
| 605 | if(s==0) i=0; else if(s==1) i=(Nx_+1)/2; else i=Nx_-1;
|
---|
[3289] | 606 | sprintf(str,"x%ld",i);
|
---|
[3281] | 607 | for(j=0;j<Ny_;j++) for(l=0;l<Nz_;l++) S(l,j)=data_[IndexR(i,j,l)];
|
---|
| 608 | pos<<PPFNameTag(str)<<S; S.RenewObjId();
|
---|
| 609 | }
|
---|
| 610 |
|
---|
| 611 | } catch (PThrowable & exc) {
|
---|
| 612 | cout<<"Exception : "<<(string)typeid(exc).name()
|
---|
| 613 | <<" - Msg= "<<exc.Msg()<<endl;
|
---|
| 614 | return;
|
---|
| 615 | } catch (...) {
|
---|
| 616 | cout<<" some other exception was caught !"<<endl;
|
---|
| 617 | return;
|
---|
| 618 | }
|
---|
| 619 | }
|
---|
| 620 |
|
---|
[3141] | 621 | //-------------------------------------------------------
|
---|
[3524] | 622 | void GeneFluct3D::NTupleCheck(POutPersist &pos,string ntname,unsigned long nent)
|
---|
| 623 | // Remplit le NTuple "ntname" avec "nent" valeurs du cube (reel ou complex) et l'ecrit dans "pos"
|
---|
| 624 | {
|
---|
| 625 | if(ntname.size()<=0 || nent==0) return;
|
---|
| 626 | int nvar = 0;
|
---|
| 627 | if(array_type==1) nvar = 3;
|
---|
| 628 | else if(array_type==2) nvar = 4;
|
---|
| 629 | else return;
|
---|
[3572] | 630 | const char *vname[4] = {"t","z","re","im"};
|
---|
[3524] | 631 | float xnt[4];
|
---|
| 632 | NTuple nt(nvar,vname);
|
---|
| 633 |
|
---|
| 634 | if(array_type==1) {
|
---|
| 635 | unsigned long nmod = Nx_*Ny_*Nz_/nent; if(nmod==0) nmod=1;
|
---|
| 636 | unsigned long n=0;
|
---|
| 637 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 638 | if(n==nmod) {
|
---|
| 639 | int_8 ip = IndexR(i,j,l);
|
---|
| 640 | xnt[0]=sqrt(i*i+j*j); xnt[1]=l; xnt[2]=data_[ip];
|
---|
| 641 | nt.Fill(xnt);
|
---|
| 642 | n=0;
|
---|
| 643 | }
|
---|
| 644 | n++;
|
---|
| 645 | }
|
---|
| 646 | } else {
|
---|
| 647 | unsigned long nmod = Nx_*Ny_*NCz_/nent; if(nmod==0) nmod=1;
|
---|
| 648 | unsigned long n=0;
|
---|
| 649 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<NCz_;l++) {
|
---|
| 650 | if(n==nmod) {
|
---|
| 651 | xnt[0]=sqrt(i*i+j*j); xnt[1]=l; xnt[2]=T_(l,j,i).real(); xnt[3]=T_(l,j,i).imag();
|
---|
| 652 | nt.Fill(xnt);
|
---|
| 653 | n=0;
|
---|
| 654 | }
|
---|
| 655 | n++;
|
---|
| 656 | }
|
---|
| 657 | }
|
---|
| 658 |
|
---|
| 659 | pos.PutObject(nt,ntname);
|
---|
| 660 | }
|
---|
| 661 |
|
---|
| 662 | //-------------------------------------------------------
|
---|
[3115] | 663 | void GeneFluct3D::Print(void)
|
---|
| 664 | {
|
---|
[3141] | 665 | cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
|
---|
[3115] | 666 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
| 667 | <<NRtot_<<endl;
|
---|
| 668 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
| 669 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
[3781] | 670 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<" ncoeff="<<NFcoef_<<endl;
|
---|
[3115] | 671 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
| 672 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
| 673 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
| 674 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
| 675 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
| 676 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
[3271] | 677 | cout<<"Redshift "<<redsh_ref_<<" for z axe at k="<<kredsh_ref_<<endl;
|
---|
[3115] | 678 | }
|
---|
| 679 |
|
---|
| 680 | //-------------------------------------------------------
|
---|
[3805] | 681 | void GeneFluct3D::ComputeFourier0(PkSpectrum& pk_at_z)
|
---|
[3115] | 682 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
| 683 | // (attention on fait une fft pour realiser le spectre)
|
---|
| 684 | {
|
---|
[3768] | 685 | compute_pk_redsh_ref_ = pk_at_z.GetZ();
|
---|
[3115] | 686 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3768] | 687 | if(lp_>0) cout<<"--- ComputeFourier0 at z="<<compute_pk_redsh_ref_
|
---|
| 688 | <<": before gaussian filling ---"<<endl;
|
---|
[3115] | 689 | // On tient compte du pb de normalisation de FFTW3
|
---|
| 690 | double sntot = sqrt((double)NRtot_);
|
---|
[3129] | 691 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 692 | int_8 ip = IndexR(i,j,l);
|
---|
| 693 | data_[ip] = NorRand()/sntot;
|
---|
[3115] | 694 | }
|
---|
| 695 |
|
---|
| 696 | // --- realisation d'un tableau de tirage gaussiens
|
---|
[3155] | 697 | if(lp_>0) cout<<"...before fft real ---"<<endl;
|
---|
[3518] | 698 | GEN3D_FFTW_EXECUTE(pf_);
|
---|
[3115] | 699 |
|
---|
| 700 | // --- On remplit avec une realisation
|
---|
[3157] | 701 | if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
|
---|
[3518] | 702 | T_(0,0,0) = complex<GEN3D_TYPE>(0.); // on coupe le continue et on l'initialise
|
---|
[3768] | 703 | long lmod = Nx_/20; if(lmod<1) lmod=1;
|
---|
[3129] | 704 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 705 | double kx = AbsKx(i); kx *= kx;
|
---|
| 706 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<"\t nx-i="<<Nx_-i<<"\t kx="<<Kx(i)<<"\t pk="<<pk_at_z(kx)<<endl;
|
---|
[3129] | 707 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 708 | double ky = AbsKy(j); ky *= ky;
|
---|
[3129] | 709 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 710 | double kz = AbsKz(l); kz *= kz;
|
---|
[3115] | 711 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 712 | double k = sqrt(kx+ky+kz);
|
---|
| 713 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 714 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 715 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
| 716 | T_(l,j,i) *= sqrt(pk);
|
---|
| 717 | }
|
---|
| 718 | }
|
---|
| 719 | }
|
---|
| 720 |
|
---|
[3524] | 721 | array_type = 2;
|
---|
| 722 |
|
---|
[3155] | 723 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 724 | double p = compute_power_carte();
|
---|
[3155] | 725 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 726 |
|
---|
| 727 | }
|
---|
| 728 |
|
---|
| 729 | //-------------------------------------------------------
|
---|
[3805] | 730 | void GeneFluct3D::ComputeFourier(PkSpectrum& pk_at_z)
|
---|
[3141] | 731 | // Calcule une realisation du spectre "pk_at_z"
|
---|
[3115] | 732 | // Attention: dans TArray le premier indice varie le + vite
|
---|
| 733 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
| 734 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
| 735 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
| 736 | // sum(f(x_i)^2) = S
|
---|
| 737 | // sum(F(nu_i)^2) = S*N
|
---|
| 738 | // sum(fb(x_i)^2) = S*N^2
|
---|
| 739 | {
|
---|
| 740 | // --- RaZ du tableau
|
---|
[3518] | 741 | T_ = complex<GEN3D_TYPE>(0.);
|
---|
[3768] | 742 | compute_pk_redsh_ref_ = pk_at_z.GetZ();
|
---|
[3115] | 743 |
|
---|
| 744 | // --- On remplit avec une realisation
|
---|
[3768] | 745 | if(lp_>0) cout<<"--- ComputeFourier at z="<<compute_pk_redsh_ref_<<" ---"<<endl;
|
---|
| 746 | long lmod = Nx_/20; if(lmod<1) lmod=1;
|
---|
[3129] | 747 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 748 | double kx = AbsKx(i); kx *= kx;
|
---|
| 749 | if(lp_>0 && i%lmod==0) cout<<"i="<<i<<"\t nx-i="<<Nx_-i<<"\t kx="<<Kx(i)<<"\t pk="<<pk_at_z(kx)<<endl;
|
---|
[3129] | 750 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 751 | double ky = AbsKy(j); ky *= ky;
|
---|
[3129] | 752 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 753 | double kz = AbsKz(l); kz *= kz;
|
---|
[3115] | 754 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
| 755 | double k = sqrt(kx+ky+kz);
|
---|
| 756 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
[3141] | 757 | double pk = pk_at_z(k)/Vol_;
|
---|
[3115] | 758 | // Explication de la division par 2: voir perandom.cc
|
---|
| 759 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
[3617] | 760 | T_(l,j,i) = ComplexGaussianRand(sqrt(pk/2.));
|
---|
[3115] | 761 | }
|
---|
| 762 | }
|
---|
| 763 | }
|
---|
| 764 |
|
---|
[3524] | 765 | array_type = 2;
|
---|
[3115] | 766 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
| 767 |
|
---|
[3155] | 768 | if(lp_>0) cout<<"...computing power"<<endl;
|
---|
[3115] | 769 | double p = compute_power_carte();
|
---|
[3155] | 770 | if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
[3115] | 771 |
|
---|
| 772 | }
|
---|
| 773 |
|
---|
[3129] | 774 | long GeneFluct3D::manage_coefficients(void)
|
---|
[3115] | 775 | // Take into account the real and complexe conjugate coefficients
|
---|
| 776 | // because we want a realization of a real data in real space
|
---|
[3773] | 777 | // On ecrit que: conj(P(k_x,k_y,k_z)) = P(-k_x,-k_y,-k_z)
|
---|
[3768] | 778 | // avec k_x = i, -k_x = N_x - i etc...
