1 | #include "machdefs.h"
|
---|
2 | #include <iostream>
|
---|
3 | #include <stdlib.h>
|
---|
4 | #include <stdio.h>
|
---|
5 | #include <string.h>
|
---|
6 | #include <math.h>
|
---|
7 | #include <unistd.h>
|
---|
8 |
|
---|
9 | #include "pexceptions.h"
|
---|
10 |
|
---|
11 | #include "constcosmo.h"
|
---|
12 | #include "geneutils.h"
|
---|
13 | #include "pkspectrum.h"
|
---|
14 |
|
---|
15 | namespace SOPHYA {
|
---|
16 |
|
---|
17 | ///////////////////////////////////////////////////////////
|
---|
18 | //******************** InitialSpectrum ******************//
|
---|
19 | ///////////////////////////////////////////////////////////
|
---|
20 |
|
---|
21 | InitialSpectrum::InitialSpectrum(double n,double a)
|
---|
22 | : n_(n), A_(a)
|
---|
23 | {
|
---|
24 | }
|
---|
25 |
|
---|
26 | InitialSpectrum::InitialSpectrum(InitialSpectrum& pkinf)
|
---|
27 | : n_(pkinf.n_), A_(pkinf.A_)
|
---|
28 | {
|
---|
29 | }
|
---|
30 |
|
---|
31 | InitialSpectrum::~InitialSpectrum(void)
|
---|
32 | {
|
---|
33 | }
|
---|
34 |
|
---|
35 | void InitialSpectrum::SetNorm(double a)
|
---|
36 | {
|
---|
37 | A_ = a;
|
---|
38 | }
|
---|
39 |
|
---|
40 | void InitialSpectrum::SetSlope(double n)
|
---|
41 | {
|
---|
42 | n_ = n;
|
---|
43 | }
|
---|
44 |
|
---|
45 |
|
---|
46 | ///////////////////////////////////////////////////////////
|
---|
47 | //****************** TransfertEisenstein ****************//
|
---|
48 | ///////////////////////////////////////////////////////////
|
---|
49 |
|
---|
50 | // From Eisenstein & Hu ApJ 496:605-614 1998 April 1 (ou astro-ph/9709112)
|
---|
51 | TransfertEisenstein::TransfertEisenstein(double h100,double OmegaCDM0,double OmegaBaryon0,double tcmb,bool nobaryon,int lp)
|
---|
52 | : lp_(lp)
|
---|
53 | , Oc_(OmegaCDM0) , Ob_(OmegaBaryon0) , h_(h100) , tcmb_(tcmb)
|
---|
54 | , nobaryon_(nobaryon) , nooscenv_(0), retpart_(0)
|
---|
55 | {
|
---|
56 | zero_();
|
---|
57 | Init_();
|
---|
58 | }
|
---|
59 |
|
---|
60 | TransfertEisenstein::TransfertEisenstein(TransfertEisenstein& tf)
|
---|
61 | : lp_(tf.lp_)
|
---|
62 | ,Oc_(tf.Oc_) , Ob_(tf.Ob_) , h_(tf.h_) , tcmb_(tf.tcmb_)
|
---|
63 | , nobaryon_(tf.nobaryon_) , nooscenv_(tf.nooscenv_), retpart_(tf.retpart_)
|
---|
64 | {
