1 | #include "sopnamsp.h"
|
---|
2 | #include "machdefs.h"
|
---|
3 | #include <iostream>
|
---|
4 | #include <stdlib.h>
|
---|
5 | #include <stdio.h>
|
---|
6 | #include <string.h>
|
---|
7 | #include <math.h>
|
---|
8 | #include <unistd.h>
|
---|
9 |
|
---|
10 | #include "timing.h"
|
---|
11 | #include "tarray.h"
|
---|
12 | #include "pexceptions.h"
|
---|
13 | #include "perandom.h"
|
---|
14 | #include "srandgen.h"
|
---|
15 |
|
---|
16 | #include "constcosmo.h"
|
---|
17 | #include "integfunc.h"
|
---|
18 | #include "geneutils.h"
|
---|
19 |
|
---|
20 | #include "genefluct3d.h"
|
---|
21 |
|
---|
22 | //#define FFTW_THREAD
|
---|
23 |
|
---|
24 | #define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
|
---|
25 |
|
---|
26 | //-------------------------------------------------------
|
---|
27 | GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T,PkSpectrumZ& pkz)
|
---|
28 | : T_(T) , pkz_(pkz)
|
---|
29 | {
|
---|
30 | SetNThread();
|
---|
31 | SetSize(1,-1,1,1.,-1.,1.);
|
---|
32 | }
|
---|
33 |
|
---|
34 | GeneFluct3D::~GeneFluct3D(void)
|
---|
35 | {
|
---|
36 | fftw_destroy_plan(pf_);
|
---|
37 | fftw_destroy_plan(pb_);
|
---|
38 | #ifdef FFTW_THREAD
|
---|
39 | if(nthread_>0) fftw_cleanup_threads();
|
---|
40 | #endif
|
---|
41 | }
|
---|
42 |
|
---|
43 | //-------------------------------------------------------
|
---|
44 | void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
|
---|
45 | {
|
---|
46 | if(nx<=0 || dx<=0. ) {
|
---|
47 | cout<<"GeneFluct3D::SetSize_Error: bad value(s)"<<endl;
|
---|
48 | throw ParmError("GeneFluct3D::SetSize_Error: bad value(s)");
|
---|
49 | }
|
---|
50 |
|
---|
51 | Tcontent_ = 0;
|
---|
52 |
|
---|
53 | // Les taille des tableaux
|
---|
54 | Nx_ = nx;
|
---|
55 | Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
|
---|
56 | Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
|
---|
57 | NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
|
---|
58 | NCz_ = Nz_/2 +1;
|
---|
59 | NTz_ = 2*NCz_;
|
---|
60 | SzK_[2] = Nx_; SzK_[1] = Ny_; SzK_[0] = NCz_; // a l'envers
|
---|
61 |
|
---|
62 | // le pas dans l'espace (Mpc)
|
---|
63 | Dx_ = dx;
|
---|
64 | Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
|
---|
65 | Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
|
---|
66 | dVol_ = Dx_*Dy_*Dz_;
|
---|
67 | Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
|
---|
68 |
|
---|
69 | // Le pas dans l'espace de Fourier (Mpc^-1)
|
---|
70 | Dkx_ = 2.*M_PI/(Nx_*Dx_);
|
---|
71 | Dky_ = 2.*M_PI/(Ny_*Dy_);
|
---|
72 | Dkz_ = 2.*M_PI/(Nz_*Dz_);
|
---|
73 | Dk3_ = Dkx_*Dky_*Dkz_;
|
---|
74 |
|
---|
75 | // La frequence de Nyquist en k (Mpc^-1)
|
---|
76 | Knyqx_ = M_PI/Dx_;
|
---|
77 | Knyqy_ = M_PI/Dy_;
|
---|
78 | Knyqz_ = M_PI/Dz_;
|
---|
79 |
|
---|
80 | }
|
---|
81 |
|
---|
82 | //-------------------------------------------------------
|
---|
83 | void GeneFluct3D::Print(void)
|
---|
84 | {
|
---|
85 | cout<<"GeneFluct3D(T_typ="<<Tcontent_<<"): z="<<pkz_.GetZ()<<endl;
|
---|
86 | cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
|
---|
87 | <<NRtot_<<endl;
|
---|
88 | cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
|
---|
89 | <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
|
---|
90 | cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
|
---|
91 | cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
|
---|
92 | <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
