source: Sophya/trunk/Cosmo/SimLSS/genefluct3d.h@ 3344

Last change on this file since 3344 was 3331, checked in by cmv, 18 years ago

mise en place evolution seulement sur distance au plan Z , cmv 02/10/2007

File size: 6.1 KB
RevLine 
[3115]1#ifndef GENEFLUCT3D_SEEN
2#define GENEFLUCT3D_SEEN
3
4#include "machdefs.h"
[3289]5#include <math.h>
[3115]6#include "genericfunc.h"
7#include "tarray.h"
[3141]8#include "histerr.h"
9#include "hist2err.h"
[3115]10#include "perandom.h"
11
[3141]12#include "FFTW/fftw3.h"
13#include "FitsIO/fitsio.h"
14
[3115]15#include <vector>
16
[3157]17#include "cosmocalc.h"
[3115]18#include "pkspectrum.h"
19
20
21namespace SOPHYA {
22
23//-----------------------------------------------------------------------------------
24class GeneFluct3D {
25public:
[3141]26 GeneFluct3D(TArray< complex<r_8 > >& T);
[3115]27 virtual ~GeneFluct3D(void);
28
29 void SetNThread(unsigned short nthread=0) {nthread_ = nthread;}
[3129]30 void SetSize(long nx,long ny,long nz,double dx,double dy,double dz); // Mpc
[3271]31 // Distance los comobile a l'observateur
[3157]32 void SetObservator(double redshref=0.,double kredshref=0.);
[3271]33 inline double DXcom(long i) {return i*Dx_ - xobs_[0];}
34 inline double DYcom(long j) {return j*Dy_ - xobs_[1];}
35 inline double DZcom(long k) {return k*Dz_ - xobs_[2];}
36 inline double Dcom(long i,long j,long k) {
37 double dx=DXcom(i), dy=DYcom(j), dz=DZcom(k);
38 return sqrt(dx*dx+dy*dy+dz*dz);
39 }
[3157]40 void SetCosmology(CosmoCalc& cosmo);
41 void SetGrowthFactor(GrowthFactor& growth);
[3199]42 long LosComRedshift(double zinc=0.001,long npoints=-1);
[3115]43
[3141]44 TArray< complex<r_8> >& GetComplexArray(void) {return T_;}
45 fftw_complex* GetComplexPointer(void) {return fdata_;}
46 TArray<r_8>& GetRealArray(void) {return R_;}
47 r_8* GetRealPointer(void) {return data_;}
48
49 // Pour adressage data_[ip]
50 inline int_8 IndexR(long i,long j,long k) {return (int_8)(k+NTz_*(j+Ny_*i));}
51 // Pour adressage fdata_[ip][0-1]
52 inline int_8 IndexC(long i,long j,long k) {return (int_8)(k+NCz_*(j+Ny_*i));}
[3330]53 // On peut aussi adresser:
54 // TArray< complex<r_8> >& pk = gf3d.GetComplexArray();
55 // pk(k,j,i) avec k=[0,NCz_[ j=[0,Ny_[ i=[0,Nx_[
56 // pk[IndexC(i,j,k)]
57 // TArray<r_8>& rgen = gf3d.GetRealArray();
58 // rgen(k,j,i) avec k=[0,NTz_[ j=[0,Ny_[ i=[0,Nx_[
59 // mais seul k=[0,Nz_[ est utile
60 // rgen[IndexR(i,j,k)]
61 // ATTENTION: TArray adresse en memoire a l'envers du C !
62 // Tarray(n1,n2,n3) == Carray[n3][n2][n1]
[3141]63
64 vector<long> GetNpix(void) {return N_;}
65 int_8 NPix(void) {return NRtot_;}
[3330]66 long GetNx(void) {return Nx_;}
67 long GetNy(void) {return Ny_;}
68 long GetNz(void) {return Nz_;}
[3141]69
[3290]70 // Return |K_i| module relative to pixel indices
71 inline r_8 Kx(long i) {long ii=(i>Nx_/2)? Nx_-i :i; return ii*Dkx_;}
72 inline r_8 Ky(long j) {long jj=(j>Ny_/2)? Ny_-j :j; return jj*Dky_;}
73 inline r_8 Kz(long l) {return l*Dkz_;}
74
[3141]75 vector<r_8> GetDinc(void) {return D_;}
76 double GetDVol(void) {return dVol_;}
[3115]77 double GetVol(void) {return Vol_;}
[3141]78
79 vector<r_8> GetKinc(void) {return Dk_;}
80 vector<r_8> GetKnyq(void) {return Knyq_;}
[3115]81 double GetKmax(void) {return sqrt(Knyqx_*Knyqx_+Knyqy_*Knyqy_+Knyqz_*Knyqz_);}
[3141]82 double GetKTmax(void) {return sqrt(Knyqx_*Knyqx_+Knyqy_*Knyqy_);}
83 double GetKincMin(void)
84 {vector<r_8>::const_iterator it = min_element(Dk_.begin(), Dk_.end()); return *it;}
[3289]85 double GetKincMax(void)
86 {vector<r_8>::const_iterator it = max_element(Dk_.begin(), Dk_.end()); return *it;}
[3141]87 double GetKTincMin(void) {return min(Dk_[0],Dk_[1]);}