|
---|
[3115] | 779 | {
|
---|
[3155] | 780 | if(lp_>1) cout<<"...managing coefficients"<<endl;
|
---|
[3141] | 781 | check_array_alloc();
|
---|
[3115] | 782 |
|
---|
| 783 | // 1./ Le Continu et Nyquist sont reels
|
---|
[3773] | 784 | int_8 nreal = 0;
|
---|
[3129] | 785 | for(long kk=0;kk<2;kk++) {
|
---|
| 786 | long k=0; // continu
|
---|
[3115] | 787 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 788 | for(long jj=0;jj<2;jj++) {
|
---|
| 789 | long j=0;
|
---|
[3115] | 790 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 791 | for(long ii=0;ii<2;ii++) {
|
---|
| 792 | long i=0;
|
---|
[3115] | 793 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3141] | 794 | int_8 ip = IndexC(i,j,k);
|
---|
| 795 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
|
---|
| 796 | fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
|
---|
[3115] | 797 | nreal++;
|
---|
| 798 | }
|
---|
| 799 | }
|
---|
| 800 | }
|
---|
[3155] | 801 | if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
[3115] | 802 |
|
---|
| 803 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
| 804 |
|
---|
| 805 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
[3773] | 806 | int_8 nconj1 = 0;
|
---|
[3129] | 807 | for(long kk=0;kk<2;kk++) {
|
---|
| 808 | long k=0; // continu
|
---|
[3115] | 809 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 810 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
| 811 | long j=0;
|
---|
[3115] | 812 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
[3129] | 813 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
[3141] | 814 | int_8 ip = IndexC(i,j,k);
|
---|
| 815 | int_8 ip1 = IndexC(Nx_-i,j,k);
|
---|
| 816 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 817 | nconj1++;
|
---|
| 818 | }
|
---|
| 819 | }
|
---|
[3129] | 820 | for(long ii=0;ii<2;ii++) {
|
---|
| 821 | long i=0;
|
---|
[3115] | 822 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
[3129] | 823 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3141] | 824 | int_8 ip = IndexC(i,j,k);
|
---|
| 825 | int_8 ip1 = IndexC(i,Ny_-j,k);
|
---|
| 826 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 827 | nconj1++;
|
---|
| 828 | }
|
---|
| 829 | }
|
---|
| 830 | }
|
---|
[3155] | 831 | if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
[3115] | 832 |
|
---|
| 833 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
[3773] | 834 | int_8 nconj2 = 0;
|
---|
[3129] | 835 | for(long kk=0;kk<2;kk++) {
|
---|
| 836 | long k=0; // continu
|
---|
[3115] | 837 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
[3129] | 838 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
[3115] | 839 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
[3129] | 840 | for(long i=1;i<Nx_;i++) {
|
---|
[3115] | 841 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
[3141] | 842 | int_8 ip = IndexC(i,j,k);
|
---|
| 843 | int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
|
---|
| 844 | fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
|
---|
[3115] | 845 | nconj2++;
|
---|
| 846 | }
|
---|
| 847 | }
|
---|
| 848 | }
|
---|
[3155] | 849 | if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
[3115] | 850 |
|
---|
[3781] | 851 | if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(NFcoef_-nconj1-nconj2)-nreal<<endl;
|
---|
[3115] | 852 |
|
---|
| 853 | return nreal+nconj1+nconj2;
|
---|
| 854 | }
|
---|
| 855 |
|
---|
| 856 | double GeneFluct3D::compute_power_carte(void)
|
---|
| 857 | // Calcul la puissance de la realisation du spectre Pk
|
---|
| 858 | {
|
---|
[3141] | 859 | check_array_alloc();
|
---|
| 860 |
|
---|
[3115] | 861 | double s2 = 0.;
|
---|
[3129] | 862 | for(long l=0;l<NCz_;l++)
|
---|
| 863 | for(long j=0;j<Ny_;j++)
|
---|
| 864 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
[3115] | 865 |
|
---|
| 866 | double s20 = 0.;
|
---|
[3129] | 867 | for(long j=0;j<Ny_;j++)
|
---|
| 868 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
[3115] | 869 |
|
---|
| 870 | double s2n = 0.;
|
---|
| 871 | if(Nz_%2==0)
|
---|
[3129] | 872 | for(long j=0;j<Ny_;j++)
|
---|
| 873 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
[3115] | 874 |
|
---|
| 875 | return 2.*s2 -s20 -s2n;
|
---|
| 876 | }
|
---|
| 877 |
|
---|
| 878 | //-------------------------------------------------------------------
|
---|
| 879 | void GeneFluct3D::FilterByPixel(void)
|
---|
| 880 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
[3120] | 881 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
[3115] | 882 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
[3120] | 883 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
| 884 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
| 885 | // avec y = k_x*dx/2
|
---|
[3115] | 886 | {
|
---|
[3155] | 887 | if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
|
---|
[3141] | 888 | check_array_alloc();
|
---|
| 889 |
|
---|
[3129] | 890 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 891 | double kx = AbsKx(i) *Dx_/2;
|
---|
[3330] | 892 | double pk_x = pixelfilter(kx);
|
---|
[3129] | 893 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 894 | double ky = AbsKy(j) *Dy_/2;
|
---|
[3330] | 895 | double pk_y = pixelfilter(ky);
|
---|
[3129] | 896 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 897 | double kz = AbsKz(l) *Dz_/2;
|
---|
[3141] | 898 | double pk_z = pixelfilter(kz);
|
---|
| 899 | T_(l,j,i) *= pk_x*pk_y*pk_z;
|
---|
[3115] | 900 | }
|
---|
| 901 | }
|
---|
| 902 | }
|
---|
| 903 |
|
---|
| 904 | }
|
---|
| 905 |
|
---|
| 906 | //-------------------------------------------------------------------
|
---|
[3924] | 907 | void GeneFluct3D::ToRedshiftSpace(int type_beta,double fixed_beta)
|
---|
[3800] | 908 | // Apply redshift distortion corrections
|
---|
[3924] | 909 | // P(k)_z = P(k) * ( 1 + beta * mu^2 )^2
|
---|
| 910 | // type_beta: =0 compute factor automatically with beta=-(1+z)/D*dD/z
|
---|
| 911 | // >0 compute factor with fix beta=Omega^fixed_beta
|
---|
| 912 | // <0 compute factor with fix beta=fixed_beta
|
---|
| 913 | // ---- ATTENTION:
|
---|
| 914 | // 1- Le spectre Pk doit etre (dRho/Rho)(k)
|
---|
| 915 | // 2- pas d'evolution en redhsuft possible,
|
---|
| 916 | // le spectre doit etre calcule au redshift final de la boite
|
---|
[3800] | 917 | {
|
---|
| 918 | double zpk = compute_pk_redsh_ref_;
|
---|
[3924] | 919 | if(lp_>0) cout<<"--- ToRedshiftSpace --- at z="<<zpk<<", type_beta="<<type_beta<<endl;
|
---|
| 920 |
|
---|
| 921 | double beta = 0.;
|
---|
| 922 | if(type_beta>0) {
|
---|
| 923 | double omegam = cosmo_->Omatter(zpk); beta = pow(omegam,fixed_beta);
|
---|
| 924 | if(lp_>0) cout<<"...beta = OmegaM^expo = "<<omegam<<"^"<<fixed_beta<<" = "<<beta<<endl;
|
---|
| 925 | } else if(type_beta<0) {
|
---|
| 926 | beta = fixed_beta;
|
---|
| 927 | if(lp_>0) cout<<"...beta = "<<beta<<endl;
|
---|
| 928 | } else {
|
---|
| 929 | beta = -(1.+zpk) * growth_->DsDz(zpk,good_dzinc_) / (*growth_)(zpk);
|
---|
| 930 | if(lp_>0) cout<<"...beta = -(1+z)*D'/D = "<<beta<<endl;
|
---|
| 931 | }
|
---|
| 932 |
|
---|
[3800] | 933 | check_array_alloc();
|
---|
| 934 |
|
---|