|
---|
93 | cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
|
---|
94 | cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
|
---|
95 | <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
|
---|
96 | cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
|
---|
97 | }
|
---|
98 |
|
---|
99 | //-------------------------------------------------------
|
---|
100 | void GeneFluct3D::ComputeFourier0(void)
|
---|
101 | // cf ComputeFourier() mais avec autre methode de realisation du spectre
|
---|
102 | // (attention on fait une fft pour realiser le spectre)
|
---|
103 | {
|
---|
104 | int lp=2;
|
---|
105 |
|
---|
106 | T_.ReSize(3,SzK_);
|
---|
107 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
108 |
|
---|
109 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
110 | if(lp>1) PrtTim("--- ComputeFourier0: before fftw_plan ---");
|
---|
111 | fftw_complex *fdata = (fftw_complex *) (&T_(0,0,0));
|
---|
112 | double *data = (double *) (&T_(0,0,0));
|
---|
113 | #ifdef FFTW_THREAD
|
---|
114 | if(nthread_>0) {
|
---|
115 | cout<<"Computing with "<<nthread_<<" threads"<<endl;
|
---|
116 | fftw_init_threads();
|
---|
117 | fftw_plan_with_nthreads(nthread_);
|
---|
118 | }
|
---|
119 | #endif
|
---|
120 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data,fdata,FFTW_ESTIMATE);
|
---|
121 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata,data,FFTW_ESTIMATE);
|
---|
122 | if(lp>1) PrtTim("--- ComputeFourier0: after fftw_plan ---");
|
---|
123 |
|
---|
124 | // --- realisation d'un tableau de tirage gaussiens
|
---|
125 | if(lp>1) PrtTim("--- ComputeFourier0: before gaussian filling ---");
|
---|
126 | // On tient compte du pb de normalisation de FFTW3
|
---|
127 | double sntot = sqrt((double)NRtot_);
|
---|
128 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
129 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
130 | data[ip] = NorRand()/sntot;
|
---|
131 | }
|
---|
132 | if(lp>1) PrtTim("--- ComputeFourier0: after gaussian filling ---");
|
---|
133 |
|
---|
134 | // --- realisation d'un tableau de tirage gaussiens
|
---|
135 | if(lp>1) PrtTim("--- ComputeFourier0: before fft real ---");
|
---|
136 | fftw_execute(pf_);
|
---|
137 | if(lp>1) PrtTim("--- ComputeFourier0: after fft real ---");
|
---|
138 |
|
---|
139 | // --- On remplit avec une realisation
|
---|
140 | if(lp>1) PrtTim("--- ComputeFourier0: before Fourier realization filling ---");
|
---|
141 | T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
|
---|
142 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
143 | for(long i=0;i<Nx_;i++) {
|
---|
144 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
145 | double kx = ii*Dkx_; kx *= kx;
|
---|
146 | if(lp>1 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
147 | for(long j=0;j<Ny_;j++) {
|
---|
148 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
149 | double ky = jj*Dky_; ky *= ky;
|
---|
150 | for(long l=0;l<NCz_;l++) {
|
---|
151 | double kz = l*Dkz_; kz *= kz;
|
---|
152 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
153 | double k = sqrt(kx+ky+kz);
|
---|
154 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
155 | double pk = pkz_(k)/Vol_;
|
---|
156 | // ici pas de "/2" a cause de la remarque ci-dessus
|
---|
157 | T_(l,j,i) *= sqrt(pk);
|
---|
158 | }
|
---|
159 | }
|
---|
160 | }
|
---|
161 | if(lp>1) PrtTim("--- ComputeFourier0: after Fourier realization filling ---");