|
---|
65 | zero_();
|
---|
66 | Init_();
|
---|
67 | }
|
---|
68 |
|
---|
69 | void TransfertEisenstein::zero_(void)
|
---|
70 | {
|
---|
71 | th2p7_=zeq_=keq_=zd_=Req_=Rd_=s_=ksilk_=alphac_=betac_=bnode_
|
---|
72 | =alphab_=betab_=alphag_=sfit_=kpeak_=1.e99;
|
---|
73 | }
|
---|
74 |
|
---|
75 | void TransfertEisenstein::Init_(void)
|
---|
76 | {
|
---|
77 |
|
---|
78 | O0_ = Oc_ + Ob_;
|
---|
79 | if(nobaryon_) {O0_ = Oc_; Ob_ = 0.;}
|
---|
80 | if(lp_) cout<<"h100="<<h_<<" Omatter="<<O0_<<" Ocdm="<<Oc_<<" Ob="<<Ob_<<endl;
|
---|
81 |
|
---|
82 | double H0 = 100. * h_, h2 = h_*h_;
|
---|
83 |
|
---|
84 | if(tcmb_<0.) tcmb_ = T_CMB_Par;
|
---|
85 | th2p7_ = tcmb_/2.7;
|
---|
86 | double th2p7P4 = th2p7_*th2p7_*th2p7_*th2p7_;
|
---|
87 | if(lp_) cout<<"tcmb = "<<tcmb_<<" K = "<<th2p7_<<" *2.7K "<<endl;
|
---|
88 |
|
---|
89 | // Formule 2 p 606
|
---|
90 | zeq_ = 2.50e4 * O0_ * h2 / th2p7P4;
|
---|
91 | if(lp_) cout<<"zeq = "<<zeq_<<" (redshift of matter-radiation equality)"<<endl;
|
---|
92 |
|
---|
93 | // Formule 3 p 607
|
---|
94 | // (attention ici C=1 : H0 -> H0/C si on utilise la premiere formule)
|
---|
95 | // keq_ = sqrt(2.*O0_*H0*H0*zeq_) / SpeedOfLight_Cst;
|
---|
96 | keq_ = 7.46e-2 * O0_ * h2 / (th2p7_*th2p7_);
|
---|
97 | if(lp_) cout<<"keq = "<<keq_<<" Mpc^-1 (scale of equality)"<<endl;
|
---|
98 |
|
---|
99 | // On s'arrete ici si pas de baryons
|
---|
100 | if(nobaryon_) return;
|
---|
101 |
|
---|
102 | // Formule 4 p 607
|
---|
103 | double b1_eq4 = 0.313*pow(O0_*h2,-0.419)*(1. + 0.607*pow(O0_*h2,0.674));
|
---|
104 | double b2_eq4 = 0.238*pow(O0_*h2,0.223);
|
---|
105 | zd_ = 1291. * pow(O0_*h2,0.251) / (1.+0.659* pow(O0_*h2,0.828))
|
---|
106 | * (1. + b1_eq4*pow(Ob_*h2,b2_eq4));
|
---|
107 | if(lp_) cout<<"zd = "<<zd_<<" (Redshift of drag epoch)"<<endl;
|
---|
108 |
|
---|
109 | // Formule 5 page 607 (R = 3*rho_baryon/4*rho_gamma)
|
---|
110 | Req_ = 31.5*Ob_*h2 / th2p7P4 * (1.e3/zeq_);
|
---|
111 | //WARNING: W.Hu code (tf_fit.c) en des-accord avec l'article: zd -> (1+zd)
|
---|
112 | Rd_ = 31.5*Ob_*h2 / th2p7P4 * (1.e3/zd_);
|
---|
113 | //in tf_fit.c: Rd_ = 31.5*Ob_*h2 / th2p7P4 * (1.e3/(1.+zd_));
|
---|
114 | if(lp_) {
|
---|
115 | cout<<"Req = "<<Req_<<" Rd = "<<Rd_