| 935 | for(long i=0;i<Nx_;i++) {
|
---|
| 936 | double kx = Kx(i);
|
---|
| 937 | for(long j=0;j<Ny_;j++) {
|
---|
| 938 | double ky = Ky(j);
|
---|
| 939 | double kt2 = kx*kx + ky*ky;
|
---|
| 940 | for(long l=0;l<NCz_;l++) {
|
---|
| 941 | double kz = Kz(l);
|
---|
| 942 | if(l==0) continue;
|
---|
| 943 | T_(l,j,i) *= (1. + beta*kz*kz/(kt2 + kz*kz));
|
---|
| 944 | }
|
---|
| 945 | }
|
---|
| 946 | }
|
---|
| 947 | }
|
---|
| 948 |
|
---|
| 949 | //-------------------------------------------------------------------
|
---|
[3924] | 950 | void GeneFluct3D::ToVelLoS(int type_beta,double fixed_beta)
|
---|
[3800] | 951 | /*
|
---|
[3924] | 952 | // P(k)_z = P(k) * ( 1 + beta * mu^2 )^2
|
---|
| 953 | // type_beta: =0 compute factor automatically with beta=-(1+z)/D*dD/z
|
---|
| 954 | // >0 compute factor with fix beta=Omega^fixed_beta
|
---|
| 955 | // <0 compute factor with fix beta=fixed_beta
|
---|
[3800] | 956 | ---- Vitesse particuliere
|
---|
| 957 | Un atome au redshift "z" emet a la longueur d'onde "Le" si il est au repos
|
---|
| 958 | Il a une vitesse (particuliere) "V" dans le referentiel comobile au redshift "z"
|
---|
| 959 | Dans le referentiel comobile au redshift "z", il emet a la longueur d'onde "Le*(1+V/C)"
|
---|
| 960 | L'observateur voit donc une longueur d'onde "Le*(1+V/C)*(1+z) = Le*[1+z+V/C*(1+z)]"
|
---|
| 961 | et croit que l'atome est au redshift "z' = z + V/C*(1+z)"
|
---|
| 962 | L'observateur observe donc une vitesse particuliere (1+z)*V/c
|
---|
| 963 | --> vitesse particuliere dans le repere comobile en z: V/C
|
---|
| 964 | vitesse particuliere dans le repere comobile de l'observateur: (1+z)*V/C
|
---|
| 965 | ---- ATTENTION: Le spectre Pk doit etre (dRho/Rho)(k)
|
---|
| 966 | ---- On genere la vitesse particuliere (dans le referentiel comobile au redshift "z")
|
---|
[4008] | 967 | Vlos(k) = i*Beta(z)*k(los)/k^2*(dRho/Rho)(k) (unite Mpc)
|
---|
[3800] | 968 | .avec Beta(z) = dln(D)/da = -(1+z)/D*dD/dz
|
---|
[4008] | 969 | .puis on convertit en vitesse en faisant Vlos(k) * H(z) (unite lm/s)
|
---|
[3800] | 970 | */
|
---|
[3768] | 971 | {
|
---|
| 972 | double zpk = compute_pk_redsh_ref_;
|
---|
[3924] | 973 | if(lp_>0) cout<<"--- ToVelLoS --- at z="<<zpk<<", type_beta="<<type_beta<<endl;
|
---|
| 974 |
|
---|
| 975 | double beta = 0;
|
---|
| 976 | if(type_beta>0) {
|
---|
| 977 | double omegam = cosmo_->Omatter(zpk);
|
---|
| 978 | beta = pow(omegam,fixed_beta);
|
---|
| 979 | if(lp_>0) cout<<"...beta = OmegaM^expo = "<<omegam<<"^"<<fixed_beta<<"="<<beta<<endl;
|
---|
| 980 | } else if(type_beta<0) {
|
---|
| 981 | beta = fixed_beta;
|
---|
| 982 | if(lp_>0) cout<<"...beta="<<beta<<endl;
|
---|
| 983 | } else {
|
---|
| 984 | beta = -(1.+zpk) * growth_->DsDz(zpk,good_dzinc_) / (*growth_)(zpk);
|
---|
| 985 | if(lp_>0) cout<<"...beta = -(1+z)*D'/D = "<<beta<<endl;
|
---|
| 986 | }
|
---|
| 987 | double dpsd = cosmo_->H(zpk) * beta;
|
---|
| 988 | if(lp_>0) cout<<"......H*beta = "<<dpsd<<" (km/s)/Mpc"<<endl;
|
---|
| 989 |
|
---|
[3768] | 990 | check_array_alloc();
|
---|
| 991 |
|
---|
| 992 | for(long i=0;i<Nx_;i++) {
|
---|
| 993 | double kx = Kx(i);
|
---|
| 994 | for(long j=0;j<Ny_;j++) {
|
---|
| 995 | double ky = Ky(j);
|
---|
| 996 | double kt2 = kx*kx + ky*ky;
|
---|
| 997 | for(long l=0;l<NCz_;l++) {
|
---|
| 998 | double kz = Kz(l);
|
---|
| 999 | double k2 = kt2 + kz*kz;
|
---|
[3773] | 1000 | if(l==0) k2 = 0.; else k2 = dpsd*kz/k2;
|
---|
| 1001 | T_(l,j,i) *= complex<double>(0.,k2);
|
---|
[3768] | 1002 | }
|
---|
| 1003 | }
|
---|
| 1004 | }
|
---|
[3773] | 1005 |
|
---|
[3768] | 1006 | }
|
---|
| 1007 |
|
---|
| 1008 | //-------------------------------------------------------------------
|
---|
[3331] | 1009 | void GeneFluct3D::ApplyGrowthFactor(int type_evol)
|
---|
[3800] | 1010 | // Apply Growth to real space d(Rho)/Rho cube
|
---|
[3157] | 1011 | // Using the correspondance between redshift and los comoving distance
|
---|
| 1012 | // describe in vector "zred_" "loscom_"
|
---|
[3516] | 1013 | // type_evol = 1 : evolution avec la distance a l'observateur
|
---|
| 1014 | // 2 : evolution avec la distance du plan Z
|
---|
[3331] | 1015 | // (tous les pixels d'un plan Z sont mis au meme redshift z que celui du milieu)
|
---|
[3157] | 1016 | {
|
---|
[3806] | 1017 | if(lp_>0) cout<<"--- ApplyGrowthFactor: evol="<<type_evol<<" (zpk="<<compute_pk_redsh_ref_<<")"<<endl;
|
---|
[3157] | 1018 | check_array_alloc();
|
---|
| 1019 |
|
---|
| 1020 | if(growth_ == NULL) {
|
---|
[3572] | 1021 | const char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
|
---|
[3199] | 1022 | cout<<bla<<endl; throw ParmError(bla);
|
---|
[3157] | 1023 | }
|
---|
[3331] | 1024 | if(type_evol<1 || type_evol>2) {
|
---|
[3572] | 1025 | const char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: bad type_evol value";
|
---|
[3331] | 1026 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1027 | }
|
---|
[3157] | 1028 |
|
---|
[3199] | 1029 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3157] | 1030 |
|
---|
| 1031 | for(long i=0;i<Nx_;i++) {
|
---|
[3331] | 1032 | double dx2 = DXcom(i); dx2 *= dx2;
|
---|
[3157] | 1033 | for(long j=0;j<Ny_;j++) {
|
---|
[3331] | 1034 | double dy2 = DYcom(j); dy2 *= dy2;
|
---|
[3157] | 1035 | for(long l=0;l<Nz_;l++) {
|
---|
[3331] | 1036 | double dz = DZcom(l);
|
---|
| 1037 | if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
|
---|
| 1038 | else dz = fabs(dz); // tous les plans Z au meme redshift
|
---|
[3768] | 1039 | double z = interpinv(dz); // interpolation par morceau
|
---|
| 1040 | double dzgr = (*growth_)(z);
|
---|
[3157] | 1041 | int_8 ip = IndexR(i,j,l);
|
---|
| 1042 | data_[ip] *= dzgr;
|
---|
| 1043 | }
|
---|
| 1044 | }
|
---|
| 1045 | }
|
---|
| 1046 |
|
---|
[3768] | 1047 | }
|
---|
[3157] | 1048 |
|
---|
[3768] | 1049 | //-------------------------------------------------------------------
|
---|
[3800] | 1050 | void GeneFluct3D::ApplyRedshiftSpaceGrowthFactor(void)
|
---|
| 1051 | // Apply Growth(z) to redshift-distorted real space cube
|
---|
[3768] | 1052 | {
|
---|
[3908] | 1053 | const char *bla = "GeneFluct3D::ApplyRedshiftSpaceGrowthFactor_Error: redshift evolution impossible because factor depends on k";
|
---|
[3800] | 1054 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1055 | }
|
---|
| 1056 |
|
---|
| 1057 | //-------------------------------------------------------------------
|
---|
[3924] | 1058 | void GeneFluct3D::ApplyVelLosGrowthFactor(int type_evol,int type_beta,double fixed_beta)
|
---|
[3800] | 1059 | // Apply Growth(z) to transverse velocity real space cube
|
---|
[3924] | 1060 | // P(k)_z = P(k) * ( 1 + beta * mu^2 )^2
|
---|
| 1061 | // type_beta: =0 compute factor automatically with beta=-(1+z)/D*dD/z
|
---|
| 1062 | // >0 compute factor with fix beta=Omega^fixed_beta
|
---|
| 1063 | // <0 compute factor with fix beta=fixed_beta
|
---|
[3800] | 1064 | {
|
---|
[3924] | 1065 | if(lp_>0) cout<<"--- ApplyVelLosGrowthFactor: evol="<<type_evol<<", type_beta="<<type_beta<<endl;
|
---|
| 1066 |
|
---|
[3768] | 1067 | check_array_alloc();
|
---|
| 1068 |
|
---|