|
---|
162 |
|
---|
163 | double p = compute_power_carte();
|
---|
164 | cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
165 | if(lp>1) PrtTim("--- ComputeFourier0: after Computing power ---");
|
---|
166 |
|
---|
167 | Tcontent_ = 1;
|
---|
168 |
|
---|
169 | }
|
---|
170 |
|
---|
171 | //-------------------------------------------------------
|
---|
172 | void GeneFluct3D::ComputeFourier(void)
|
---|
173 | // Calcule une realisation du spectre "pkz_"
|
---|
174 | // Attention: dans TArray le premier indice varie le + vite
|
---|
175 | // Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
|
---|
176 | // FFTW3: on note N=Nx*Ny*Nz
|
---|
177 | // f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
|
---|
178 | // sum(f(x_i)^2) = S
|
---|
179 | // sum(F(nu_i)^2) = S*N
|
---|
180 | // sum(fb(x_i)^2) = S*N^2
|
---|
181 | {
|
---|
182 | int lp=2;
|
---|
183 |
|
---|
184 | // --- Dimensionnement du tableau
|
---|
185 | // ATTENTION: TArray adresse en memoire a l'envers du C
|
---|
186 | // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
|
---|
187 | T_.ReSize(3,SzK_);
|
---|
188 | T_.SetMemoryMapping(BaseArray::CMemoryMapping);
|
---|
189 |
|
---|
190 | // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
|
---|
191 | if(lp>1) PrtTim("--- ComputeFourier: before fftw_plan ---");
|
---|
192 | fftw_complex *fdata = (fftw_complex *) (&T_(0,0,0));
|
---|
193 | double *data = (double *) (&T_(0,0,0));
|
---|
194 | #ifdef FFTW_THREAD
|
---|
195 | if(nthread_>0) {
|
---|
196 | cout<<"Computing with "<<nthread_<<" threads"<<endl;
|
---|
197 | fftw_init_threads();
|
---|
198 | fftw_plan_with_nthreads(nthread_);
|
---|
199 | }
|
---|
200 | #endif
|
---|
201 | pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data,fdata,FFTW_ESTIMATE);
|
---|
202 | pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata,data,FFTW_ESTIMATE);
|
---|
203 | //fftw_print_plan(pb_); cout<<endl;
|
---|
204 | if(lp>1) PrtTim("--- ComputeFourier: after fftw_plan ---");
|
---|
205 |
|
---|
206 | // --- RaZ du tableau
|
---|
207 | T_ = complex<r_8>(0.);
|
---|
208 |
|
---|
209 | // --- On remplit avec une realisation
|
---|
210 | if(lp>1) PrtTim("--- ComputeFourier: before Fourier realization filling ---");
|
---|
211 | long lmod = Nx_/10; if(lmod<1) lmod=1;
|
---|
212 | for(long i=0;i<Nx_;i++) {
|
---|
213 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
214 | double kx = ii*Dkx_; kx *= kx;
|
---|
215 | if(lp>1 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
|
---|
216 | for(long j=0;j<Ny_;j++) {
|
---|
217 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
218 | double ky = jj*Dky_; ky *= ky;
|
---|
219 | for(long l=0;l<NCz_;l++) {
|
---|
220 | double kz = l*Dkz_; kz *= kz;
|
---|
221 | if(i==0 && j==0 && l==0) continue; // Suppression du continu
|
---|
222 | double k = sqrt(kx+ky+kz);
|
---|
223 | // cf normalisation: Peacock, Cosmology, formule 16.38 p504
|
---|
224 | double pk = pkz_(k)/Vol_;
|
---|
225 | // Explication de la division par 2: voir perandom.cc
|
---|
226 | // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
|
---|
227 | T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
|
---|
228 | }
|
---|
229 | }
|
---|
230 | }
|
---|
231 | if(lp>1) PrtTim("--- ComputeFourier: after Fourier realization filling ---");
|
---|
232 |
|
---|
233 | manage_coefficients(); // gros effet pour les spectres que l'on utilise !