|
---|
116 | <<" (Photon-baryon ratio at equality/drag epoch)"<<endl;
|
---|
117 | cout<<"Sound speed at equality "<<1./sqrt(3.*(1.+Req_))
|
---|
118 | <<", at drag "<<1./sqrt(3.*(1.+Rd_))<<" in unit of C"<<endl;
|
---|
119 | }
|
---|
120 |
|
---|
121 | // Formule 6 p 607
|
---|
122 | s_ = 2./(3.*keq_) * sqrt(6./Req_)
|
---|
123 | * log( (sqrt(1.+Rd_) + sqrt(Rd_+Req_)) / (1.+sqrt(Req_)) );
|
---|
124 | if(lp_) cout<<"s = "<<s_<<" Mpc (sound horizon at drag epoch)"<<endl;
|
---|
125 |
|
---|
126 | // Formule 7 page 607
|
---|
127 | ksilk_ = 1.6*pow(Ob_*h2,0.52)*pow(O0_*h2,0.73) * (1. + pow(10.4*O0_*h2,-0.95));
|
---|
128 | if(lp_) cout<<"ksilk = "<<ksilk_<<" Mpc^-1 (silk damping scale)"<<endl;
|
---|
129 |
|
---|
130 | // Formules 10 page 608
|
---|
131 | double a1 = pow(46.9*O0_*h2,0.670) * (1. + pow(32.1*O0_*h2,-0.532));
|
---|
132 | double a2 = pow(12.0*O0_*h2,0.424) * (1. + pow(45.0*O0_*h2,-0.582));
|
---|
133 | alphac_ = pow(a1,-Ob_/O0_) * pow(a2,-pow(Ob_/O0_,3.));
|
---|
134 | double b1 = 0.944 / (1. + pow(458.*O0_*h2,-0.708));
|
---|
135 | double b2 = pow(0.395*O0_*h2,-0.0266);
|
---|
136 | betac_ = 1 / ( 1. + b1*(pow(Oc_/O0_,b2) - 1.) );
|
---|
137 | if(lp_) cout<<"alphac = "<<alphac_<<" betac = "<<betac_
|
---|
138 | <<" (CDM suppression/log shift)"<<endl;
|
---|
139 |
|
---|
140 | // Formule 23 page 610
|
---|
141 | bnode_ = 8.41 * pow(O0_*h2,0.435);
|
---|
142 | if(lp_) cout<<"bnode = "<<bnode_<<" (sound horizon shift)"<<endl;
|
---|
143 |
|
---|
144 | // Formule 14 page 608
|
---|
145 | //WARNING: W.Hu code (tf_fit.c) en des-accord avec l'article: (1+zeq) -> zeq
|
---|
146 | double y = (1.+zeq_)/(1.+zd_);
|
---|
147 | //in tf_fit.c: double y = zeq_/(1.+zd_);
|
---|
148 | double s1py = sqrt(1.+y);
|
---|
149 | double Gy = y*( -6.*s1py + (2.+3.*y)*log((s1py+1.)/(s1py-1.)) );
|
---|
150 | alphab_ = 2.07*keq_*s_*pow(1.+Rd_,-3./4.)*Gy;
|
---|
151 |
|
---|
152 | // Formule 24 page 610
|
---|
153 | betab_ = 0.5 + Ob_/O0_
|
---|
154 | + (3.-2.*Ob_/O0_) * sqrt(pow(17.2*O0_*h2,2.) + 1.);
|
---|
155 | if(lp_) cout<<"alphab = "<<alphab_<<" betab = "<<betab_
|
---|
156 | <<" (Baryon suppression/envelope shift)"<<endl;
|
---|
157 |
|
---|
158 | // Formule 31 page 612
|
---|
159 | alphag_ = 1.