| 1069 | if(growth_ == NULL) {
|
---|
[3800] | 1070 | const char *bla = "GeneFluct3D::ApplyVelLosGrowthFactor_Error: set GrowthFactor first";
|
---|
[3768] | 1071 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1072 | }
|
---|
| 1073 | if(type_evol<1 || type_evol>2) {
|
---|
[3800] | 1074 | const char *bla = "GeneFluct3D::ApplyVelLosGrowthFactor_Error: bad type_evol value";
|
---|
[3768] | 1075 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1076 | }
|
---|
| 1077 |
|
---|
| 1078 | double zpk = compute_pk_redsh_ref_;
|
---|
[3806] | 1079 | double grw_orig = (*growth_)(zpk);
|
---|
[3924] | 1080 | double beta_orig = 0.;
|
---|
| 1081 | if(type_beta>0) {double omegam = cosmo_->Omatter(zpk); beta_orig = pow(omegam,fixed_beta);}
|
---|
| 1082 | else if(type_beta<0) beta_orig = fixed_beta;
|
---|
| 1083 | else beta_orig = -(1.+zpk) * growth_->DsDz(zpk,good_dzinc_) / (*growth_)(zpk);
|
---|
| 1084 | double dpsd_orig = cosmo_->H(zpk) * beta_orig;
|
---|
| 1085 | if(lp_>0) cout<<"...original at z="<<zpk<<": growth="<<grw_orig<<" beta="<<beta_orig
|
---|
| 1086 | <<" H*beta="<<dpsd_orig<<" (km/s)/Mpc"<<endl;
|
---|
[3768] | 1087 |
|
---|
[3924] | 1088 | if(type_beta<0) cout<<"***WARNING: type_beta<0 , no evolution used for beta !!!"<<endl;
|
---|
| 1089 |
|
---|
[3768] | 1090 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
| 1091 | InterpFunc interdpd(zredmin_dpsd_,zredmax_dpsd_,dpsdfrzred_);
|
---|
| 1092 |
|
---|
| 1093 | for(long i=0;i<Nx_;i++) {
|
---|
| 1094 | double dx2 = DXcom(i); dx2 *= dx2;
|
---|
| 1095 | for(long j=0;j<Ny_;j++) {
|
---|
| 1096 | double dy2 = DYcom(j); dy2 *= dy2;
|
---|
| 1097 | for(long l=0;l<Nz_;l++) {
|
---|
| 1098 | double dz = DZcom(l);
|
---|
| 1099 | if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
|
---|
| 1100 | else dz = fabs(dz); // tous les plans Z au meme redshift
|
---|
| 1101 | double z = interpinv(dz); // interpolation par morceau
|
---|
[3806] | 1102 | double grw = (*growth_)(z);
|
---|
[3924] | 1103 | double dpsd = 0;
|
---|
| 1104 | if(type_beta>0) {
|
---|
| 1105 | dpsd = cosmo_->H(z) * pow(cosmo_->Omatter(z),fixed_beta);
|
---|
| 1106 | } else if(type_beta<0) {
|
---|
| 1107 | dpsd = cosmo_->H(z) * fixed_beta;
|
---|
| 1108 | } else {
|
---|
| 1109 | dpsd = interdpd(z); // interpole -H(z)*(1+z)*D'(z)/D(z)
|
---|
| 1110 | }
|
---|
[3768] | 1111 | int_8 ip = IndexR(i,j,l);
|
---|
[3806] | 1112 | // on remet le beta au bon z
|
---|
| 1113 | // on corrige du growth factor car data_ a ete calcule avec pk(zpk)
|
---|
| 1114 | data_[ip] *= (dpsd / dpsd_orig) * (grw / grw_orig);
|
---|
[3768] | 1115 | }
|
---|
| 1116 | }
|
---|
| 1117 | }
|
---|
| 1118 |
|
---|
[3157] | 1119 | }
|
---|
| 1120 |
|
---|
| 1121 | //-------------------------------------------------------------------
|
---|
[3115] | 1122 | void GeneFluct3D::ComputeReal(void)
|
---|
| 1123 | // Calcule une realisation dans l'espace reel
|
---|
| 1124 | {
|
---|
[3806] | 1125 | if(lp_>0) cout<<"--- ComputeReal --- from spectrum at z="<<compute_pk_redsh_ref_<<endl;
|
---|
| 1126 | check_array_alloc();
|
---|
[3115] | 1127 |
|
---|
[3806] | 1128 | // On fait la FFT
|
---|
| 1129 | GEN3D_FFTW_EXECUTE(pb_);
|
---|
| 1130 | array_type = 1;
|
---|
[3115] | 1131 | }
|
---|
| 1132 |
|
---|
| 1133 | //-------------------------------------------------------------------
|
---|
| 1134 | void GeneFluct3D::ReComputeFourier(void)
|
---|
| 1135 | {
|
---|
[3155] | 1136 | if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
|
---|
[3141] | 1137 | check_array_alloc();
|
---|
[3115] | 1138 |
|
---|
| 1139 | // On fait la FFT
|
---|
[3518] | 1140 | GEN3D_FFTW_EXECUTE(pf_);
|
---|
[3524] | 1141 | array_type = 2;
|
---|
| 1142 |
|
---|
[3115] | 1143 | // On corrige du pb de la normalisation de FFTW3
|
---|
[3594] | 1144 | complex<r_8> v((r_8)NRtot_,0.);
|
---|
[3129] | 1145 | for(long i=0;i<Nx_;i++)
|
---|
| 1146 | for(long j=0;j<Ny_;j++)
|
---|
[3594] | 1147 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= v;
|
---|
[3115] | 1148 | }
|
---|
| 1149 |
|
---|
| 1150 | //-------------------------------------------------------------------
|
---|
[3141] | 1151 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
|
---|
| 1152 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
[3115] | 1153 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 1154 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 1155 | {
|
---|
[3155] | 1156 | if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
|
---|
[3141] | 1157 | check_array_alloc();
|
---|
[3115] | 1158 |
|
---|
[3141] | 1159 | if(herr.NBins()<0) return -1;
|
---|
| 1160 | herr.Zero();
|
---|
[3115] | 1161 |
|
---|
| 1162 | // Attention a l'ordre
|
---|
[3129] | 1163 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 1164 | double kx = AbsKx(i); kx *= kx;
|
---|
[3129] | 1165 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 1166 | double ky = AbsKy(j); ky *= ky;
|
---|
[3129] | 1167 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 1168 | double kz = AbsKz(l);
|
---|
[3330] | 1169 | double k = sqrt(kx+ky+kz*kz);
|
---|
[3115] | 1170 | double pk = MODULE2(T_(l,j,i));
|
---|
[3141] | 1171 | herr.Add(k,pk);
|
---|
[3115] | 1172 | }
|
---|
| 1173 | }
|
---|
| 1174 | }
|
---|
[3150] | 1175 | herr.ToVariance();
|
---|
[3115] | 1176 |
|
---|
| 1177 | // renormalize to directly compare to original spectrum
|
---|
| 1178 | double norm = Vol_;
|
---|
[3141] | 1179 | herr *= norm;
|
---|
[3115] | 1180 |
|
---|
| 1181 | return 0;
|
---|
| 1182 | }
|
---|
| 1183 |
|
---|
[3141] | 1184 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
|
---|
| 1185 | {
|
---|
[3155] | 1186 | if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
|
---|
[3141] | 1187 | check_array_alloc();
|
---|
| 1188 |
|
---|
| 1189 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 1190 | herr.Zero();
|
---|
| 1191 |
|
---|
| 1192 | // Attention a l'ordre
|
---|
| 1193 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 1194 | double kx = AbsKx(i); kx *= kx;
|
---|
[3141] | 1195 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 1196 | double ky = AbsKy(j); ky *= ky;
|
---|
[3141] | 1197 | double kt = sqrt(kx+ky);
|
---|
| 1198 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 1199 | double kz = AbsKz(l);
|
---|
[3141] | 1200 | double pk = MODULE2(T_(l,j,i));
|
---|
| 1201 | herr.Add(kt,kz,pk);
|
---|
| 1202 | }
|
---|
| 1203 | }
|
---|
| 1204 | }
|
---|
[3150] | 1205 | herr.ToVariance();
|
---|
[3141] | 1206 |
|
---|
| 1207 | // renormalize to directly compare to original spectrum
|
---|
| 1208 | double norm = Vol_;
|
---|
| 1209 | herr *= norm;
|
---|
| 1210 |
|
---|
| 1211 | return 0;
|
---|
| 1212 | }
|
---|
| 1213 |
|
---|
[3330] | 1214 | //-------------------------------------------------------------------
|
---|
| 1215 | int GeneFluct3D::ComputeSpectrum(HistoErr& herr,double sigma,bool pixcor)
|
---|
| 1216 | // Compute spectrum from "T" and fill HistoErr "herr"
|
---|
| 1217 | // AVEC la soustraction du niveau de bruit et la correction par filterpixel()
|
---|
| 1218 | // Si on ne fait pas ca, alors on obtient un spectre non-isotrope!