|
---|
234 | if(lp>1) PrtTim("--- ComputeFourier: after managing coefficients ---");
|
---|
235 |
|
---|
236 | double p = compute_power_carte();
|
---|
237 | cout<<"Puissance dans la realisation: "<<p<<endl;
|
---|
238 | if(lp>1) PrtTim("--- ComputeFourier: after before Computing power ---");
|
---|
239 |
|
---|
240 | Tcontent_ = 1;
|
---|
241 |
|
---|
242 | }
|
---|
243 |
|
---|
244 | long GeneFluct3D::manage_coefficients(void)
|
---|
245 | // Take into account the real and complexe conjugate coefficients
|
---|
246 | // because we want a realization of a real data in real space
|
---|
247 | {
|
---|
248 | fftw_complex *fdata = (fftw_complex *) (&T_(0,0,0));
|
---|
249 |
|
---|
250 | // 1./ Le Continu et Nyquist sont reels
|
---|
251 | long nreal = 0;
|
---|
252 | for(long kk=0;kk<2;kk++) {
|
---|
253 | long k=0; // continu
|
---|
254 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
255 | for(long jj=0;jj<2;jj++) {
|
---|
256 | long j=0;
|
---|
257 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
258 | for(long ii=0;ii<2;ii++) {
|
---|
259 | long i=0;
|
---|
260 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
261 | int_8 ip = k+NCz_*(j+Ny_*i);
|
---|
262 | //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata[ip][0]<<","<<fdata[ip][1]<<")"<<endl;
|
---|
263 | fdata[ip][1] = 0.; fdata[ip][0] *= M_SQRT2;
|
---|
264 | nreal++;
|
---|
265 | }
|
---|
266 | }
|
---|
267 | }
|
---|
268 | cout<<"Number of forced real number ="<<nreal<<endl;
|
---|
269 |
|
---|
270 | // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
|
---|
271 |
|
---|
272 | // a./ les lignes et colonnes du continu et de nyquist
|
---|
273 | long nconj1 = 0;
|
---|
274 | for(long kk=0;kk<2;kk++) {
|
---|
275 | long k=0; // continu
|
---|
276 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
277 | for(long jj=0;jj<2;jj++) { // selon j
|
---|
278 | long j=0;
|
---|
279 | if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
|
---|
280 | for(long i=1;i<(Nx_+1)/2;i++) {
|
---|
281 | int_8 ip = k+NCz_*(j+Ny_*i);
|
---|
282 | int_8 ip1 = k+NCz_*(j+Ny_*(Nx_-i));
|
---|
283 | fdata[ip1][0] = fdata[ip][0]; fdata[ip1][1] = -fdata[ip][1];
|
---|
284 | nconj1++;
|
---|
285 | }
|
---|
286 | }
|
---|
287 | for(long ii=0;ii<2;ii++) {
|
---|
288 | long i=0;
|
---|
289 | if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
|
---|
290 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
291 | int_8 ip = k+NCz_*(j+Ny_*i);
|
---|
292 | int_8 ip1 = k+NCz_*((Ny_-j)+Ny_*i);
|
---|
293 | fdata[ip1][0] = fdata[ip][0]; fdata[ip1][1] = -fdata[ip][1];
|
---|
294 | nconj1++;
|
---|
295 | }
|
---|
296 | }
|
---|
297 | }
|
---|
298 | cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
|
---|
299 |
|
---|
300 | // b./ les lignes et colonnes hors continu et de nyquist
|
---|
301 | long nconj2 = 0;
|
---|
302 | for(long kk=0;kk<2;kk++) {
|
---|
303 | long k=0; // continu
|
---|
304 | if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
|
---|
305 | for(long j=1;j<(Ny_+1)/2;j++) {
|
---|
306 | if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
|
---|
307 | for(long i=1;i<Nx_;i++) {
|
---|
308 | if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
|
---|
309 | int_8 ip = k+NCz_*(j+Ny_*i);
|
---|
310 | int_8 ip1 = k+NCz_*((Ny_-j)+Ny_*(Nx_-i));
|
---|
311 | fdata[ip1][0] = fdata[ip][0]; fdata[ip1][1] = -fdata[ip][1];
|
---|
312 | nconj2++;
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 | cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
