source: Sophya/trunk/Cosmo/SimLSS/genefluct3d.cc@ 3255

Last change on this file since 3255 was 3255, checked in by cmv, 18 years ago

detail: un print de + cmv 24/05/2007

File size: 36.5 KB
Line 
1#include "sopnamsp.h"
2#include "machdefs.h"
3#include <iostream>
4#include <stdlib.h>
5#include <stdio.h>
6#include <string.h>
7#include <math.h>
8#include <unistd.h>
9
10#include "tarray.h"
11#include "pexceptions.h"
12#include "perandom.h"
13#include "srandgen.h"
14
15#include "fabtcolread.h"
16#include "fabtwriter.h"
17#include "fioarr.h"
18
19#include "arrctcast.h"
20
21#include "constcosmo.h"
22#include "geneutils.h"
23#include "schechter.h"
24
25#include "genefluct3d.h"
26
27//#define FFTW_THREAD
28
29#define MODULE2(_x_) ((double)((_x_).real()*(_x_).real() + (_x_).imag()*(_x_).imag()))
30
31//-------------------------------------------------------
32GeneFluct3D::GeneFluct3D(TArray< complex<r_8 > >& T)
33 : T_(T) , Nx_(0) , Ny_(0) , Nz_(0) , array_allocated_(false) , lp_(0)
34 , redshref_(-999.) , kredshref_(0.) , cosmo_(NULL) , growth_(NULL)
35 , loscom_ref_(-999.), loscom_min_(-999.), loscom_max_(-999.)
36 , loscom2zred_min_(0.) , loscom2zred_max_(0.)
37{
38 xobs_[0] = xobs_[1] = xobs_[2] = 0.;
39 zred_.resize(0);
40 loscom_.resize(0);
41 loscom2zred_.resize(0);
42 SetNThread();
43}
44
45GeneFluct3D::~GeneFluct3D(void)
46{
47 fftw_destroy_plan(pf_);
48 fftw_destroy_plan(pb_);
49#ifdef FFTW_THREAD
50 if(nthread_>0) fftw_cleanup_threads();
51#endif
52}
53
54//-------------------------------------------------------
55void GeneFluct3D::SetSize(long nx,long ny,long nz,double dx,double dy,double dz)
56{
57 setsize(nx,ny,nz,dx,dy,dz);
58 setalloc();
59 setpointers(false);
60 init_fftw();
61}
62
63void GeneFluct3D::SetObservator(double redshref,double kredshref)
64// L'observateur est au redshift z=0
65// est situe sur la "perpendiculaire" a la face x,y
66// issue du centre de cette face
67// Il faut positionner le cube sur l'axe des z cad des redshifts:
68// redshref = redshift de reference
69// Si redshref<0 alors redshref=0
70// kredshref = indice (en double) correspondant a ce redshift
71// Si kredshref<0 alors kredshref=0
72// Exemple: redshref=1.5 kredshref=250.75
73// -> Le pixel i=nx/2 j=ny/2 k=250.75 est au redshift 1.5
74{
75 if(redshref<0.) redshref = 0.;
76 if(kredshref<0.) kredshref = 0.;
77 redshref_ = redshref;
78 kredshref_ = kredshref;
79 if(lp_>0)
80 cout<<"--- GeneFluct3D::SetObservator zref="<<redshref_<<" kref="<<kredshref_<<endl;
81}
82
83void GeneFluct3D::SetCosmology(CosmoCalc& cosmo)
84{
85 cosmo_ = &cosmo;
86 if(lp_>1) cosmo_->Print();
87}
88
89void GeneFluct3D::SetGrowthFactor(GrowthFactor& growth)
90{
91 growth_ = &growth;
92}
93
94void GeneFluct3D::setsize(long nx,long ny,long nz,double dx,double dy,double dz)
95{
96 if(lp_>1) cout<<"--- GeneFluct3D::setsize: N="<<nx<<","<<ny<<","<<nz
97 <<" D="<<dx<<","<<dy<<","<<dz<<endl;
98 if(nx<=0 || dx<=0.) {
99 char *bla = "GeneFluct3D::setsize_Error: bad value(s";
100 cout<<bla<<endl; throw ParmError(bla);
101 }
102
103 // Les tailles des tableaux
104 Nx_ = nx;
105 Ny_ = ny; if(Ny_ <= 0) Ny_ = Nx_;
106 Nz_ = nz; if(Nz_ <= 0) Nz_ = Nx_;
107 N_.resize(0); N_.push_back(Nx_); N_.push_back(Ny_); N_.push_back(Nz_);
108 NRtot_ = Nx_*Ny_*Nz_; // nombre de pixels dans le survey
109 NCz_ = Nz_/2 +1;
110 NTz_ = 2*NCz_;
111
112 // le pas dans l'espace (Mpc)
113 Dx_ = dx;
114 Dy_ = dy; if(Dy_ <= 0.) Dy_ = Dx_;
115 Dz_ = dz; if(Dz_ <= 0.) Dz_ = Dx_;
116 D_.resize(0); D_.push_back(Dx_); D_.push_back(Dy_); D_.push_back(Dz_);
117 dVol_ = Dx_*Dy_*Dz_;
118 Vol_ = (Nx_*Dx_)*(Ny_*Dy_)*(Nz_*Dz_);
119
120 // Le pas dans l'espace de Fourier (Mpc^-1)
121 Dkx_ = 2.*M_PI/(Nx_*Dx_);
122 Dky_ = 2.*M_PI/(Ny_*Dy_);
123 Dkz_ = 2.*M_PI/(Nz_*Dz_);
124 Dk_.resize(0); Dk_.push_back(Dkx_); Dk_.push_back(Dky_); Dk_.push_back(Dkz_);
125 Dk3_ = Dkx_*Dky_*Dkz_;
126
127 // La frequence de Nyquist en k (Mpc^-1)
128 Knyqx_ = M_PI/Dx_;
129 Knyqy_ = M_PI/Dy_;
130 Knyqz_ = M_PI/Dz_;
131 Knyq_.resize(0); Knyq_.push_back(Knyqx_); Knyq_.push_back(Knyqy_); Knyq_.push_back(Knyqz_);
132}
133
134void GeneFluct3D::setalloc(void)
135{
136 if(lp_>1) cout<<"--- GeneFluct3D::setalloc ---"<<endl;
137 // Dimensionnement du tableau complex<r_8>
138 // ATTENTION: TArray adresse en memoire a l'envers du C
139 // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
140 sa_size_t SzK_[3] = {NCz_,Ny_,Nx_}; // a l'envers
141 try {
142 T_.ReSize(3,SzK_);
143 array_allocated_ = true;