|
---|
| 1219 | //
|
---|
| 1220 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
| 1221 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
| 1222 | {
|
---|
| 1223 | if(lp_>0) cout<<"--- ComputeSpectrum: sigma="<<sigma<<endl;
|
---|
| 1224 | check_array_alloc();
|
---|
| 1225 |
|
---|
| 1226 | if(sigma<=0.) sigma = 0.;
|
---|
| 1227 | double sigma2 = sigma*sigma / (double)NRtot_;
|
---|
| 1228 |
|
---|
| 1229 | if(herr.NBins()<0) return -1;
|
---|
| 1230 | herr.Zero();
|
---|
| 1231 |
|
---|
| 1232 | TVector<r_8> vfz(NCz_);
|
---|
| 1233 | if(pixcor) // kz = l*Dkz_
|
---|
| 1234 | for(long l=0;l<NCz_;l++) {vfz(l)=pixelfilter(l*Dkz_ *Dz_/2); vfz(l)*=vfz(l);}
|
---|
| 1235 |
|
---|
| 1236 | // Attention a l'ordre
|
---|
| 1237 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 1238 | double kx = AbsKx(i);
|
---|
[3330] | 1239 | double fx = (pixcor) ? pixelfilter(kx*Dx_/2): 1.;
|
---|
| 1240 | kx *= kx; fx *= fx;
|
---|
| 1241 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 1242 | double ky = AbsKy(j);
|
---|
[3330] | 1243 | double fy = (pixcor) ? pixelfilter(ky*Dy_/2): 1.;
|
---|
| 1244 | ky *= ky; fy *= fy;
|
---|
| 1245 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 1246 | double kz = AbsKz(l);
|
---|
[3330] | 1247 | double k = sqrt(kx+ky+kz*kz);
|
---|
| 1248 | double pk = MODULE2(T_(l,j,i)) - sigma2;
|
---|
| 1249 | double fz = (pixcor) ? vfz(l): 1.;
|
---|
| 1250 | double f = fx*fy*fz;
|
---|
| 1251 | if(f>0.) herr.Add(k,pk/f);
|
---|
| 1252 | }
|
---|
| 1253 | }
|
---|
| 1254 | }
|
---|
| 1255 | herr.ToVariance();
|
---|
[3351] | 1256 | for(int i=0;i<herr.NBins();i++) herr(i) += sigma2;
|
---|
[3330] | 1257 |
|
---|
| 1258 | // renormalize to directly compare to original spectrum
|
---|
| 1259 | double norm = Vol_;
|
---|
| 1260 | herr *= norm;
|
---|
| 1261 |
|
---|
| 1262 | return 0;
|
---|
| 1263 | }
|
---|
| 1264 |
|
---|
| 1265 | int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr,double sigma,bool pixcor)
|
---|
| 1266 | // AVEC la soustraction du niveau de bruit et la correction par filterpixel()
|
---|
| 1267 | {
|
---|
| 1268 | if(lp_>0) cout<<"--- ComputeSpectrum2D: sigma="<<sigma<<endl;
|
---|
| 1269 | check_array_alloc();
|
---|
| 1270 |
|
---|
| 1271 | if(sigma<=0.) sigma = 0.;
|
---|
| 1272 | double sigma2 = sigma*sigma / (double)NRtot_;
|
---|
| 1273 |
|
---|
| 1274 | if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
|
---|
| 1275 | herr.Zero();
|
---|
| 1276 |
|
---|
| 1277 | TVector<r_8> vfz(NCz_);
|
---|
| 1278 | if(pixcor) // kz = l*Dkz_
|
---|
| 1279 | for(long l=0;l<NCz_;l++) {vfz(l)=pixelfilter(l*Dkz_ *Dz_/2); vfz(l)*=vfz(l);}
|
---|
| 1280 |
|
---|
| 1281 | // Attention a l'ordre
|
---|
| 1282 | for(long i=0;i<Nx_;i++) {
|
---|
[3770] | 1283 | double kx = AbsKx(i);
|
---|
[3330] | 1284 | double fx = (pixcor) ? pixelfilter(kx*Dx_/2) : 1.;
|
---|
| 1285 | kx *= kx; fx *= fx;
|
---|
| 1286 | for(long j=0;j<Ny_;j++) {
|
---|
[3770] | 1287 | double ky = AbsKy(j);
|
---|
[3330] | 1288 | double fy = (pixcor) ? pixelfilter(ky*Dy_/2) : 1.;
|
---|
| 1289 | ky *= ky; fy *= fy;
|
---|
| 1290 | double kt = sqrt(kx+ky);
|
---|
| 1291 | for(long l=0;l<NCz_;l++) {
|
---|
[3770] | 1292 | double kz = AbsKz(l);
|
---|
[3330] | 1293 | double pk = MODULE2(T_(l,j,i)) - sigma2;
|
---|
| 1294 | double fz = (pixcor) ? vfz(l): 1.;
|
---|
| 1295 | double f = fx*fy*fz;
|
---|
| 1296 | if(f>0.) herr.Add(kt,kz,pk/f);
|
---|
| 1297 | }
|
---|
| 1298 | }
|
---|
| 1299 | }
|
---|
| 1300 | herr.ToVariance();
|
---|
[3351] | 1301 | for(int i=0;i<herr.NBinX();i++)
|
---|
| 1302 | for(int j=0;j<herr.NBinY();j++) herr(i,j) += sigma2;
|
---|
[3330] | 1303 |
|
---|
| 1304 | // renormalize to directly compare to original spectrum
|
---|
| 1305 | double norm = Vol_;
|
---|
| 1306 | herr *= norm;
|
---|
| 1307 |
|
---|
| 1308 | return 0;
|
---|
| 1309 | }
|
---|
| 1310 |
|
---|
[3115] | 1311 | //-------------------------------------------------------
|
---|
[3134] | 1312 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
[3115] | 1313 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
[3353] | 1314 | // Par definition: SigmaR^2 = <(M-<M>)^2>/<M>^2
|
---|
| 1315 | // ou M = masse dans sphere de rayon R
|
---|
[3354] | 1316 | // --- ATTENTION: la variance calculee a une tres grande dispersion
|
---|
| 1317 | // (surtout si le volume du cube est petit). Pour verifier
|
---|
| 1318 | // que le sigmaR calcule par cette methode est en accord avec
|
---|
| 1319 | // le sigmaR en input, il faut faire plusieurs simulations (~100)
|
---|
| 1320 | // et regarder la moyenne des sigmaR reconstruits
|
---|
[3115] | 1321 | {
|
---|
[3262] | 1322 | if(lp_>0) cout<<"--- VarianceFrReal R="<<R<<endl;
|
---|
[3141] | 1323 | check_array_alloc();
|
---|
| 1324 |
|
---|
[3353] | 1325 | long dnx = long(R/Dx_)+1; if(dnx<=0) dnx = 1;
|
---|
| 1326 | long dny = long(R/Dy_)+1; if(dny<=0) dny = 1;
|
---|
| 1327 | long dnz = long(R/Dz_)+1; if(dnz<=0) dnz = 1;
|
---|
[3155] | 1328 | if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
[3115] | 1329 |
|
---|
[3353] | 1330 | double sum=0., sum2=0., sn=0., r2 = R*R;
|
---|
| 1331 | int_8 nsum=0;
|
---|
[3115] | 1332 |
|
---|
[3353] | 1333 | for(long i=dnx;i<Nx_-dnx;i+=2*dnx) {
|
---|
| 1334 | for(long j=dny;j<Ny_-dny;j+=2*dny) {
|
---|
| 1335 | for(long l=dnz;l<Nz_-dnz;l+=2*dnz) {
|
---|
| 1336 | double m=0.; int_8 n=0;
|
---|
[3129] | 1337 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
[3115] | 1338 | double x = (ii-i)*Dx_; x *= x;
|
---|
[3129] | 1339 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
[3115] | 1340 | double y = (jj-j)*Dy_; y *= y;
|
---|
[3129] | 1341 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
[3115] | 1342 | double z = (ll-l)*Dz_; z *= z;
|
---|
| 1343 | if(x+y+z>r2) continue;
|
---|
[3141] | 1344 | int_8 ip = IndexR(ii,jj,ll);
|
---|
[3353] | 1345 | m += 1.+data_[ip]; // 1+drho/rho
|
---|
[3115] | 1346 | n++;
|
---|
| 1347 | }
|
---|
| 1348 | }
|
---|
| 1349 | }
|
---|
[3353] | 1350 | if(n>0) {sum += m; sum2 += m*m; nsum++; sn += n;}
|
---|
| 1351 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" m="<<m<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
[3115] | 1352 | }
|
---|
| 1353 | }
|
---|
| 1354 | }
|
---|
| 1355 |
|
---|
| 1356 | if(nsum<=1) {var=0.; return nsum;}
|
---|
| 1357 | sum /= nsum;
|
---|
| 1358 | sum2 = sum2/nsum - sum*sum;