|
---|
317 |
|
---|
318 | cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
|
---|
319 |
|
---|
320 | return nreal+nconj1+nconj2;
|
---|
321 | }
|
---|
322 |
|
---|
323 | double GeneFluct3D::compute_power_carte(void)
|
---|
324 | // Calcul la puissance de la realisation du spectre Pk
|
---|
325 | {
|
---|
326 | double s2 = 0.;
|
---|
327 | for(long l=0;l<NCz_;l++)
|
---|
328 | for(long j=0;j<Ny_;j++)
|
---|
329 | for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
|
---|
330 |
|
---|
331 | double s20 = 0.;
|
---|
332 | for(long j=0;j<Ny_;j++)
|
---|
333 | for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
|
---|
334 |
|
---|
335 | double s2n = 0.;
|
---|
336 | if(Nz_%2==0)
|
---|
337 | for(long j=0;j<Ny_;j++)
|
---|
338 | for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
|
---|
339 |
|
---|
340 | return 2.*s2 -s20 -s2n;
|
---|
341 | }
|
---|
342 |
|
---|
343 | //-------------------------------------------------------------------
|
---|
344 | void GeneFluct3D::FilterByPixel(void)
|
---|
345 | // Filtrage par la fonction fenetre du pixel (parallelepipede)
|
---|
346 | // TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
|
---|
347 | // e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
|
---|
348 | // = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
|
---|
349 | // Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
|
---|
350 | // avec y = k_x*dx/2
|
---|
351 | {
|
---|
352 | int lp=2;
|
---|
353 | if(lp>1) PrtTim("--- FilterByPixel: before ---");
|
---|
354 |
|
---|
355 | for(long i=0;i<Nx_;i++) {
|
---|
356 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
357 | double kx = ii*Dkx_ *Dx_/2;
|
---|
358 | double pkx = pixelfilter(kx);
|
---|
359 | for(long j=0;j<Ny_;j++) {
|
---|
360 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
361 | double ky = jj*Dky_ *Dy_/2;
|
---|
362 | double pky = pixelfilter(ky);
|
---|
363 | for(long l=0;l<NCz_;l++) {
|
---|
364 | double kz = l*Dkz_ *Dz_/2;
|
---|
365 | double pkz = pixelfilter(kz);
|
---|
366 | T_(l,j,i) *= pkx*pky*pkz;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 |
|
---|
371 | if(lp>1) PrtTim("--- FilterByPixel: after ---");
|
---|
372 | }
|
---|
373 |
|
---|
374 | //-------------------------------------------------------------------
|
---|
375 | void GeneFluct3D::ComputeReal(void)
|
---|
376 | // Calcule une realisation dans l'espace reel
|
---|
377 | {
|
---|
378 | int lp=2;
|
---|
379 |
|
---|
380 | if( Tcontent_==0 ) {
|
---|
381 | cout<<"GeneFluct3D::ComputeReal_Error: empty array"<<endl;
|
---|
382 | throw ParmError("GeneFluct3D::ComputeReal_Error: empty array");
|
---|
383 | }
|
---|
384 |
|
---|
385 | // On fait la FFT
|
---|
386 | if(lp>1) PrtTim("--- ComputeReal: before fftw backward ---");
|
---|
387 | fftw_execute(pb_);
|
---|
388 | if(lp>1) PrtTim("--- ComputeReal: after fftw backward ---");
|
---|
389 |
|
---|
390 | Tcontent_ = 2;
|
---|
391 | }
|
---|
392 |
|
---|
393 | //-------------------------------------------------------------------
|
---|
394 | void GeneFluct3D::ReComputeFourier(void)
|
---|
395 | {
|
---|
396 | int lp=2;
|
---|
397 |
|
---|
398 | // On fait la FFT
|
---|
399 | if(lp>1) PrtTim("--- ComputeReal: before fftw forward ---");
|
---|
400 | fftw_execute(pf_);
|
---|
401 | // On corrige du pb de la normalisation de FFTW3
|
---|
402 | double v = (double)NRtot_;
|
---|
403 | for(long i=0;i<Nx_;i++)
|
---|
404 | for(long j=0;j<Ny_;j++)
|
---|
405 | for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