[3289]88 double GetKTincMax(void) {return max(Dk_[0],Dk_[1]);}
[3115]89
[3141]90 void ComputeFourier0(GenericFunc& pk_at_z);
91 void ComputeFourier(GenericFunc& pk_at_z);
[3115]92 void FilterByPixel(void);
[3141]93
[3115]94 void ComputeReal(void);
[3331]95 void ApplyGrowthFactor(int type_evol=1);
[3141]96
[3115]97 void ReComputeFourier(void);
98
[3141]99 int ComputeSpectrum(HistoErr& herr);
100 int ComputeSpectrum2D(Histo2DErr& herr);
[3330]101 int ComputeSpectrum(HistoErr& herr,double sigma,bool pixcor);
102 int ComputeSpectrum2D(Histo2DErr& herr,double sigma,bool pixcor);
[3141]103
[3134]104 int_8 VarianceFrReal(double R,double& var);
[3261]105 int_8 MeanSigma2(double& rm,double& rs2,double vmin=1.,double vmax=-1.
106 ,bool useout=false,double vout=0.);
[3320]107 int_8 MinMax(double& xmin,double& xmax,double vmin=1.,double vmax=-1.);
[3134]108 int_8 NumberOfBad(double vmin=-1.e+150,double vmax=1.e+150);
109 int_8 SetToVal(double vmin, double vmax,double val0=0.);
[3283]110 void ScaleOffset(double scalecube=1.,double offsetcube=0.);
[3115]111
112 void TurnFluct2Mass(void);
[3329]113 double TurnMass2HIMass(double m_by_mpc3);
[3115]114 double TurnMass2MeanNumber(double n_by_mpc3);
115 double ApplyPoisson(void);
116 double TurnNGal2Mass(FunRan& massdist,bool axeslog=false);
[3320]117 double TurnNGal2MassQuick(SchechterMassDist& schmdist);
[3115]118 double TurnMass2Flux(void);
[3199]119 void AddAGN(double lfjy,double lsigma,double powlaw=0.);
[3331]120 void AddNoise2Real(double snoise,int type_evol=0);
[3115]121
[3141]122 void WriteFits(string cfname,int bitpix=FLOAT_IMG);
123 void ReadFits(string cfname);
124
125 void WritePPF(string cfname,bool write_real=true);
126 void ReadPPF(string cfname);
[3281]127 void WriteSlicePPF(string cfname);
[3141]128
[3150]129 void SetPrtLevel(int lp=0) {lp_ = lp;}
[3115]130 void Print(void);
131
[3199]132//-------------------------------------------------------------------
133
[3115]134protected:
[3141]135 void setsize(long nx,long ny,long nz,double dx,double dy,double dz);
136 void setalloc(void);
137 void setpointers(bool from_real);
[3154]138 void init_fftw(void);
[3129]139 long manage_coefficients(void);
[3115]140 double compute_power_carte(void);
[3141]141 void check_array_alloc(void);
[3120]142 inline double pixelfilter(double x)
143 {return (x<0.025) ? 1.-x*x/6.*(1.-x*x/20.): sin(x)/x;}
[3115]144
[3154]145 // valeurs dans l'espace reel
[3141]146 long Nx_,Ny_,Nz_; vector<long> N_;
[3129]147 long NCz_,NTz_;
[3134]148 int_8 NRtot_;
[3141]149
150 double Dx_,Dy_,Dz_; vector<double> D_;
151
[3154]152 // valeurs dans l'espace des K
[3141]153 double Dkx_,Dky_,Dkz_; vector<double> Dk_;
154 double Knyqx_,Knyqy_,Knyqz_; vector<double> Knyq_;
155 double Dk3_;
[3115]156 double dVol_, Vol_;
157
[3154]158 // la gestion de la FFT
[3115]159 fftw_plan pf_,pb_;
160 unsigned short nthread_;
[3150]161 int lp_;
[3115]162
[3154]163 // le stockage du Cube de donnees et les pointeurs
[3141]164 bool array_allocated_; // true if array has been allocated
165 TArray< complex<r_8> >& T_;
166 fftw_complex *fdata_;
167 TArray<r_8> R_;
168 double *data_;
[3154]169
170 // l'observateur
[3157]171 CosmoCalc *cosmo_;
172 GrowthFactor *growth_;
[3271]173 double redsh_ref_,kredsh_ref_,dred_ref_;
174 double loscom_ref_,dtrc_ref_, dlum_ref_, dang_ref_;
175 double nu_ref_, dnu_ref_ ;
[3157]176 double xobs_[3];
[3271]177 double loscom_min_, loscom_max_;
[3157]178 vector<double> zred_, loscom_;
[3199]179 double loscom2zred_min_, loscom2zred_max_;
180 vector<double> loscom2zred_;
181
[3115]182};
183
[3325]184} // Fin du namespace SOPHYA
[3115]185
186#endif
Note: See TracBrowser for help on using the repository browser.