|
---|
[3353] | 1359 | sn /= nsum;
|
---|
| 1360 | if(lp_>0) cout<<"...<n>="<<sn<<", nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
| 1361 | var = sum2/(sum*sum); // <dM^2>/<M>^2
|
---|
| 1362 | if(lp_>0) cout<<"...sigmaR^2 = <(M-<M>)^2>/<M>^2 = "<<var
|
---|
| 1363 | <<" -> sigmaR = "<<sqrt(var)<<endl;
|
---|
[3115] | 1364 |
|
---|
| 1365 | return nsum;
|
---|
| 1366 | }
|
---|
| 1367 |
|
---|
| 1368 | //-------------------------------------------------------
|
---|
[3134] | 1369 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
[3115] | 1370 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
| 1371 | // -> vmin and vmax are considered as bad
|
---|
| 1372 | {
|
---|
[3141] | 1373 | check_array_alloc();
|
---|
[3115] | 1374 |
|
---|
[3134] | 1375 | int_8 nbad = 0;
|
---|
[3129] | 1376 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1377 | int_8 ip = IndexR(i,j,l);
|
---|
| 1378 | double v = data_[ip];
|
---|
[3115] | 1379 | if(v<=vmin || v>=vmax) nbad++;
|
---|
| 1380 | }
|
---|
| 1381 |
|
---|
[3358] | 1382 | if(lp_>0) cout<<"--- NumberOfBad "<<nbad<<" px out of ]"<<vmin<<","<<vmax
|
---|
| 1383 | <<"[ i.e. frac="<<nbad/(double)NRtot_<<endl;
|
---|
[3115] | 1384 | return nbad;
|
---|
| 1385 | }
|
---|
| 1386 |
|
---|
[3320] | 1387 | int_8 GeneFluct3D::MinMax(double& xmin,double& xmax,double vmin,double vmax)
|
---|
| 1388 | // Calcul des valeurs xmin et xmax dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 1389 | {
|
---|
| 1390 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 1391 | if(lp_>0) {
|
---|
| 1392 | cout<<"--- MinMax";
|
---|
| 1393 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
| 1394 | cout<<endl;
|
---|
| 1395 | }
|
---|
| 1396 | check_array_alloc();
|
---|
| 1397 |
|
---|
| 1398 | int_8 n = 0;
|
---|
| 1399 | xmin = xmax = data_[0];
|
---|
| 1400 |
|
---|
| 1401 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1402 | int_8 ip = IndexR(i,j,l);
|
---|
| 1403 | double x = data_[ip];
|
---|
| 1404 | if(tstval && (x<=vmin || x>=vmax)) continue;
|
---|
| 1405 | if(x<xmin) xmin = x;
|
---|
| 1406 | if(x>xmax) xmax = x;
|
---|
| 1407 | n++;
|
---|
| 1408 | }
|
---|
| 1409 |
|
---|
| 1410 | if(lp_>0) cout<<" n="<<n<<" min="<<xmin<<" max="<<xmax<<endl;
|
---|
| 1411 |
|
---|
| 1412 | return n;
|
---|
| 1413 | }
|
---|
| 1414 |
|
---|
[3261] | 1415 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax
|
---|
| 1416 | ,bool useout,double vout)
|
---|
| 1417 | // Calcul de mean,sigma2 dans le cube reel avec valeurs ]vmin,vmax[ extremites exclues
|
---|
| 1418 | // useout = false: ne pas utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 1419 | // true : utiliser les pixels hors limites pour calculer mean,sigma2
|
---|
| 1420 | // en remplacant leurs valeurs par "vout"
|
---|
[3115] | 1421 | {
|
---|
[3261] | 1422 | bool tstval = (vmax>vmin)? true: false;
|
---|
| 1423 | if(lp_>0) {
|
---|
[3262] | 1424 | cout<<"--- MeanSigma2";
|
---|
| 1425 | if(tstval) cout<<" range=]"<<vmin<<","<<vmax<<"[";
|
---|
[3261] | 1426 | if(useout) cout<<", useout="<<useout<<" vout="<<vout;
|
---|
| 1427 | cout<<endl;
|
---|
| 1428 | }
|
---|
[3141] | 1429 | check_array_alloc();
|
---|
[3115] | 1430 |
|
---|
[3134] | 1431 | int_8 n = 0;
|
---|
[3115] | 1432 | rm = rs2 = 0.;
|
---|
| 1433 |
|
---|
[3129] | 1434 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1435 | int_8 ip = IndexR(i,j,l);
|
---|
| 1436 | double v = data_[ip];
|
---|
[3261] | 1437 | if(tstval) {
|
---|
| 1438 | if(v<=vmin || v>=vmax) {if(useout) v=vout; else continue;}
|
---|
| 1439 | }
|
---|
[3115] | 1440 | rm += v;
|
---|
| 1441 | rs2 += v*v;
|
---|
| 1442 | n++;
|
---|
| 1443 | }
|
---|
| 1444 |
|
---|
| 1445 | if(n>1) {
|
---|
| 1446 | rm /= (double)n;
|
---|
| 1447 | rs2 = rs2/(double)n - rm*rm;
|
---|
| 1448 | }
|
---|
| 1449 |
|
---|
[3261] | 1450 | if(lp_>0) cout<<" n="<<n<<" m="<<rm<<" s2="<<rs2<<" s="<<sqrt(fabs(rs2))<<endl;
|
---|
| 1451 |
|
---|
[3115] | 1452 | return n;
|
---|
| 1453 | }
|
---|
| 1454 |
|
---|
[3134] | 1455 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
[3115] | 1456 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
[3261] | 1457 | // cad set to "val0" if in [vmin,vmax] -> vmin and vmax are set to val0
|
---|
[3115] | 1458 | {
|
---|
[3141] | 1459 | check_array_alloc();
|
---|
[3115] | 1460 |
|
---|
[3134] | 1461 | int_8 nbad = 0;
|
---|
[3129] | 1462 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1463 | int_8 ip = IndexR(i,j,l);
|
---|
| 1464 | double v = data_[ip];
|
---|
| 1465 | if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
|
---|
[3115] | 1466 | }
|
---|
| 1467 |
|
---|
[3262] | 1468 | if(lp_>0) cout<<"--- SetToVal "<<nbad<<" px set to="<<val0
|
---|
| 1469 | <<" because out of range=]"<<vmin<<","<<vmax<<"["<<endl;
|
---|
[3115] | 1470 | return nbad;
|
---|
| 1471 | }
|
---|
| 1472 |
|
---|
[3283] | 1473 | void GeneFluct3D::ScaleOffset(double scalecube,double offsetcube)
|
---|
| 1474 | // Replace "V" by "scalecube * ( V + offsetcube )"
|
---|
| 1475 | {
|
---|
[3284] | 1476 | if(lp_>0) cout<<"--- ScaleCube scale="<<scalecube<<" offset="<<offsetcube<<endl;
|
---|
[3283] | 1477 |
|
---|
| 1478 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1479 | int_8 ip = IndexR(i,j,l);
|
---|
| 1480 | data_[ip] = scalecube * ( data_[ip] + offsetcube );
|
---|
| 1481 | }
|
---|
| 1482 |
|
---|
| 1483 | return;
|
---|
| 1484 | }
|
---|
| 1485 |
|
---|
[3115] | 1486 | //-------------------------------------------------------
|
---|
| 1487 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
| 1488 | // d_rho/rho -> Mass (add one!)
|
---|
| 1489 | {
|
---|
[3155] | 1490 | if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
|
---|
[3141] | 1491 | check_array_alloc();
|
---|
| 1492 |
|
---|
[3115] | 1493 |
|
---|
[3129] | 1494 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1495 | int_8 ip = IndexR(i,j,l);
|
---|
| 1496 | data_[ip] += 1.;
|
---|
[3115] | 1497 | }
|
---|
| 1498 | }
|
---|
| 1499 |
|
---|
[3358] | 1500 | double GeneFluct3D::TurnFluct2MeanNumber(double val_by_mpc3)
|
---|
[3365] | 1501 | // ATTENTION: la gestion des pixels<0 proposee ici induit une perte de variance
|
---|
| 1502 | // sur la carte, le spectre Pk reconstruit sera plus faible!
|
---|
| 1503 | // L'effet sera d'autant plus grand que le nombre de pixels<0 sera grand.