|
---|
160 | - 0.328*log(431.*O0_*h2)*Ob_/O0_
|
---|
161 | + 0.38*log(22.3*O0_*h2)*pow(Ob_/O0_,2.);
|
---|
162 | if(lp_) cout<<"alphag = "<<alphag_<<" (gamma suppression in approximate TF)"<<endl;
|
---|
163 |
|
---|
164 | // The approximate value of the sound horizon, formule 26 page 611
|
---|
165 | sfit_ = 44.5*log(9.83/(O0_*h2)) / sqrt(1.+10.*pow(Ob_*h2,3./4.)); // Mpc
|
---|
166 | if(lp_) cout<<"sfit="<<sfit_<<" Mpc (fit to sound horizon)"<<endl;
|
---|
167 |
|
---|
168 | // La positoin du premier pic acoustique, formule 25 page 611
|
---|
169 | kpeak_ = 5*M_PI/(2.*sfit_) * (1.+0.217*O0_*h2); // 1/Mpc
|
---|
170 | if(lp_) cout<<"kpeak="<<kpeak_<<" Mpc^-1 (fit to wavenumber of first peak)"<<endl;
|
---|
171 |
|
---|
172 | return;
|
---|
173 | }
|
---|
174 |
|
---|
175 | TransfertEisenstein::~TransfertEisenstein(void)
|
---|
176 | {
|
---|
177 | }
|
---|
178 |
|
---|
179 | void TransfertEisenstein::SetNoOscEnv(unsigned short nooscenv)
|
---|
180 | // To obtain an approximate form of the non-oscillatory part of the transfert function
|
---|
181 | // nooscenv = 0 : use the baryon oscillatory part of transfert function (full tf)
|
---|
182 | // nooscenv = 1 : use approx. paragraph 3.3 p610 (middle of right column)
|
---|
183 | // Replace j0(k*stilde) -> [1+(k*stilde)^4]^(-1/4)
|
---|
184 | // nooscenv = 2 : use formulae 29+30+31 page 612
|
---|
185 | // The value of an approximate transfer function that captures
|
---|
186 | // the non-oscillatory part of a partial baryon transfer function.
|
---|
187 | // In other words, the baryon oscillations are left out,
|
---|
188 | // but the suppression of power below the sound horizon is included.
|
---|
189 | {
|
---|
190 | if(nooscenv!=1 && nooscenv!=2) nooscenv = 0;
|
---|
191 | nooscenv_ = nooscenv;
|
---|
192 | }
|
---|
193 |
|
---|
194 | void TransfertEisenstein::SetReturnPart(unsigned short retpart)
|
---|
195 | // To return only baryon or CDM part part of transfert function
|
---|
196 | // retpart = 1 : return only CDM part of transfert function
|
---|
197 | // retpart = 2 : return only Baryon part of transfert function
|
---|
198 | // retpart = anything else: return only full transfert function
|
---|
199 | // WARNING: only relevant for nobaryon_=false AND nooscenv!=2
|
---|
200 | {
|
---|
201 | if(retpart!=1 && retpart!=2) retpart = 0;
|
---|
202 | retpart_ = retpart;
|
---|
203 | }
|
---|
204 |
|
---|
205 | double TransfertEisenstein::T0tild(double k,double alphac,double betac)
|
---|
206 | {
|
---|
207 | // Formule 10 p 608
|
---|
208 | //double q = k*th2p7_*th2p7_/(O0_*h_*h_);
|
---|
209 | double q = k/(13.41*keq_);
|
---|
210 | // Formule 20 p 610
|
---|
211 | double C = (14.2/alphac) + 386./(1.+69.9*pow(q,1.08));
|
---|
212 | // Formule 19 p 610
|
---|
213 | double x = log(M_E+1.8*betac*q);
|
---|
214 | return x / (x + C*q*q);
|
---|
215 | }
|
---|
216 |
|
---|
217 | double TransfertEisenstein::operator() (double k)
|
---|
218 | {
|
---|
219 |
|
---|
220 | // --- Pour zero baryon
|
---|
221 | // OU Pour function lissee sans oscillation baryon
|
---|
222 | if(nobaryon_ || nooscenv_ == 2) {
|
---|
223 | double gamma = O0_*h_;
|
---|
224 | // Calcul de Gamma_eff, formule 30 page 612 (pour fct lissee)
|
---|
225 | if( nobaryon_==false && nooscenv_ == 2 )
|
---|
226 | gamma = O0_*h_*(alphag_ + (1.-alphag_)/(1.+pow(0.43*k*sfit_,4.))); // Gamma_eff
|
---|
227 | // Formule 28 page 612 : qui est est equivalent a:
|
---|
228 | // q = k / h_ * th2p7_*th2p7_ / gamma;
|
---|
229 | // qui est est equivalent a:
|
---|
230 | // q = k / (13.41 * keq) pour Ob=0
|
---|
231 | // q = k / (13.41 * keq) * (O0*h/Gamma) pour le spectre lisse
|
---|
232 | // Les resultats sont legerement differents a cause des valeurs approx.