|
---|
406 |
|
---|
407 | Tcontent_ = 3;
|
---|
408 | if(lp>1) PrtTim("--- ComputeReal: after fftw forward ---");
|
---|
409 | }
|
---|
410 |
|
---|
411 | //-------------------------------------------------------------------
|
---|
412 | int GeneFluct3D::ComputeSpectrum(HProf& hp)
|
---|
413 | // Compute spectrum from "T" and fill HProf "hp"
|
---|
414 | // T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
|
---|
415 | // cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
|
---|
416 | {
|
---|
417 |
|
---|
418 | if(hp.NBins()<0) return -1;
|
---|
419 | hp.Zero();
|
---|
420 | hp.SetErrOpt(false);
|
---|
421 |
|
---|
422 | // Attention a l'ordre
|
---|
423 | for(long i=0;i<Nx_;i++) {
|
---|
424 | long ii = (i>Nx_/2) ? Nx_-i : i;
|
---|
425 | double kx = ii*Dkx_; kx *= kx;
|
---|
426 | for(long j=0;j<Ny_;j++) {
|
---|
427 | long jj = (j>Ny_/2) ? Ny_-j : j;
|
---|
428 | double ky = jj*Dky_; ky *= ky;
|
---|
429 | for(long l=0;l<NCz_;l++) {
|
---|
430 | double kz = l*Dkz_; kz *= kz;
|
---|
431 | double k = sqrt(kx+ky+kz);
|
---|
432 | double pk = MODULE2(T_(l,j,i));
|
---|
433 | hp.Add(k,pk);
|
---|
434 | }
|
---|
435 | }
|
---|
436 | }
|
---|
437 | hp.UpdateHisto();
|
---|
438 |
|
---|
439 | // renormalize to directly compare to original spectrum
|
---|
440 | double norm = Vol_;
|
---|
441 | hp *= norm;
|
---|
442 |
|
---|
443 | return 0;
|
---|
444 | }
|
---|
445 |
|
---|
446 | //-------------------------------------------------------
|
---|
447 | int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
|
---|
448 | // Recompute MASS variance in spherical top-hat (rayon=R)
|
---|
449 | {
|
---|
450 | int lp=2;
|
---|
451 | if(lp>1) PrtTim("--- VarianceFrReal: before computation ---");
|
---|
452 |
|
---|
453 | double *data = (double *) (&T_(0,0,0));
|
---|
454 | long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
|
---|
455 | long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
|
---|
456 | long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
|
---|
457 | cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
|
---|
458 |
|
---|
459 | double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
|
---|
460 |
|
---|
461 | for(long i=dnx;i<Nx_-dnx;i+=dnx) {
|
---|
462 | for(long j=dny;j<Ny_-dny;j+=dny) {
|
---|
463 | for(long l=dnz;l<Nz_-dnz;l+=dnz) {
|
---|
464 | double s=0.; int_8 n=0;
|
---|
465 | for(long ii=i-dnx;ii<=i+dnx;ii++) {
|
---|
466 | double x = (ii-i)*Dx_; x *= x;
|
---|
467 | for(long jj=j-dny;jj<=j+dny;jj++) {
|
---|
468 | double y = (jj-j)*Dy_; y *= y;
|
---|
469 | for(long ll=l-dnz;ll<=l+dnz;ll++) {
|
---|
470 | double z = (ll-l)*Dz_; z *= z;
|
---|
471 | if(x+y+z>r2) continue;
|
---|
472 | int_8 ip = ll+NTz_*(jj+Ny_*ii);
|
---|
473 | s += 1.+data[ip];
|
---|
474 | n++;
|
---|
475 | }
|
---|
476 | }
|
---|
477 | }
|
---|
478 | if(n>0) {sum += s; sum2 += s*s; nsum++;}
|
---|
479 | //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
|
---|
480 | }
|
---|
481 | }
|
---|
482 | }
|
---|
483 |
|
---|
484 | if(nsum<=1) {var=0.; return nsum;}
|
---|
485 |
|
---|
486 | sum /= nsum;
|
---|
487 | sum2 = sum2/nsum - sum*sum;
|
---|
488 | if(lp) cout<<"VarianceFrReal: nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
|
---|
489 |
|
---|
490 | var = sum2/(sum*sum); // <dM>^2/<M>^2
|
---|
491 | if(lp) cout<<"sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
|
---|
492 |
|
---|
493 | if(lp>1) PrtTim("--- VarianceFrReal: after computation ---");
|
---|