|
---|
[3329] | 1504 | {
|
---|
[3358] | 1505 | if(lp_>0) cout<<"--- TurnFluct2MeanNumber : "<<val_by_mpc3<<" quantity (gal or mass)/Mpc^3"<<endl;
|
---|
[3329] | 1506 |
|
---|
[3358] | 1507 | // First convert dRho/Rho into 1+dRho/Rho
|
---|
| 1508 | int_8 nball = 0; double sumall = 0., sumall2 = 0.;
|
---|
[3329] | 1509 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1510 | int_8 ip = IndexR(i,j,l);
|
---|
[3358] | 1511 | data_[ip] += 1.;
|
---|
| 1512 | nball++; sumall += data_[ip]; sumall2 += data_[ip]*data_[ip];
|
---|
[3329] | 1513 | }
|
---|
[3358] | 1514 | if(nball>2) {
|
---|
| 1515 | sumall /= (double)nball;
|
---|
| 1516 | sumall2 = sumall2/(double)nball - sumall*sumall;
|
---|
| 1517 | if(lp_>0) cout<<"1+dRho/Rho: mean="<<sumall<<" variance="<<sumall2
|
---|
| 1518 | <<" -> "<<sqrt(fabs(sumall2))<<endl;
|
---|
[3329] | 1519 | }
|
---|
| 1520 |
|
---|
[3358] | 1521 | // Find contribution for positive pixels
|
---|
| 1522 | int_8 nbpos = 0; double sumpos = 0. , sumpos2 = 0.;
|
---|
| 1523 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1524 | int_8 ip = IndexR(i,j,l);
|
---|
| 1525 | double v = data_[ip];
|
---|
| 1526 | if(data_[ip]>0.) {nbpos++; sumpos += v; sumpos2 += v*v;}
|
---|
| 1527 | }
|
---|
| 1528 | if(nbpos<1) {
|
---|
| 1529 | cout<<"TurnFluct2MeanNumber_Error: nbpos<1"<<endl;
|
---|
| 1530 | throw RangeCheckError("TurnFluct2MeanNumber_Error: nbpos<1");
|
---|
| 1531 | }
|
---|
| 1532 | sumpos2 = sumpos2/nball - sumpos*sumpos/(nball*nball);
|
---|
| 1533 | if(lp_>0)
|
---|
| 1534 | cout<<"1+dRho/Rho with v<0 set to zero: mean="<<sumpos/nball
|
---|
| 1535 | <<" variance="<<sumpos2<<" -> "<<sqrt(fabs(sumpos2))<<endl;
|
---|
| 1536 | cout<<"Sum of positive values: sumpos="<<sumpos
|
---|
| 1537 | <<" (n(v>0) = "<<nbpos<<" frac(v>0)="<<nbpos/(double)NRtot_<<")"<<endl;
|
---|
[3329] | 1538 |
|
---|
[3358] | 1539 | // - Mettre exactement val_by_mpc3*Vol galaxies (ou Msol) dans notre survey
|
---|
| 1540 | // - Uniquement dans les pixels de masse >0.
|
---|
| 1541 | // - Mise a zero des pixels <0
|
---|
| 1542 | double dn = val_by_mpc3 * Vol_ / sumpos;
|
---|
| 1543 | if(lp_>0) cout<<"...density move from "
|
---|
| 1544 | <<val_by_mpc3*dVol_<<" to "<<dn<<" / pixel"<<endl;
|
---|
| 1545 |
|
---|
[3329] | 1546 | double sum = 0.;
|
---|
| 1547 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1548 | int_8 ip = IndexR(i,j,l);
|
---|
| 1549 | if(data_[ip]<=0.) data_[ip] = 0.;
|
---|
| 1550 | else {
|
---|
[3349] | 1551 | data_[ip] *= dn;
|
---|
| 1552 | sum += data_[ip];
|
---|
[3329] | 1553 | }
|
---|
| 1554 | }
|
---|
| 1555 |
|
---|
[3358] | 1556 | if(lp_>0) cout<<"...quantity put into survey "<<sum<<" / "<<val_by_mpc3*Vol_<<endl;
|
---|
[3329] | 1557 |
|
---|
| 1558 | return sum;
|
---|
| 1559 | }
|
---|
| 1560 |
|
---|
[3115] | 1561 | double GeneFluct3D::ApplyPoisson(void)
|
---|
| 1562 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1563 | {
|
---|
[3155] | 1564 | if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
|
---|
[3141] | 1565 | check_array_alloc();
|
---|
| 1566 |
|
---|
[3115] | 1567 | double sum = 0.;
|
---|
[3129] | 1568 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1569 | int_8 ip = IndexR(i,j,l);
|
---|
| 1570 | double v = data_[ip];
|
---|
[3115] | 1571 | if(v>0.) {
|
---|
[3808] | 1572 | double dn = PoissonRand(v,10.);
|
---|
| 1573 | data_[ip] = dn;
|
---|
| 1574 | sum += dn;
|
---|
[3115] | 1575 | }
|
---|
| 1576 | }
|
---|
[3155] | 1577 | if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
[3115] | 1578 |
|
---|
| 1579 | return sum;
|
---|
| 1580 | }
|
---|
| 1581 |
|
---|
| 1582 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
| 1583 | // do NOT treate negative or nul mass -> let it as it is
|
---|
| 1584 | // INPUT:
|
---|
| 1585 | // massdist : distribution de masse (m*dn/dm)
|
---|
| 1586 | // axeslog = false : retourne la masse
|
---|
| 1587 | // = true : retourne le log10(mass)
|
---|
| 1588 | // RETURN la masse totale
|
---|
| 1589 | {
|
---|
[3155] | 1590 | if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
|
---|
[3141] | 1591 | check_array_alloc();
|
---|
| 1592 |
|
---|
[3115] | 1593 | double sum = 0.;
|
---|
[3129] | 1594 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
[3141] | 1595 | int_8 ip = IndexR(i,j,l);
|
---|
| 1596 | double v = data_[ip];
|
---|
[3115] | 1597 | if(v>0.) {
|
---|
[3129] | 1598 | long ngal = long(v+0.1);
|
---|
[3141] | 1599 | data_[ip] = 0.;
|
---|
[3129] | 1600 | for(long i=0;i<ngal;i++) {
|
---|
[3115] | 1601 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
| 1602 | if(axeslog) m = pow(10.,m);
|
---|
[3141] | 1603 | data_[ip] += m;
|
---|
[3115] | 1604 | }
|
---|
[3141] | 1605 | sum += data_[ip];
|
---|
[3115] | 1606 | }
|
---|
| 1607 | }
|
---|
[3155] | 1608 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
[3115] | 1609 |
|
---|
| 1610 | return sum;
|
---|
| 1611 | }
|
---|
| 1612 |
|
---|
[3320] | 1613 | double GeneFluct3D::TurnNGal2MassQuick(SchechterMassDist& schmdist)
|
---|
| 1614 | // idem TurnNGal2Mass mais beaucoup plus rapide
|
---|
| 1615 | {
|
---|
| 1616 | if(lp_>0) cout<<"--- TurnNGal2MassQuick ---"<<endl;
|
---|
| 1617 | check_array_alloc();
|
---|
| 1618 |
|
---|
| 1619 | double sum = 0.;
|
---|
| 1620 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
| 1621 | int_8 ip = IndexR(i,j,l);
|
---|
| 1622 | double v = data_[ip];
|
---|
| 1623 | if(v>0.) {
|
---|
| 1624 | long ngal = long(v+0.1);
|
---|
| 1625 | data_[ip] = schmdist.TirMass(ngal);
|
---|
| 1626 | sum += data_[ip];
|
---|
| 1627 | }
|
---|
| 1628 | }
|
---|
| 1629 | if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
| 1630 |
|
---|
| 1631 | return sum;
|
---|
| 1632 | }
|
---|
| 1633 |
|
---|
[3349] | 1634 | void GeneFluct3D::AddNoise2Real(double snoise,int type_evol)
|
---|
| 1635 | // add noise to every pixels (meme les <=0 !)