|
---|
233 | // des constantes numeriques: on prend comme W.Hu (tf_fit.c)
|
---|
234 | //double q = k / h_ * th2p7_*th2p7_ / gamma; // Mpc^-1
|
---|
235 | double q = k/(13.41*keq_) * (O0_*h_/gamma); // Mpc^-1
|
---|
236 | // Formules 29 page 612
|
---|
237 | double l0 = log(2.*M_E + 1.8*q);
|
---|
238 | double c0 = 14.2 + 731./(1.+62.5*q);
|
---|
239 | return l0 / (l0 + c0*q*q);
|
---|
240 | }
|
---|
241 |
|
---|
242 | // --- Pour CDM + Baryons
|
---|
243 | // --- CDM
|
---|
244 | double f = 1. / (1. + pow(k*s_/5.4,4.));
|
---|
245 | double Tc = f*T0tild(k,1.,betac_) + (1.-f)*T0tild(k,alphac_,betac_);
|
---|
246 | if(retpart_ == 1) return Tc;
|
---|
247 |
|
---|
248 | // --- Baryons
|
---|
249 | // Formule 22 page 610
|
---|
250 | double stilde, ksbnode = k*s_/bnode_;
|
---|
251 | if(ksbnode<0.001) stilde =s_ * ksbnode;
|
---|
252 | else stilde = s_ / pow(1. + pow(1./ksbnode,3.), 1./3.);
|
---|
253 | // Formule 21 page 610
|
---|
254 | double j0kst = 0.;
|
---|
255 | if(nooscenv_ == 1) {
|
---|
256 | j0kst = pow(1.+pow(k*stilde,4.) , -1./4.); //lissee sans oscillation baryon
|
---|
257 | } else {
|
---|
258 | double x = k*stilde;
|
---|
259 | if(x<0.01) j0kst = 1. - x*x/6.*(1.-x*x/20.);
|
---|
260 | else j0kst = sin(x)/x;
|
---|
261 | //cout<<"DEBUG: k="<<k<<" stilde="<<stilde<<" x="<<x<<" j0kst="<<j0kst<<endl;
|
---|
262 | }
|
---|
263 | double Tb = T0tild(k,1.,1.) / (1. + pow(k*s_/5.2,2.));
|
---|
264 | Tb += alphab_/(1.+pow(betab_/(k*s_),3.)) * exp(-pow(k/ksilk_,1.4));
|
---|
265 | Tb *= j0kst;
|
---|
266 | if(retpart_ == 2) return Tb;
|
---|
267 |
|
---|
268 | // --- Total
|
---|
269 | double T = (Ob_/O0_)*Tb + (Oc_/O0_)*Tc;
|
---|
270 |
|
---|
271 | return T;
|
---|
272 | }
|
---|
273 |
|
---|
274 | double TransfertEisenstein::KPeak(void)
|
---|
275 | // Position du premier pic acoustic
|
---|
276 | {
|
---|
277 | if(nobaryon_) return -1.;
|
---|
278 | return kpeak_;
|
---|
279 | }
|
---|
280 |
|
---|
281 |
|
---|
282 | ///////////////////////////////////////////////////////////
|
---|
283 | //******************* TransfertTabulate *****************//
|
---|
284 | ///////////////////////////////////////////////////////////
|
---|
285 |
|
---|
286 | TransfertTabulate::TransfertTabulate(double h100,double OmegaCDM0,double OmegaBaryon0)
|
---|
287 | : Oc_(OmegaCDM0) , Ob_(OmegaBaryon0) , h_(h100) , kmin_(1.) , kmax_(-1.)