144 if(lp_>1) cout<<" allocating: "<<T_.Size()*sizeof(complex<r_8>)/1.e6<<" Mo"<<endl;
145 } catch (...) {
146 cout<<"GeneFluct3D::setalloc_Error: Problem allocating T_"<<endl;
147 }
148 T_.SetMemoryMapping(BaseArray::CMemoryMapping);
149}
150
151void GeneFluct3D::setpointers(bool from_real)
152{
153 if(lp_>1) cout<<"--- GeneFluct3D::setpointers ---"<<endl;
154 if(from_real) T_ = ArrCastR2C(R_);
155 else R_ = ArrCastC2R(T_);
156 // On remplit les pointeurs
157 fdata_ = (fftw_complex *) (&T_(0,0,0));
158 data_ = (double *) (&R_(0,0,0));
159}
160
161void GeneFluct3D::check_array_alloc(void)
162// Pour tester si le tableau T_ est alloue
163{
164 if(array_allocated_) return;
165 char bla[90];
166 sprintf(bla,"GeneFluct3D::check_array_alloc_Error: array is not allocated");
167 cout<<bla<<endl; throw ParmError(bla);
168}
169
170void GeneFluct3D::init_fftw(void)
171{
172 // --- Initialisation de fftw3 (attention data est sur-ecrit a l'init)
173 if(lp_>1) cout<<"--- GeneFluct3D::init_fftw ---"<<endl;
174#ifdef FFTW_THREAD
175 if(nthread_>0) {
176 cout<<"...Computing with "<<nthread_<<" threads"<<endl;
177 fftw_init_threads();
178 fftw_plan_with_nthreads(nthread_);
179 }
180#endif
181 if(lp_>1) cout<<"...forward plan"<<endl;
182 pf_ = fftw_plan_dft_r2c_3d(Nx_,Ny_,Nz_,data_,fdata_,FFTW_ESTIMATE);
183 if(lp_>1) cout<<"...backward plan"<<endl;
184 pb_ = fftw_plan_dft_c2r_3d(Nx_,Ny_,Nz_,fdata_,data_,FFTW_ESTIMATE);
185}
186
187//-------------------------------------------------------
188long GeneFluct3D::LosComRedshift(double zinc,long npoints)
189// Given a position of the cube relative to the observer
190// and a cosmology
191// (SetObservator() and SetCosmology() should have been called !)
192// This routine filled:
193// the vector "zred_" of scanned redshift (by zinc increments)
194// the vector "loscom_" of corresponding los comoving distance
195// -- Input:
196// zinc : redshift increment for computation
197// npoints : number of points required for inverting loscom -> zred
198//
199{
200 if(lp_>0) cout<<"--- LosComRedshift: zinc="<<zinc<<" , npoints="<<npoints<<endl;
201
202 if(cosmo_ == NULL || redshref_<0.) {
203 char *bla = "GeneFluct3D::LosComRedshift_Error: set Observator and Cosmology first";
204 cout<<bla<<endl; throw ParmError(bla);
205 }
206
207 // On calcule les coordonnees de l'observateur dans le repere du cube
208 // cad dans le repere ou l'origine est au centre du pixel i=j=l=0.
209 // L'observateur est sur un axe centre sur le milieu de la face Oxy
210 double loscom_ref_ = cosmo_->Dloscom(redshref_);
211 xobs_[0] = Nx_/2.*Dx_;
212 xobs_[1] = Ny_/2.*Dy_;
213 xobs_[2] = kredshref_*Dz_ - loscom_ref_;
214
215 // L'observateur est-il dans le cube?
216 bool obs_in_cube = false;
217 if(xobs_[2]>=0. && xobs_[2]<=Nz_*Dz_) obs_in_cube = true;
218
219 // Find MINIMUM los com distance to the observer:
220 // c'est le centre de la face a k=0
221 // (ou zero si l'observateur est dans le cube)
222 loscom_min_ = 0.;
223 if(!obs_in_cube) loscom_min_ = -xobs_[2];
224
225 // Find MAXIMUM los com distance to the observer:
226 // ou que soit positionne l'observateur, la distance
227 // maximal est sur un des coins du cube
228 loscom_max_ = 0.;
229 for(long i=0;i<=1;i++) {
230 double dx2 = xobs_[0] - i*Nx_*Dx_; dx2 *= dx2;
231 for(long j=0;j<=1;j++) {
232 double dy2 = xobs_[1] - j*Ny_*Dy_; dy2 *= dy2;
233 for(long k=0;k<=1;k++) {
234 double dz2 = xobs_[2] - k*Nz_*Dz_; dz2 *= dz2;
235 dz2 = sqrt(dx2+dy2+dz2);
236 if(dz2>loscom_max_) loscom_max_ = dz2;
237 }
238 }
239 }
240 if(lp_>0) {
241 cout<<"...zref="<<redshref_<<" kzref="<<kredshref_<<" losref="<<loscom_ref_<<" Mpc\n"
242 <<" xobs="<<xobs_[0]<<" , "<<xobs_[1]<<" , "<<xobs_[2]<<" Mpc "
243 <<" in_cube="<<obs_in_cube
244 <<" loscom_min="<<loscom_min_<<" loscom_max="<<loscom_max_<<" Mpc "<<endl;
245 }
246
247 // Fill the corresponding vectors for loscom and zred
248 if(zinc<=0.) zinc = 0.01;
249 for(double z=0.; ; z+=zinc) {
250 double dlc = cosmo_->Dloscom(z);
251 if(dlc<loscom_min_) {zred_.resize(0); loscom_.resize(0);}
252 zred_.push_back(z);
253 loscom_.push_back(dlc);
254 z += zinc;
255 if(dlc>loscom_max_) break; // on sort apres avoir stoque un dlc>dlcmax
256 }
257
258 if(lp_>0) {
259 long n = zred_.size();
260 cout<<"...zred/loscom tables[zinc="<<zinc<<"]: n="<<n;
261 if(n>0) cout<<" z="<<zred_[0]<<" -> d="<<loscom_[0];
262 if(n>1) cout<<" , z="<<zred_[n-1]<<" -> d="<<loscom_[n-1];
263 cout<<endl;
264 }
265