|
---|
| 1636 | // type_evol = 0 : pas d'evolution de la puissance du bruit
|
---|
| 1637 | // 1 : evolution de la puissance du bruit avec la distance a l'observateur
|
---|
| 1638 | // 2 : evolution de la puissance du bruit avec la distance du plan Z
|
---|
| 1639 | // (tous les plans Z sont mis au meme redshift z de leur milieu)
|
---|
| 1640 | {
|
---|
| 1641 | if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<" evol="<<type_evol<<endl;
|
---|
| 1642 | check_array_alloc();
|
---|
| 1643 |
|
---|
| 1644 | if(type_evol<0) type_evol = 0;
|
---|
| 1645 | if(type_evol>2) {
|
---|
[3572] | 1646 | const char *bla = "GeneFluct3D::AddNoise2Real_Error: bad type_evol value";
|
---|
[3349] | 1647 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1648 | }
|
---|
| 1649 |
|
---|
| 1650 | vector<double> correction;
|
---|
| 1651 | InterpFunc *intercor = NULL;
|
---|
| 1652 |
|
---|
| 1653 | if(type_evol>0) {
|
---|
| 1654 | // Sigma_Noise(en mass) :
|
---|
| 1655 | // Slim ~ 1/sqrt(DNu) * sqrt(nlobe) en W/m^2Hz
|
---|
| 1656 | // Flim ~ sqrt(DNu) * sqrt(nlobe) en W/m^2
|
---|
| 1657 | // Mlim ~ sqrt(DNu) * (Dlum)^2 * sqrt(nlobe) en Msol
|
---|
| 1658 | // nlobe ~ 1/Dtrcom^2
|
---|
| 1659 | // Mlim ~ sqrt(DNu) * (Dlum)^2 / Dtrcom
|
---|
[3662] | 1660 | if(cosmo_ == NULL || redsh_ref_<0. || loscom2zred_.size()<1) {
|
---|
[3572] | 1661 | const char *bla = "GeneFluct3D::AddNoise2Real_Error: set Observator and Cosmology first";
|
---|
[3349] | 1662 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1663 | }
|
---|
| 1664 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
| 1665 | long nsz = loscom2zred_.size(), nszmod=((nsz>10)? nsz/10: 1);
|
---|
| 1666 | for(long i=0;i<nsz;i++) {
|
---|
| 1667 | double d = interpinv.X(i);
|
---|
| 1668 | double zred = interpinv(d);
|
---|
| 1669 | double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
|
---|
| 1670 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1671 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1672 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
| 1673 | double corr = sqrt(dnu/dnu_ref_) * pow(dlum/dlum_ref_,2.) * dtrc_ref_/dtrc;
|
---|
| 1674 | if(lp_>0 && (i==0 || i==nsz-1 || i%nszmod==0))
|
---|
| 1675 | cout<<"i="<<i<<" d="<<d<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
|
---|
| 1676 | <<" dtrc="<<dtrc<<" dlum="<<dlum<<" -> cor="<<corr<<endl;
|
---|
| 1677 | correction.push_back(corr);
|
---|
| 1678 | }
|
---|
| 1679 | intercor = new InterpFunc(loscom2zred_min_,loscom2zred_max_,correction);
|
---|
| 1680 | }
|
---|
| 1681 |
|
---|
| 1682 | double corrlim[2] = {1.,1.};
|
---|
| 1683 | for(long i=0;i<Nx_;i++) {
|
---|
| 1684 | double dx2 = DXcom(i); dx2 *= dx2;
|
---|
| 1685 | for(long j=0;j<Ny_;j++) {
|
---|
| 1686 | double dy2 = DYcom(j); dy2 *= dy2;
|
---|
| 1687 | for(long l=0;l<Nz_;l++) {
|
---|
| 1688 | double corr = 1.;
|
---|
| 1689 | if(type_evol>0) {
|
---|
| 1690 | double dz = DZcom(l);
|
---|
| 1691 | if(type_evol==1) dz = sqrt(dx2+dy2+dz*dz);
|
---|
| 1692 | else dz = fabs(dz); // tous les plans Z au meme redshift
|
---|
| 1693 | corr = (*intercor)(dz);
|
---|
| 1694 | if(corr<corrlim[0]) corrlim[0]=corr; else if(corr>corrlim[1]) corrlim[1]=corr;
|
---|
| 1695 | }
|
---|
| 1696 | int_8 ip = IndexR(i,j,l);
|
---|
| 1697 | data_[ip] += snoise*corr*NorRand();
|
---|
| 1698 | }
|
---|
| 1699 | }
|
---|
| 1700 | }
|
---|
| 1701 | if(type_evol>0)
|
---|
| 1702 | cout<<"correction factor range: ["<<corrlim[0]<<","<<corrlim[1]<<"]"<<endl;
|
---|
| 1703 |
|
---|
| 1704 | if(intercor!=NULL) delete intercor;
|
---|
| 1705 | }
|
---|
| 1706 |
|
---|
| 1707 | } // Fin namespace SOPHYA
|
---|
| 1708 |
|
---|
| 1709 |
|
---|
| 1710 |
|
---|
| 1711 |
|
---|
| 1712 | /*********************************************************************
|
---|
[3199] | 1713 | void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
|
---|
[3196] | 1714 | // Add AGN flux into simulation:
|
---|
| 1715 | // --- Procedure:
|
---|
| 1716 | // 1. lancer "cmvdefsurv" avec les parametres du survey
|
---|
[3199] | 1717 | // (au redshift de reference du survey)
|
---|
[3196] | 1718 | // et recuperer l'angle solide "angsol sr" du pixel elementaire
|
---|
| 1719 | // au centre du cube.
|
---|
| 1720 | // 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
|
---|
| 1721 | // 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
|
---|
| 1722 | // cad une moyenne <log10(S)> et un sigma "sig"
|
---|
[3199] | 1723 | // Attention: la distribution n'est pas gaussienne les "mean,sigma"
|
---|
| 1724 | // de l'histo ne sont pas vraiment ce que l'on veut
|
---|
[3196] | 1725 | // --- Limitations actuelle du code:
|
---|
[3271] | 1726 | // . les AGN sont supposes evoluer avec la meme loi de puissance pour tout theta,phi
|
---|
[3199] | 1727 | // . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
|
---|
| 1728 | // . la distribution est approximee a une gaussienne
|
---|
| 1729 | // ... C'est une approximation pour un observateur loin du centre du cube
|
---|
| 1730 | // et pour un cube peu epais / distance observateur
|
---|
[3196] | 1731 | // --- Parametres de la routine:
|
---|
[3271] | 1732 | // llfy : c'est le <log10(S)> du flux depose par les AGN
|
---|
| 1733 | // dans l'angle solide du pixel elementaire de reference du cube
|
---|
| 1734 | // lsigma : c'est le sigma de la distribution des log10(S)
|
---|
| 1735 | // powlaw : c'est la pente de la distribution cad que le flux "lmsol"
|
---|
[3199] | 1736 | // et considere comme le flux a 1.4GHz et qu'on suppose une loi
|
---|
| 1737 | // F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
|
---|
[3196] | 1738 | // - Comme on est en echelle log10():
|
---|
| 1739 | // on tire log10(Msol) + X
|
---|
| 1740 | // ou X est une realisation sur une gaussienne de variance "sig^2"
|
---|
| 1741 | // La masse realisee est donc: Msol*10^X
|
---|
| 1742 | // - Pas de probleme de pixel negatif car on a une multiplication!
|
---|
| 1743 | {
|
---|
[3199] | 1744 | if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
|
---|
[3196] | 1745 | check_array_alloc();
|
---|
| 1746 |
|
---|
[3271] | 1747 | if(cosmo_ == NULL || redsh_ref_<0.| loscom2zred_.size()<1) {
|
---|
[3199] | 1748 | char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
|
---|
| 1749 | cout<<bla<<endl; throw ParmError(bla);
|
---|
| 1750 | }
|
---|
[3196] | 1751 |
|
---|
[3271] | 1752 | // Le flux des AGN en Jy et en mass solaire
|
---|
| 1753 | double fagnref = pow(10.,lfjy)*(dnu_ref_*1.e9); // Jy.Hz = W/m^2
|
---|
| 1754 | double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlum_ref_); // Msol
|
---|
| 1755 | if(lp_>0)
|
---|
| 1756 | cout<<"Au pixel de ref: fagnref="<<fagnref
|
---|
| 1757 | <<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
|
---|
[3196] | 1758 |
|
---|
[3199] | 1759 | if(powlaw!=0.) {
|
---|
[3271] | 1760 | // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
|
---|
| 1761 | magnref *= pow(1/(1.+redsh_ref_),powlaw);
|
---|
[3199] | 1762 | if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
|
---|
| 1763 | }
|
---|
| 1764 |
|
---|
| 1765 | // Les infos en fonction de l'indice "l" selon Oz
|
---|
| 1766 | vector<double> correction;
|
---|
| 1767 | InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
|
---|
[3271] | 1768 | long nzmod = ((Nz_>10)?Nz_/10:1);
|
---|
[3199] | 1769 | for(long l=0;l<Nz_;l++) {
|
---|
[3271] | 1770 | double z = fabs(DZcom(l));
|
---|
[3199] | 1771 | double zred = interpinv(z);
|
---|
[3271] | 1772 | double dtrc = cosmo_->Dtrcom(zred); // pour variation angle solide
|
---|
[3199] | 1773 | double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
|
---|
| 1774 | double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
|
---|
| 1775 | double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
|
---|
[3271] | 1776 | // on a: Mass ~ DNu * Dlum^2 / Dtrcom^2
|
---|
| 1777 | double corr = dnu/dnu_ref_*pow(dtrc_ref_/dtrc*dlum/dlum_ref_,2.);
|
---|
| 1778 | // F(nu) = F(1.4GHz)*(nu GHz/1.4 Ghz)^p = F(1.4GHz)*(1/(1+z))^p , car nu = 1.4 GHz/(1+z)
|
---|
| 1779 | if(powlaw!=0.) corr *= pow((1.+redsh_ref_)/(1.+zred),powlaw);
|
---|
[3199] | 1780 | correction.push_back(corr);
|
---|
[3271] | 1781 | if(lp_>0 && (l==0 || l==Nz_-1 || l%nzmod==0)) {
|
---|
| 1782 | cout<<"l="<<l<<" z="<<z<<" red="<<zred<<" dred="<<dred<<" dnu="<<dnu
|
---|
| 1783 | <<" dtrc="<<dtrc<<" dlum="<<dlum
|
---|
| 1784 | <<" -> cor="<<corr<<endl;
|
---|
[3199] | 1785 | }
|
---|
| 1786 | }
|
---|
| 1787 |
|
---|
| 1788 | double sum=0., sum2=0., nsum=0.;
|
---|
| 1789 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
|
---|
| 1790 | double a = lsigma*NorRand();
|
---|
| 1791 | a = magnref*pow(10.,a);
|
---|
| 1792 | // On met le meme tirage le long de Oz (indice k)
|
---|
| 1793 | for(long l=0;l<Nz_;l++) {
|
---|
| 1794 | int_8 ip = IndexR(i,j,l);
|
---|
| 1795 | data_[ip] += a*correction[l];
|
---|
| 1796 | }
|
---|
| 1797 | sum += a; sum2 += a*a; nsum += 1.;
|
---|
| 1798 | }
|
---|
| 1799 |
|
---|
| 1800 | if(lp_>0 && nsum>1.) {
|
---|
[3196] | 1801 | sum /= nsum;
|
---|
| 1802 | sum2 = sum2/nsum - sum*sum;
|
---|
| 1803 | cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
|
---|
| 1804 | }
|
---|
| 1805 |
|
---|
| 1806 | }
|
---|
[3349] | 1807 | *********************************************************************/
|
---|