|
---|
288 | , interptyp_(0)
|
---|
289 | {
|
---|
290 | }
|
---|
291 |
|
---|
292 | TransfertTabulate::TransfertTabulate(TransfertTabulate& tf)
|
---|
293 | : Oc_(tf.Oc_) , Ob_(tf.Ob_) , h_(tf.h_) , kmin_(tf.kmin_) , kmax_(tf.kmax_)
|
---|
294 | , interptyp_(tf.interptyp_) , k_(tf.k_) , tf_(tf.tf_)
|
---|
295 | {
|
---|
296 | }
|
---|
297 |
|
---|
298 | TransfertTabulate::~TransfertTabulate(void)
|
---|
299 | {
|
---|
300 | }
|
---|
301 |
|
---|
302 | void TransfertTabulate::SetInterpTyp(int typ)
|
---|
303 | // see comment in InterpTab
|
---|
304 | {
|
---|
305 | if(typ<0) typ=0; else if(typ>2) typ=2;
|
---|
306 | interptyp_ = typ;
|
---|
307 | }
|
---|
308 |
|
---|
309 | double TransfertTabulate::operator() (double k)
|
---|
310 | {
|
---|
311 | return InterpTab(k,k_,tf_,interptyp_);
|
---|
312 | }
|
---|
313 |
|
---|
314 | int TransfertTabulate::ReadCMBFast(string filename)
|
---|
315 | {
|
---|
316 | FILE *file = fopen(filename.c_str(),"r");
|
---|
317 | if(file==NULL) return -1;
|
---|
318 |
|
---|
319 | const int lenline = 512;
|
---|
320 | char *line = new char[lenline];
|
---|
321 |
|
---|
322 | int nread = 0;
|
---|
323 | double tmax = -1.;
|
---|
324 | while ( fgets(line,lenline,file) != NULL ) {
|
---|
325 | double k,tc,tb,tf;
|
---|
326 | sscanf(line,"%lf %lf %lf",&k,&tc,&tb);
|
---|
327 | k *= h_; // convert h^-1 Mpc -> Mpc
|
---|
328 | tf = (Oc_*tc+Ob_*tb)/(Oc_+Ob_);
|
---|
329 | if(tf>tmax) tmax = tf;
|
---|
330 | k_.push_back(k);
|
---|
331 | tf_.push_back(tf);
|
---|
332 | nread++;
|
---|
333 | }
|
---|
334 |
|
---|
335 | cout<<"TransfertTabulate::ReadCMBFast: nread="<<nread<<" tf_max="<<tmax<<endl;
|
---|
336 | delete [] line;
|
---|
337 | if(nread==0) return nread;
|
---|
338 |
|
---|
339 | for(unsigned int i=0;i<tf_.size();i++) tf_[i] /= tmax;
|
---|
340 |
|
---|
341 | return nread;
|
---|
342 | }
|
---|
343 |
|
---|
344 | ///////////////////////////////////////////////////////////
|
---|
345 | //********************* GrowthFactor ********************//
|
---|
346 | ///////////////////////////////////////////////////////////
|
---|
347 |
|
---|
348 | // From Eisenstein & Hu ApJ 496:605-614 1998 April 1
|
---|
349 | // Pour avoir D(z) = 1/(1+z) faire: OmegaMatter0=1 OmegaLambda0=0
|
---|
350 | GrowthFactor::GrowthFactor(double OmegaMatter0,double OmegaLambda0)
|
---|
351 | : O0_(OmegaMatter0) , Ol_(OmegaLambda0) , Ok_(1.-OmegaMatter0-OmegaLambda0)
|
---|
352 | {
|
---|
353 | if(OmegaMatter0==0.) {
|
---|
354 | cout<<"GrowthFactor::GrowthFactor: Error bad OmegaMatter0 value : "<<OmegaMatter0<<endl;
|
---|