266 // Compute the parameters and tables needed for inversion loscom->zred
267 if(npoints<3) npoints = zred_.size();
268 InverseFunc invfun(zred_,loscom_);
269 invfun.ComputeParab(npoints,loscom2zred_);
270 loscom2zred_min_ = invfun.YMin();
271 loscom2zred_max_ = invfun.YMax();
272
273 if(lp_>0) {
274 long n = loscom2zred_.size();
275 cout<<"...loscom -> zred[npoints="<<npoints<<"]: n="<<n
276 <<" los_min="<<loscom2zred_min_
277 <<" los_max="<<loscom2zred_max_
278 <<" -> zred=[";
279 if(n>0) cout<<loscom2zred_[0];
280 cout<<",";
281 if(n>1) cout<<loscom2zred_[n-1];
282 cout<<"]"<<endl;
283 if(lp_>1 && n>0)
284 for(int i=0;i<n;i++)
285 if(i==0 || abs(i-n/2)<2 || i==n-1)
286 cout<<" "<<i<<" "<<loscom2zred_[i]<<endl;
287 }
288
289 return zred_.size();
290}
291
292//-------------------------------------------------------
293void GeneFluct3D::WriteFits(string cfname,int bitpix)
294{
295 cout<<"--- GeneFluct3D::WriteFits: Writing Cube to "<<cfname<<endl;
296 try {
297 FitsImg3DWriter fwrt(cfname.c_str(),bitpix,5);
298 fwrt.WriteKey("NX",Nx_," axe transverse 1");
299 fwrt.WriteKey("NY",Ny_," axe transverse 2");
300 fwrt.WriteKey("NZ",Nz_," axe longitudinal (redshift)");
301 fwrt.WriteKey("DX",Dx_," Mpc");
302 fwrt.WriteKey("DY",Dy_," Mpc");
303 fwrt.WriteKey("DZ",Dz_," Mpc");
304 fwrt.WriteKey("DKX",Dkx_," Mpc^-1");
305 fwrt.WriteKey("DKY",Dky_," Mpc^-1");
306 fwrt.WriteKey("DKZ",Dkz_," Mpc^-1");
307 fwrt.WriteKey("ZREF",redshref_," reference redshift");
308 fwrt.WriteKey("KZREF",kredshref_," reference redshift on z axe");
309 fwrt.Write(R_);
310 } catch (PThrowable & exc) {
311 cout<<"Exception : "<<(string)typeid(exc).name()
312 <<" - Msg= "<<exc.Msg()<<endl;
313 return;
314 } catch (...) {
315 cout<<" some other exception was caught !"<<endl;
316 return;
317 }
318}
319
320void GeneFluct3D::ReadFits(string cfname)
321{
322 cout<<"--- GeneFluct3D::ReadFits: Reading Cube from "<<cfname<<endl;
323 try {
324 FitsImg3DRead fimg(cfname.c_str(),0,5);
325 fimg.Read(R_);
326 long nx = fimg.ReadKeyL("NX");
327 long ny = fimg.ReadKeyL("NY");
328 long nz = fimg.ReadKeyL("NZ");
329 double dx = fimg.ReadKey("DX");
330 double dy = fimg.ReadKey("DY");
331 double dz = fimg.ReadKey("DZ");
332 double zref = fimg.ReadKey("ZREF");
333 double kzref = fimg.ReadKey("KZREF");
334 setsize(nx,ny,nz,dx,dy,dz);
335 setpointers(true);
336 init_fftw();
337 SetObservator(zref,kzref);
338 } catch (PThrowable & exc) {
339 cout<<"Exception : "<<(string)typeid(exc).name()
340 <<" - Msg= "<<exc.Msg()<<endl;
341 return;
342 } catch (...) {
343 cout<<" some other exception was caught !"<<endl;
344 return;
345 }
346}
347
348void GeneFluct3D::WritePPF(string cfname,bool write_real)
349// On ecrit soit le TArray<r_8> ou le TArray<complex <r_8> >
350{
351 cout<<"--- GeneFluct3D::WritePPF: Writing Cube (real="<<write_real<<") to "<<cfname<<endl;
352 try {
353 R_.Info()["NX"] = (int_8)Nx_;
354 R_.Info()["NY"] = (int_8)Ny_;
355 R_.Info()["NZ"] = (int_8)Nz_;
356 R_.Info()["DX"] = (r_8)Dx_;
357 R_.Info()["DY"] = (r_8)Dy_;
358 R_.Info()["DZ"] = (r_8)Dz_;
359 R_.Info()["ZREF"] = (r_8)redshref_;
360 R_.Info()["KZREF"] = (r_8)kredshref_;
361 POutPersist pos(cfname.c_str());
362 if(write_real) pos << PPFNameTag("rgen") << R_;
363 else pos << PPFNameTag("pkgen") << T_;
364 } catch (PThrowable & exc) {
365 cout<<"Exception : "<<(string)typeid(exc).name()
366 <<" - Msg= "<<exc.Msg()<<endl;
367 return;
368 } catch (...) {
369 cout<<" some other exception was caught !"<<endl;
370 return;
371 }
372}
373
374void GeneFluct3D::ReadPPF(string cfname)
375{
376 cout<<"--- GeneFluct3D::ReadPPF: Reading Cube from "<<cfname<<endl;
377 try {
378 bool from_real = true;
379 PInPersist pis(cfname.c_str());
380 string name_tag_k = "pkgen";
381 bool found_tag_k = pis.GotoNameTag("pkgen");
382 if(found_tag_k) {
383 cout<<" ...reading spectrun into TArray<complex <r_8> >"<<endl;
384 pis >> PPFNameTag("pkgen") >> T_;
385 from_real = false;
386 } else {
387 cout<<" ...reading space into TArray<r_8>"<<endl;
388 pis >> PPFNameTag("rgen") >> R_;
389 }
390 setpointers(from_real); // a mettre ici pour relire les DVInfo
391 int_8 nx = R_.Info()["NX"];
392 int_8 ny = R_.Info()["NY"];
393 int_8 nz = R_.Info()["NZ"];
394 r_8 dx = R_.Info()["DX"];
395 r_8 dy = R_.Info()["DY"];
396 r_8 dz = R_.Info()["DZ"];
397 r_8 zref = R_.Info()["ZREF"];
398 r_8 kzref = R_.Info()["KZREF"];
399 setsize(nx,ny,nz,dx,dy,dz);
400 init_fftw();
401 SetObservator(zref,kzref);