494 | return nsum;
|
---|
495 | }
|
---|
496 |
|
---|
497 | //-------------------------------------------------------
|
---|
498 | int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
|
---|
499 | // number of pixels outside of ]vmin,vmax[ extremites exclues
|
---|
500 | // -> vmin and vmax are considered as bad
|
---|
501 | {
|
---|
502 | double *data = (double *) (&T_(0,0,0));
|
---|
503 |
|
---|
504 | int_8 nbad = 0;
|
---|
505 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
506 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
507 | double v = data[ip];
|
---|
508 | if(v<=vmin || v>=vmax) nbad++;
|
---|
509 | }
|
---|
510 |
|
---|
511 | return nbad;
|
---|
512 | }
|
---|
513 |
|
---|
514 | int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax)
|
---|
515 | // mean,sigma^2 pour pixels avec valeurs ]vmin,vmax[ extremites exclues
|
---|
516 | // -> mean and sigma^2 are NOT computed with pixels values vmin and vmax
|
---|
517 | {
|
---|
518 | double *data = (double *) (&T_(0,0,0));
|
---|
519 |
|
---|
520 | int_8 n = 0;
|
---|
521 | rm = rs2 = 0.;
|
---|
522 |
|
---|
523 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
524 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
525 | double v = data[ip];
|
---|
526 | if(v<=vmin || v>=vmax) continue;
|
---|
527 | rm += v;
|
---|
528 | rs2 += v*v;
|
---|
529 | n++;
|
---|
530 | }
|
---|
531 |
|
---|
532 | if(n>1) {
|
---|
533 | rm /= (double)n;
|
---|
534 | rs2 = rs2/(double)n - rm*rm;
|
---|
535 | }
|
---|
536 |
|
---|
537 | return n;
|
---|
538 | }
|
---|
539 |
|
---|
540 | int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
|
---|
541 | // set to "val0" if out of range ]vmin,vmax[ extremites exclues
|
---|
542 | // -> vmin and vmax are set to val0
|
---|
543 | {
|
---|
544 | double *data = (double *) (&T_(0,0,0));
|
---|
545 |
|
---|
546 | int_8 nbad = 0;
|
---|
547 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
548 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
549 | double v = data[ip];
|
---|
550 | if(v<=vmin || v>=vmax) {data[ip] = val0; nbad++;}
|
---|
551 | }
|
---|
552 |
|
---|
553 | return nbad;
|
---|
554 | }
|
---|
555 |
|
---|
556 | //-------------------------------------------------------
|
---|
557 | void GeneFluct3D::TurnFluct2Mass(void)
|
---|
558 | // d_rho/rho -> Mass (add one!)
|
---|
559 | {
|
---|
560 | int lp=2;
|
---|
561 | if(lp>1) PrtTim("--- TurnFluct2Mass: before computation ---");
|
---|
562 | double *data = (double *) (&T_(0,0,0));
|
---|
563 |
|
---|
564 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
565 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
566 | data[ip] += 1.;
|
---|
567 | }
|
---|
568 |
|
---|
569 | Tcontent_ = 4;
|
---|
570 | if(lp>1) PrtTim("--- TurnFluct2Mass: after computation ---");
|
---|
571 | }
|
---|
572 |
|
---|
573 | double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
|
---|
574 | // do NOT treate negative or nul values
|
---|
575 | {
|
---|
576 | int lp=2;
|
---|
577 | if(lp>1) PrtTim("--- TurnMass2MeanNumber: before computation ---");
|
---|
578 |
|
---|
579 | double *data = (double *) (&T_(0,0,0));
|
---|
580 |
|
---|
581 | double m,s2;
|
---|
582 | int_8 ngood = MeanSigma2(m,s2,0.,1e+200);
|
---|
583 | if(lp) cout<<"TurnMass2MeanNumber: ngood="<<ngood
|
---|
584 | <<" m="<<m<<" s2="<<s2<<" -> "<<sqrt(s2)<<endl;
|
---|
585 |
|
---|
586 | // On doit mettre n*Vol galaxies dans notre survey
|
---|
587 | // On en met uniquement dans les pixels de masse >0.