402 } catch (PThrowable & exc) {
403 cout<<"Exception : "<<(string)typeid(exc).name()
404 <<" - Msg= "<<exc.Msg()<<endl;
405 return;
406 } catch (...) {
407 cout<<" some other exception was caught !"<<endl;
408 return;
409 }
410}
411
412//-------------------------------------------------------
413void GeneFluct3D::Print(void)
414{
415 cout<<"GeneFluct3D(T_alloc="<<array_allocated_<<"):"<<endl;
416 cout<<"Space Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<Nz_<<" ("<<NTz_<<") size="
417 <<NRtot_<<endl;
418 cout<<" Resol: dx="<<Dx_<<" dy="<<Dy_<<" dz="<<Dz_<<" Mpc"
419 <<", dVol="<<dVol_<<", Vol="<<Vol_<<" Mpc^3"<<endl;
420 cout<<"Fourier Size : nx="<<Nx_<<" ny="<<Ny_<<" nz="<<NCz_<<endl;
421 cout<<" Resol: dkx="<<Dkx_<<" dky="<<Dky_<<" dkz="<<Dkz_<<" Mpc^-1"
422 <<", Dk3="<<Dk3_<<" Mpc^-3"<<endl;
423 cout<<" (2Pi/k: "<<2.*M_PI/Dkx_<<" "<<2.*M_PI/Dky_<<" "<<2.*M_PI/Dkz_<<" Mpc)"<<endl;
424 cout<<" Nyquist: kx="<<Knyqx_<<" ky="<<Knyqy_<<" kz="<<Knyqz_<<" Mpc^-1"
425 <<", Kmax="<<GetKmax()<<" Mpc^-1"<<endl;
426 cout<<" (2Pi/k: "<<2.*M_PI/Knyqx_<<" "<<2.*M_PI/Knyqy_<<" "<<2.*M_PI/Knyqz_<<" Mpc)"<<endl;
427 cout<<"Redshift "<<redshref_<<" for z axe at k="<<kredshref_<<endl;
428}
429
430//-------------------------------------------------------
431void GeneFluct3D::ComputeFourier0(GenericFunc& pk_at_z)
432// cf ComputeFourier() mais avec autre methode de realisation du spectre
433// (attention on fait une fft pour realiser le spectre)
434{
435
436 // --- realisation d'un tableau de tirage gaussiens
437 if(lp_>0) cout<<"--- ComputeFourier0: before gaussian filling ---"<<endl;
438 // On tient compte du pb de normalisation de FFTW3
439 double sntot = sqrt((double)NRtot_);
440 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
441 int_8 ip = IndexR(i,j,l);
442 data_[ip] = NorRand()/sntot;
443 }
444
445 // --- realisation d'un tableau de tirage gaussiens
446 if(lp_>0) cout<<"...before fft real ---"<<endl;
447 fftw_execute(pf_);
448
449 // --- On remplit avec une realisation
450 if(lp_>0) cout<<"...before Fourier realization filling"<<endl;
451 T_(0,0,0) = complex<r_8>(0.); // on coupe le continue et on l'initialise
452 long lmod = Nx_/10; if(lmod<1) lmod=1;
453 for(long i=0;i<Nx_;i++) {
454 long ii = (i>Nx_/2) ? Nx_-i : i;
455 double kx = ii*Dkx_; kx *= kx;
456 if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
457 for(long j=0;j<Ny_;j++) {
458 long jj = (j>Ny_/2) ? Ny_-j : j;
459 double ky = jj*Dky_; ky *= ky;
460 for(long l=0;l<NCz_;l++) {
461 double kz = l*Dkz_; kz *= kz;
462 if(i==0 && j==0 && l==0) continue; // Suppression du continu
463 double k = sqrt(kx+ky+kz);
464 // cf normalisation: Peacock, Cosmology, formule 16.38 p504
465 double pk = pk_at_z(k)/Vol_;
466 // ici pas de "/2" a cause de la remarque ci-dessus
467 T_(l,j,i) *= sqrt(pk);
468 }
469 }
470 }
471
472 if(lp_>0) cout<<"...computing power"<<endl;
473 double p = compute_power_carte();
474 if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
475
476}
477
478//-------------------------------------------------------
479void GeneFluct3D::ComputeFourier(GenericFunc& pk_at_z)
480// Calcule une realisation du spectre "pk_at_z"
481// Attention: dans TArray le premier indice varie le + vite
482// Explication normalisation: see Coles & Lucchin, Cosmology, p264-265
483// FFTW3: on note N=Nx*Ny*Nz
484// f --(FFT)--> F = TF(f) --(FFT^-1)--> fb = TF^-1(F) = TF^-1(TF(f))
485// sum(f(x_i)^2) = S
486// sum(F(nu_i)^2) = S*N
487// sum(fb(x_i)^2) = S*N^2
488{
489 // --- RaZ du tableau
490 T_ = complex<r_8>(0.);
491
492 // --- On remplit avec une realisation
493 if(lp_>0) cout<<"--- ComputeFourier ---"<<endl;
494 long lmod = Nx_/10; if(lmod<1) lmod=1;
495 for(long i=0;i<Nx_;i++) {
496 long ii = (i>Nx_/2) ? Nx_-i : i;
497 double kx = ii*Dkx_; kx *= kx;
498 if(lp_>0 && i%lmod==0) cout<<"i="<<i<<" ii="<<ii<<endl;
499 for(long j=0;j<Ny_;j++) {
500 long jj = (j>Ny_/2) ? Ny_-j : j;
501 double ky = jj*Dky_; ky *= ky;
502 for(long l=0;l<NCz_;l++) {
503 double kz = l*Dkz_; kz *= kz;
504 if(i==0 && j==0 && l==0) continue; // Suppression du continu
505 double k = sqrt(kx+ky+kz);
506 // cf normalisation: Peacock, Cosmology, formule 16.38 p504
507 double pk = pk_at_z(k)/Vol_;
508 // Explication de la division par 2: voir perandom.cc
509 // ou egalement Coles & Lucchin, Cosmology formula 13.7.2 p279
510 T_(l,j,i) = ComplexGaussRan(sqrt(pk/2.));
511 }
512 }
513 }
514
515 manage_coefficients(); // gros effet pour les spectres que l'on utilise !
516
517 if(lp_>0) cout<<"...computing power"<<endl;
518 double p = compute_power_carte();
519 if(lp_>0) cout<<"Puissance dans la realisation: "<<p<<endl;
520
521}
522
523long GeneFluct3D::manage_coefficients(void)
524// Take into account the real and complexe conjugate coefficients
525// because we want a realization of a real data in real space
526{
527 if(lp_>1) cout<<"...managing coefficients"<<endl;
528 check_array_alloc();
529
530 // 1./ Le Continu et Nyquist sont reels
531 long nreal = 0;
532 for(long kk=0;kk<2;kk++) {
533 long k=0; // continu
534 if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
535 for(long jj=0;jj<2;jj++) {
536 long j=0;
537 if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
538 for(long ii=0;ii<2;ii++) {
539 long i=0;
540 if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
541 int_8 ip = IndexC(i,j,k);
542 //cout<<"i="<<i<<" j="<<j<<" k="<<k<<" = ("<<fdata_[ip][0]<<","<<fdata_[ip][1]<<")"<<endl;
543 fdata_[ip][1] = 0.; fdata_[ip][0] *= M_SQRT2;
544 nreal++;
545 }
546 }
547 }
548 if(lp_>1) cout<<"Number of forced real number ="<<nreal<<endl;
549
550 // 2./ Les elements complexe conjugues (tous dans le plan k=0,Nyquist)
551
552 // a./ les lignes et colonnes du continu et de nyquist
553 long nconj1 = 0;
554 for(long kk=0;kk<2;kk++) {
555 long k=0; // continu
556 if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
557 for(long jj=0;jj<2;jj++) { // selon j
558 long j=0;
559 if(jj==1) {if( Ny_%2!=0) continue; else j = Ny_/2;}
560 for(long i=1;i<(Nx_+1)/2;i++) {
561 int_8 ip = IndexC(i,j,k);
562 int_8 ip1 = IndexC(Nx_-i,j,k);
563 fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
564 nconj1++;
565 }
566 }
567 for(long ii=0;ii<2;ii++) {
568 long i=0;
569 if(ii==1) {if( Nx_%2!=0) continue; else i = Nx_/2;}
570 for(long j=1;j<(Ny_+1)/2;j++) {
571 int_8 ip = IndexC(i,j,k);
572 int_8 ip1 = IndexC(i,Ny_-j,k);
573 fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
574 nconj1++;
575 }
576 }
577 }
578 if(lp_>1) cout<<"Number of forced conjugate on cont+nyq ="<<nconj1<<endl;
579
580 // b./ les lignes et colonnes hors continu et de nyquist
581 long nconj2 = 0;
582 for(long kk=0;kk<2;kk++) {
583 long k=0; // continu
584 if(kk==1) {if(Nz_%2!=0) continue; else k = Nz_/2;} // Nyquist
585 for(long j=1;j<(Ny_+1)/2;j++) {
586 if(Ny_%2==0 && j==Ny_/2) continue; // on ne retraite pas nyquist en j
587 for(long i=1;i<Nx_;i++) {
588 if(Nx_%2==0 && i==Nx_/2) continue; // on ne retraite pas nyquist en i
589 int_8 ip = IndexC(i,j,k);
590 int_8 ip1 = IndexC(Nx_-i,Ny_-j,k);
591 fdata_[ip1][0] = fdata_[ip][0]; fdata_[ip1][1] = -fdata_[ip][1];
592 nconj2++;
593 }
594 }
595 }
596 if(lp_>1) cout<<"Number of forced conjugate hors cont+nyq ="<<nconj2<<endl;
597
598 if(lp_>1) cout<<"Check: ddl= "<<NRtot_<<" =?= "<<2*(Nx_*Ny_*NCz_-nconj1-nconj2)-8<<endl;
599
600 return nreal+nconj1+nconj2;
601}
602
603double GeneFluct3D::compute_power_carte(void)
604// Calcul la puissance de la realisation du spectre Pk
605{
606 check_array_alloc();
607
608 double s2 = 0.;
609 for(long l=0;l<NCz_;l++)
610 for(long j=0;j<Ny_;j++)
611 for(long i=0;i<Nx_;i++) s2 += MODULE2(T_(l,j,i));
612
613 double s20 = 0.;
614 for(long j=0;j<Ny_;j++)
615 for(long i=0;i<Nx_;i++) s20 += MODULE2(T_(0,j,i));
616
617 double s2n = 0.;
618 if(Nz_%2==0)
619 for(long j=0;j<Ny_;j++)
620 for(long i=0;i<Nx_;i++) s2n += MODULE2(T_(NCz_-1,j,i));
621
622 return 2.*s2 -s20 -s2n;
623}
624
625//-------------------------------------------------------------------
626void GeneFluct3D::FilterByPixel(void)
627// Filtrage par la fonction fenetre du pixel (parallelepipede)
628// TF = 1/(dx*dy*dz)*Int[{-dx/2,dx/2},{-dy/2,dy/2},{-dz/2,dz/2}]
629// e^(ik_x*x) e^(ik_y*y) e^(ik_z*z) dxdydz
630// = 2/(k_x*dx) * sin(k_x*dx/2) * (idem y) * (idem z)
631// Gestion divergence en 0: sin(y)/y = 1 - y^2/6*(1-y^2/20)
632// avec y = k_x*dx/2
633{
634 if(lp_>0) cout<<"--- FilterByPixel ---"<<endl;
635 check_array_alloc();
636
637 for(long i=0;i<Nx_;i++) {
638 long ii = (i>Nx_/2) ? Nx_-i : i;
639 double kx = ii*Dkx_ *Dx_/2;
640 double pk_x = pixelfilter(kx);
641 for(long j=0;j<Ny_;j++) {
642 long jj = (j>Ny_/2) ? Ny_-j : j;
643 double ky = jj*Dky_ *Dy_/2;
644 double pk_y = pixelfilter(ky);
645 for(long l=0;l<NCz_;l++) {
646 double kz = l*Dkz_ *Dz_/2;
647 double pk_z = pixelfilter(kz);
648 T_(l,j,i) *= pk_x*pk_y*pk_z;
649 }
650 }
651 }
652
653}
654
655//-------------------------------------------------------------------
656void GeneFluct3D::ApplyGrowthFactor(void)
657// Apply Growth to real space
658// Using the correspondance between redshift and los comoving distance
659// describe in vector "zred_" "loscom_"
660{
661 if(lp_>0) cout<<"--- ApplyGrowthFactor ---"<<endl;
662 check_array_alloc();
663
664 if(growth_ == NULL) {
665 char *bla = "GeneFluct3D::ApplyGrowthFactor_Error: set GrowthFactor first";
666 cout<<bla<<endl; throw ParmError(bla);
667 }
668
669 InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
670 unsigned short ok;
671
672 //CHECK: Histo hgr(0.9*zred_[0],1.1*zred_[n-1],1000);
673 for(long i=0;i<Nx_;i++) {
674 double dx2 = xobs_[0] - i*Dx_; dx2 *= dx2;
675 for(long j=0;j<Ny_;j++) {
676 double dy2 = xobs_[1] - j*Dy_; dy2 *= dy2;
677 for(long l=0;l<Nz_;l++) {
678 double dz2 = xobs_[2] - l*Dz_; dz2 *= dz2;
679 dz2 = sqrt(dx2+dy2+dz2);
680 double z = interpinv(dz2);
681 //CHECK: hgr.Add(z);
682 double dzgr = (*growth_)(z); // interpolation par morceau
683 //double dzgr = growth_->Linear(z,ok); // interpolation lineaire
684 //double dzgr = growth_->Parab(z,ok); // interpolation parabolique
685 int_8 ip = IndexR(i,j,l);
686 data_[ip] *= dzgr;
687 }
688 }
689 }
690
691 //CHECK: {POutPersist pos("applygrowth.ppf"); string tag="hgr"; pos.PutObject(hgr,tag);}