|
---|
588 | // On NE met PAS a zero les pixels <0
|
---|
589 | // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
|
---|
590 | // comme on ne prend que les pixels >0, on doit normaliser
|
---|
591 | // a la moyenne de <1+d_rho/rho> sur ces pixels
|
---|
592 | // (rappel sur tout les pixels <1+d_rho/rho>=1)
|
---|
593 | double dn = n_by_mpc3*Vol_/m /(double)ngood; // nb de gal a mettre ds 1 px
|
---|
594 | if(lp) cout<<"galaxy density move from "
|
---|
595 | <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
|
---|
596 | double sum = 0.;
|
---|
597 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
598 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
599 | data[ip] *= dn; // par coherence on multiplie aussi les <=0
|
---|
600 | if(data[ip]>0.) sum += data[ip]; // mais on ne les compte pas
|
---|
601 | }
|
---|
602 | if(lp) cout<<sum<<" galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
|
---|
603 |
|
---|
604 | Tcontent_ = 6;
|
---|
605 | if(lp>1) PrtTim("--- TurnMass2MeanNumber: after computation ---");
|
---|
606 | return sum;
|
---|
607 | }
|
---|
608 |
|
---|
609 | double GeneFluct3D::ApplyPoisson(void)
|
---|
610 | // do NOT treate negative or nul mass -> let it as it is
|
---|
611 | {
|
---|
612 | int lp=2;
|
---|
613 | if(lp>1) PrtTim("--- ApplyPoisson: before computation ---");
|
---|
614 |
|
---|
615 | double *data = (double *) (&T_(0,0,0));
|
---|
616 |
|
---|
617 | double sum = 0.;
|
---|
618 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
619 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
620 | double v = data[ip];
|
---|
621 | if(v>0.) {
|
---|
622 | unsigned long dn = PoissRandLimit(v,10.);
|
---|
623 | data[ip] = (double)dn;
|
---|
624 | sum += (double)dn;
|
---|
625 | }
|
---|
626 | }
|
---|
627 | if(lp) cout<<sum<<" galaxies put into survey"<<endl;
|
---|
628 | Tcontent_ = 8;
|
---|
629 |
|
---|
630 | if(lp>1) PrtTim("--- ApplyPoisson: before computation ---");
|
---|
631 | return sum;
|
---|
632 | }
|
---|
633 |
|
---|
634 | double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
|
---|
635 | // do NOT treate negative or nul mass -> let it as it is
|
---|
636 | // INPUT:
|
---|
637 | // massdist : distribution de masse (m*dn/dm)
|
---|
638 | // axeslog = false : retourne la masse
|
---|
639 | // = true : retourne le log10(mass)
|
---|
640 | // RETURN la masse totale
|
---|
641 | {
|
---|
642 | int lp=2;
|
---|
643 | if(lp>1) PrtTim("--- TurnNGal2Mass: before computation ---");
|
---|
644 |
|
---|
645 | double *data = (double *) (&T_(0,0,0));
|
---|
646 |
|
---|
647 | double sum = 0.;
|
---|
648 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
649 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
650 | double v = data[ip];
|
---|
651 | if(v>0.) {
|
---|
652 | long ngal = long(v+0.1);
|
---|
653 | data[ip] = 0.;
|
---|
654 | for(long i=0;i<ngal;i++) {
|
---|
655 | double m = massdist.RandomInterp(); // massdist.Random();
|
---|
656 | if(axeslog) m = pow(10.,m);
|
---|
657 | data[ip] += m;
|
---|
658 | }
|
---|
659 | sum += data[ip];
|
---|
660 | }
|
---|
661 | }
|
---|
662 | if(lp) cout<<sum<<" MSol HI mass put into survey"<<endl;
|
---|
663 | Tcontent_ = 10;
|
---|
664 |
|
---|
665 | if(lp>1) PrtTim("--- TurnNGal2Mass: after computation ---");
|
---|
666 | return sum;
|
---|
667 | }
|
---|
668 |
|
---|
669 | void GeneFluct3D::AddNoise2Real(double snoise)
|
---|
670 | // add noise to every pixels (meme les <=0 !)
|
---|
671 | {
|
---|
672 | int lp=2;
|
---|
673 | if(lp>1) PrtTim("--- AddNoise2Real: before computation ---");
|
---|
674 |
|
---|
675 | double *data = (double *) (&T_(0,0,0));
|
---|
676 |
|
---|
677 | for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
|
---|
678 | int_8 ip = l+NTz_*(j+Ny_*i);
|
---|
679 | data[ip] += snoise*NorRand();
|
---|
680 | }
|
---|
681 | Tcontent_ = 12;
|
---|
682 |
|
---|
683 | if(lp>1) PrtTim("--- AddNoise2Real: after computation ---");
|
---|
684 | }
|
---|