692
693}
694
695//-------------------------------------------------------------------
696void GeneFluct3D::ComputeReal(void)
697// Calcule une realisation dans l'espace reel
698{
699 if(lp_>0) cout<<"--- ComputeReal ---"<<endl;
700 check_array_alloc();
701
702 // On fait la FFT
703 fftw_execute(pb_);
704}
705
706//-------------------------------------------------------------------
707void GeneFluct3D::ReComputeFourier(void)
708{
709 if(lp_>0) cout<<"--- ReComputeFourier ---"<<endl;
710 check_array_alloc();
711
712 // On fait la FFT
713 fftw_execute(pf_);
714 // On corrige du pb de la normalisation de FFTW3
715 double v = (double)NRtot_;
716 for(long i=0;i<Nx_;i++)
717 for(long j=0;j<Ny_;j++)
718 for(long l=0;l<NCz_;l++) T_(l,j,i) /= complex<r_8>(v);
719
720}
721
722//-------------------------------------------------------------------
723int GeneFluct3D::ComputeSpectrum(HistoErr& herr)
724// Compute spectrum from "T" and fill HistoErr "herr"
725// T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
726// cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
727{
728 if(lp_>0) cout<<"--- ComputeSpectrum ---"<<endl;
729 check_array_alloc();
730
731 if(herr.NBins()<0) return -1;
732 herr.Zero();
733
734 // Attention a l'ordre
735 for(long i=0;i<Nx_;i++) {
736 long ii = (i>Nx_/2) ? Nx_-i : i;
737 double kx = ii*Dkx_; kx *= kx;
738 for(long j=0;j<Ny_;j++) {
739 long jj = (j>Ny_/2) ? Ny_-j : j;
740 double ky = jj*Dky_; ky *= ky;
741 for(long l=0;l<NCz_;l++) {
742 double kz = l*Dkz_; kz *= kz;
743 double k = sqrt(kx+ky+kz);
744 double pk = MODULE2(T_(l,j,i));
745 herr.Add(k,pk);
746 }
747 }
748 }
749 herr.ToVariance();
750
751 // renormalize to directly compare to original spectrum
752 double norm = Vol_;
753 herr *= norm;
754
755 return 0;
756}
757
758int GeneFluct3D::ComputeSpectrum2D(Histo2DErr& herr)
759{
760 if(lp_>0) cout<<"--- ComputeSpectrum2D ---"<<endl;
761 check_array_alloc();
762
763 if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
764 herr.Zero();
765
766 // Attention a l'ordre
767 for(long i=0;i<Nx_;i++) {
768 long ii = (i>Nx_/2) ? Nx_-i : i;
769 double kx = ii*Dkx_; kx *= kx;
770 for(long j=0;j<Ny_;j++) {
771 long jj = (j>Ny_/2) ? Ny_-j : j;
772 double ky = jj*Dky_; ky *= ky;
773 double kt = sqrt(kx+ky);
774 for(long l=0;l<NCz_;l++) {
775 double kz = l*Dkz_;
776 double pk = MODULE2(T_(l,j,i));
777 herr.Add(kt,kz,pk);
778 }
779 }
780 }
781 herr.ToVariance();
782
783 // renormalize to directly compare to original spectrum
784 double norm = Vol_;
785 herr *= norm;
786
787 return 0;
788}
789
790//-------------------------------------------------------
791int_8 GeneFluct3D::VarianceFrReal(double R,double& var)
792// Recompute MASS variance in spherical top-hat (rayon=R)
793{
794 if(lp_>0) cout<<"--- VarianceFrReal ---"<<endl;
795 check_array_alloc();
796
797 long dnx = long(R/Dx_+0.5); if(dnx<=0) dnx = 1;
798 long dny = long(R/Dy_+0.5); if(dny<=0) dny = 1;
799 long dnz = long(R/Dz_+0.5); if(dnz<=0) dnz = 1;
800 if(lp_>0) cout<<"dnx="<<dnx<<" dny="<<dny<<" dnz="<<dnz<<endl;
801
802 double sum=0., sum2=0., r2 = R*R; int_8 nsum=0;
803
804 for(long i=dnx;i<Nx_-dnx;i+=dnx) {
805 for(long j=dny;j<Ny_-dny;j+=dny) {
806 for(long l=dnz;l<Nz_-dnz;l+=dnz) {
807 double s=0.; int_8 n=0;
808 for(long ii=i-dnx;ii<=i+dnx;ii++) {
809 double x = (ii-i)*Dx_; x *= x;
810 for(long jj=j-dny;jj<=j+dny;jj++) {
811 double y = (jj-j)*Dy_; y *= y;
812 for(long ll=l-dnz;ll<=l+dnz;ll++) {
813 double z = (ll-l)*Dz_; z *= z;
814 if(x+y+z>r2) continue;
815 int_8 ip = IndexR(ii,jj,ll);
816 s += 1.+data_[ip];
817 n++;
818 }
819 }
820 }
821 if(n>0) {sum += s; sum2 += s*s; nsum++;}
822 //cout<<i<<","<<j<<","<<l<<" n="<<n<<" s="<<s<<" sum="<<sum<<" sum2="<<sum2<<endl;
823 }
824 }
825 }
826
827 if(nsum<=1) {var=0.; return nsum;}
828
829 sum /= nsum;
830 sum2 = sum2/nsum - sum*sum;
831 if(lp_>0) cout<<"VarianceFrReal: nsum="<<nsum<<" <M>="<<sum<<" <(M-<M>)^2>="<<sum2<<endl;
832
833 var = sum2/(sum*sum); // <dM>^2/<M>^2
834 if(lp_>0) cout<<"sigmaR^2="<<var<<" -> "<<sqrt(var)<<endl;
835
836 return nsum;
837}
838
839//-------------------------------------------------------
840int_8 GeneFluct3D::NumberOfBad(double vmin,double vmax)
841// number of pixels outside of ]vmin,vmax[ extremites exclues
842// -> vmin and vmax are considered as bad
843{
844 check_array_alloc();
845
846 int_8 nbad = 0;
847 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
848 int_8 ip = IndexR(i,j,l);
849 double v = data_[ip];
850 if(v<=vmin || v>=vmax) nbad++;
851 }
852
853 return nbad;
854}
855
856int_8 GeneFluct3D::MeanSigma2(double& rm,double& rs2,double vmin,double vmax)
857// mean,sigma^2 pour pixels avec valeurs ]vmin,vmax[ extremites exclues
858// -> mean and sigma^2 are NOT computed with pixels values vmin and vmax
859{
860 check_array_alloc();
861
862 int_8 n = 0;
863 rm = rs2 = 0.;
864
865 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
866 int_8 ip = IndexR(i,j,l);
867 double v = data_[ip];
868 if(v<=vmin || v>=vmax) continue;
869 rm += v;
870 rs2 += v*v;
871 n++;
872 }
873
874 if(n>1) {
875 rm /= (double)n;
876 rs2 = rs2/(double)n - rm*rm;
877 }
878
879 return n;
880}
881
882int_8 GeneFluct3D::SetToVal(double vmin, double vmax,double val0)
883// set to "val0" if out of range ]vmin,vmax[ extremites exclues
884// -> vmin and vmax are set to val0
885{
886 check_array_alloc();
887
888 int_8 nbad = 0;
889 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
890 int_8 ip = IndexR(i,j,l);
891 double v = data_[ip];
892 if(v<=vmin || v>=vmax) {data_[ip] = val0; nbad++;}
893 }
894
895 return nbad;
896}
897
898//-------------------------------------------------------
899void GeneFluct3D::TurnFluct2Mass(void)
900// d_rho/rho -> Mass (add one!)
901{
902 if(lp_>0) cout<<"--- TurnFluct2Mass ---"<<endl;
903 check_array_alloc();
904
905
906 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
907 int_8 ip = IndexR(i,j,l);
908 data_[ip] += 1.;
909 }
910}
911
912double GeneFluct3D::TurnMass2MeanNumber(double n_by_mpc3)
913// do NOT treate negative or nul values
914{
915 if(lp_>0) cout<<"--- TurnMass2MeanNumber ---"<<endl;
916
917 double m,s2;
918 int_8 ngood = MeanSigma2(m,s2,0.,1e+200);
919 if(lp_>0) cout<<"...ngood="<<ngood
920 <<" m="<<m<<" s2="<<s2<<" -> "<<sqrt(s2)<<endl;
921
922 // On doit mettre n*Vol galaxies dans notre survey
923 // On en met uniquement dans les pixels de masse >0.
924 // On NE met PAS a zero les pixels <0
925 // On renormalise sur les pixels>0 pour qu'on ait n*Vol galaxies
926 // comme on ne prend que les pixels >0, on doit normaliser
927 // a la moyenne de <1+d_rho/rho> sur ces pixels
928 // (rappel sur tout les pixels <1+d_rho/rho>=1)
929 double dn = n_by_mpc3*Vol_/m /(double)ngood; // nb de gal a mettre ds 1 px
930 if(lp_>0) cout<<"...galaxy density move from "
931 <<n_by_mpc3*Vol_/double(NRtot_)<<" to "<<dn<<" / pixel"<<endl;
932 double sum = 0.;
933 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
934 int_8 ip = IndexR(i,j,l);
935 data_[ip] *= dn; // par coherence on multiplie aussi les <=0
936 if(data_[ip]>0.) sum += data_[ip]; // mais on ne les compte pas
937 }
938 if(lp_>0) cout<<sum<<"...galaxies put into survey / "<<n_by_mpc3*Vol_<<endl;
939
940 return sum;
941}
942
943double GeneFluct3D::ApplyPoisson(void)
944// do NOT treate negative or nul mass -> let it as it is
945{
946 if(lp_>0) cout<<"--- ApplyPoisson ---"<<endl;
947 check_array_alloc();
948
949 double sum = 0.;
950 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
951 int_8 ip = IndexR(i,j,l);
952 double v = data_[ip];
953 if(v>0.) {
954 unsigned long dn = PoissRandLimit(v,10.);
955 data_[ip] = (double)dn;
956 sum += (double)dn;
957 }
958 }
959 if(lp_>0) cout<<sum<<" galaxies put into survey"<<endl;
960
961 return sum;
962}
963
964double GeneFluct3D::TurnNGal2Mass(FunRan& massdist,bool axeslog)
965// do NOT treate negative or nul mass -> let it as it is
966// INPUT:
967// massdist : distribution de masse (m*dn/dm)
968// axeslog = false : retourne la masse
969// = true : retourne le log10(mass)
970// RETURN la masse totale
971{
972 if(lp_>0) cout<<"--- TurnNGal2Mass ---"<<endl;
973 check_array_alloc();
974
975 double sum = 0.;
976 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
977 int_8 ip = IndexR(i,j,l);
978 double v = data_[ip];
979 if(v>0.) {
980 long ngal = long(v+0.1);
981 data_[ip] = 0.;
982 for(long i=0;i<ngal;i++) {
983 double m = massdist.RandomInterp(); // massdist.Random();
984 if(axeslog) m = pow(10.,m);
985 data_[ip] += m;
986 }
987 sum += data_[ip];
988 }
989 }
990 if(lp_>0) cout<<sum<<" MSol HI mass put into survey"<<endl;
991
992 return sum;
993}
994
995void GeneFluct3D::AddAGN(double lfjy,double lsigma,double powlaw)
996// Add AGN flux into simulation:
997// --- Procedure:
998// 1. lancer "cmvdefsurv" avec les parametres du survey
999// (au redshift de reference du survey)
1000// et recuperer l'angle solide "angsol sr" du pixel elementaire
1001// au centre du cube.
1002// 2. lancer "cmvtstagn" pour cet angle solide -> cmvtstagn.ppf
1003// 3. regarder l'histo "hlfang" et en deduire un equivalent gaussienne
1004// cad une moyenne <log10(S)> et un sigma "sig"
1005// Attention: la distribution n'est pas gaussienne les "mean,sigma"
1006// de l'histo ne sont pas vraiment ce que l'on veut
1007// --- Limitations actuelle du code:
1008// . les AGN sont supposes en loi de puissance IDENTIQUE pour tout theta,phi
1009// . le flux des AGN est mis dans une colonne Oz (indice k) et pas sur la ligne de visee
1010// . la distribution est approximee a une gaussienne
1011// ... C'est une approximation pour un observateur loin du centre du cube
1012// et pour un cube peu epais / distance observateur
1013// --- Parametres de la routine:
1014// llfy : c'est le <log10(S)> du flux depose dans un pixel par les AGN
1015// lsigma : c'est le sigma de la distribution
1016// powlaw : c'est la pente de ls distribution cad que le flux "lmsol"
1017// et considere comme le flux a 1.4GHz et qu'on suppose une loi
1018// F(nu) = (1.4GHz/nu)^powlaw * F(1.4GHz)
1019// - Comme on est en echelle log10():
1020// on tire log10(Msol) + X
1021// ou X est une realisation sur une gaussienne de variance "sig^2"
1022// La masse realisee est donc: Msol*10^X
1023// - Pas de probleme de pixel negatif car on a une multiplication!
1024{
1025 if(lp_>0) cout<<"--- AddAGN: <log10(S Jy)> = "<<lfjy<<" , sigma = "<<lsigma<<endl;
1026 check_array_alloc();
1027
1028 if(cosmo_ == NULL || redshref_<0.| loscom2zred_.size()<1) {
1029 char *bla = "GeneFluct3D::AddAGN_Error: set Observator and Cosmology first";
1030 cout<<bla<<endl; throw ParmError(bla);
1031 }
1032
1033 // La distance angulaire/luminosite/Dnu au centre
1034 double dangref = cosmo_->Dang(redshref_);
1035 double dlumref = cosmo_->Dlum(redshref_);
1036 double dredref = Dz_/(cosmo_->Dhubble()/cosmo_->E(redshref_));
1037 double dnuref = Fr_HyperFin_Par *dredref/pow(1.+redshref_,2.); // GHz
1038 double fagnref = pow(10.,lfjy)*(dnuref*1.e9); // Jy.Hz
1039 double magnref = FluxHI2Msol(fagnref*Jansky2Watt_cst,dlumref); // Msol
1040 if(lp_>0) {
1041 cout<<"Au centre: z="<<redshref_<<", dredref="<<dredref<<", dnuref="<<dnuref<<" GHz"<<endl
1042 <<" dang="<<dangref<<" Mpc, dlum="<<dlumref<<" Mpc,"
1043 <<" fagnref="<<fagnref<<" Jy.Hz (a 1.4GHz), magnref="<<magnref<<" Msol"<<endl;
1044 }
1045
1046 if(powlaw!=0.) {
1047 // F(nu) = (nu GHz/1.4 Ghz)^p * F(1.4GHz) et nu = 1.4 GHz / (1+z)
1048 magnref *= pow(1/(1.+redshref_),powlaw);
1049 if(lp_>0) cout<<" powlaw="<<powlaw<<" -> change magnref to "<<magnref<<" Msol"<<endl;
1050 }
1051
1052 // Les infos en fonction de l'indice "l" selon Oz
1053 vector<double> correction;
1054 InterpFunc interpinv(loscom2zred_min_,loscom2zred_max_,loscom2zred_);
1055 for(long l=0;l<Nz_;l++) {
1056 double z = fabs(xobs_[2] - l*Dz_);
1057 double zred = interpinv(z);
1058 double dang = cosmo_->Dang(zred); // pour variation angle solide
1059 double dlum = cosmo_->Dlum(zred); // pour variation conversion mass HI
1060 double dred = Dz_/(cosmo_->Dhubble()/cosmo_->E(zred));
1061 double dnu = Fr_HyperFin_Par *dred/pow(1.+zred,2.); // pour variation dNu
1062 double corr = dnu/dnuref*pow(dangref/dang*dlum/dlumref,2.);
1063 if(powlaw!=0.) corr *= pow((1.+redshref_)/(1.+zred),powlaw);
1064 correction.push_back(corr);
1065 if(lp_>0 && (l==0 || abs(l-Nz_/2)<2 || l==Nz_-1)) {
1066 cout<<"l="<<l<<" z="<<z<<" red="<<zred
1067 <<" da="<<dang<<" dlu="<<dlum<<" dred="<<dred
1068 <<" dnu="<<dnu<<" -> corr="<<corr<<endl;
1069 }
1070 }
1071
1072 double sum=0., sum2=0., nsum=0.;
1073 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) {
1074 double a = lsigma*NorRand();
1075 a = magnref*pow(10.,a);
1076 // On met le meme tirage le long de Oz (indice k)
1077 for(long l=0;l<Nz_;l++) {
1078 int_8 ip = IndexR(i,j,l);
1079 data_[ip] += a*correction[l];
1080 }
1081 sum += a; sum2 += a*a; nsum += 1.;
1082 }
1083
1084 if(lp_>0 && nsum>1.) {
1085 sum /= nsum;
1086 sum2 = sum2/nsum - sum*sum;
1087 cout<<"...Mean mass="<<sum<<" Msol , s^2="<<sum2<<" s="<<sqrt(fabs(sum2))<<endl;
1088 }
1089
1090}
1091
1092void GeneFluct3D::AddNoise2Real(double snoise)
1093// add noise to every pixels (meme les <=0 !)
1094{
1095 if(lp_>0) cout<<"--- AddNoise2Real: snoise = "<<snoise<<endl;
1096 check_array_alloc();
1097
1098 for(long i=0;i<Nx_;i++) for(long j=0;j<Ny_;j++) for(long l=0;l<Nz_;l++) {
1099 int_8 ip = IndexR(i,j,l);
1100 data_[ip] += snoise*NorRand();
1101 }
1102}
1103
1104
1105
1106//-------------------------------------------------------------------
1107//-------------------------------------------------------------------
1108//--------------------- BRICOLO A NE PAS GARDER ---------------------
1109//-------------------------------------------------------------------
1110//-------------------------------------------------------------------
1111int GeneFluct3D::ComputeSpectrum_bricolo(HistoErr& herr)
1112// Compute spectrum from "T" and fill HistoErr "herr"
1113// T : dans le format standard de GeneFuct3D: T(nz,ny,nx)
1114// cad T(kz,ky,kx) avec 0<kz<kz_nyq -ky_nyq<ky<ky_nyq -kx_nyq<kx<kx_nyq
1115{
1116 if(lp_>0) cout<<"--- ComputeSpectrum_bricolo ---"<<endl;
1117 check_array_alloc();
1118
1119 if(herr.NBins()<0) return -1;
1120 herr.Zero();
1121
1122 // Attention a l'ordre
1123 for(long i=0;i<Nx_;i++) {
1124 long ii = (i>Nx_/2) ? Nx_-i : i;
1125 double kx = ii*Dkx_; kx *= kx;
1126 for(long j=0;j<Ny_;j++) {
1127 if(i==0 && j==0) continue;
1128 long jj = (j>Ny_/2) ? Ny_-j : j;
1129 double ky = jj*Dky_; ky *= ky;
1130 for(long l=1;l<NCz_;l++) {
1131 double kz = l*Dkz_; kz *= kz;
1132 double k = sqrt(kx+ky+kz);
1133 double pk = MODULE2(T_(l,j,i));
1134 herr.Add(k,pk);
1135 }
1136 }
1137 }
1138 herr.ToVariance();
1139
1140 // renormalize to directly compare to original spectrum
1141 double norm = Vol_;
1142 herr *= norm;
1143
1144 return 0;
1145}
1146
1147int GeneFluct3D::ComputeSpectrum2D_bricolo(Histo2DErr& herr)
1148{
1149 if(lp_>0) cout<<"--- ComputeSpectrum2D_bricolo ---"<<endl;
1150 check_array_alloc();
1151
1152 if(herr.NBinX()<0 || herr.NBinY()<0) return -1;
1153 herr.Zero();
1154
1155 // Attention a l'ordre
1156 for(long i=0;i<Nx_;i++) {
1157 long ii = (i>Nx_/2) ? Nx_-i : i;
1158 double kx = ii*Dkx_; kx *= kx;
1159 for(long j=0;j<Ny_;j++) {
1160 if(i==0 && j==0) continue;
1161 long jj = (j>Ny_/2) ? Ny_-j : j;
1162 double ky = jj*Dky_; ky *= ky;
1163 double kt = sqrt(kx+ky);
1164 for(long l=1;l<NCz_;l++) {
1165 double kz = l*Dkz_;
1166 double pk = MODULE2(T_(l,j,i));
1167 herr.Add(kt,kz,pk);
1168 }
1169 }
1170 }
1171 herr.ToVariance();
1172
1173 // renormalize to directly compare to original spectrum
1174 double norm = Vol_;
1175 herr *= norm;
1176
1177 return 0;
1178}
Note: See TracBrowser for help on using the repository browser.