355 | throw ParmError("GrowthFactor::GrowthFactor: Error badOmegaMatter0 value");
|
---|
356 | }
|
---|
357 | norm_ = 1.; // puisque (*this)(0.) a besoin de norm_
|
---|
358 | norm_ = (*this)(0.);
|
---|
359 | cout<<"GrowthFactor::GrowthFactor : norm="<<norm_<<endl;
|
---|
360 | }
|
---|
361 |
|
---|
362 | GrowthFactor::GrowthFactor(GrowthFactor& d1)
|
---|
363 | : O0_(d1.O0_) , Ol_(d1.Ol_) , Ok_(d1.Ok_) , norm_(d1.norm_)
|
---|
364 | {
|
---|
365 | }
|
---|
366 |
|
---|
367 | GrowthFactor::~GrowthFactor(void)
|
---|
368 | {
|
---|
369 | }
|
---|
370 |
|
---|
371 | double GrowthFactor::operator() (double z)
|
---|
372 | // see Formulae A4 + A5 + A6 page 614
|
---|
373 | {
|
---|
374 | z += 1.;
|
---|
375 | double z2 = z*z, z3 = z2*z;
|
---|
376 | double den = Ol_ + Ok_*z2 + O0_*z3;
|
---|
377 | double o0z = O0_ *z3 / den;
|
---|
378 | double olz = Ol_ / den;
|
---|
379 |
|
---|
380 | // 4./7. = 0.571429
|
---|
381 | double D1z = pow(o0z,0.571429) - olz + (1.+o0z/2.)*(1.+olz/70.);
|
---|
382 | D1z = 2.5*o0z / z / D1z;
|
---|
383 |
|
---|
384 | return D1z / norm_;
|
---|
385 | }
|
---|
386 |
|
---|
387 |
|
---|
388 | ///////////////////////////////////////////////////////////
|
---|
389 | //************** PkSpectrum0 et PkSpectrumZ *************//
|
---|
390 | ///////////////////////////////////////////////////////////
|
---|
391 |
|
---|
392 | PkSpectrum0::PkSpectrum0(InitialSpectrum& pkinf,TransfertEisenstein& tf)
|
---|
393 | : pkinf_(pkinf) , tf_(tf)
|
---|
394 | {
|
---|
395 | }
|
---|
396 |
|
---|
397 | PkSpectrum0::PkSpectrum0(PkSpectrum0& pk0)
|
---|
398 | : pkinf_(pk0.pkinf_) , tf_(pk0.tf_)
|
---|
399 | {
|
---|
400 | }
|
---|
401 |
|
---|
402 | PkSpectrum0::~PkSpectrum0(void)
|
---|
403 | {
|
---|
404 | }
|
---|
405 |
|
---|
406 | double PkSpectrum0::operator() (double k)
|
---|
407 | {
|
---|
408 | double tf = tf_(k);
|
---|
409 | double pkinf = pkinf_(k);
|
---|
410 | return pkinf *tf*tf;
|
---|
411 | }
|
---|
412 |
|
---|
413 | //------------------------------------
|
---|
414 | PkSpectrumZ::PkSpectrumZ(PkSpectrum0& pk0,GrowthFactor& d1,double zref)
|
---|
415 | : pk0_(pk0) , d1_(d1) , zref_(zref) , scale_(1.) , typspec_(0)
|
---|
416 | , zold_(-1.) , d1old_(1.)
|
---|
417 | {
|
---|
418 | }
|
---|
419 |
|
---|
420 | PkSpectrumZ::PkSpectrumZ(PkSpectrumZ& pkz)
|
---|
421 | : pk0_(pkz.pk0_) , d1_(pkz.d1_) , zref_(pkz.zref_) , scale_(pkz.scale_) , typspec_(0)
|
---|
422 | , zold_(pkz.zold_) , d1old_(pkz.d1old_)
|
---|
423 | {
|
---|
424 | }
|
---|
425 |
|
---|
426 | PkSpectrumZ::~PkSpectrumZ(void)
|
---|
427 | {
|
---|
428 | }
|
---|
429 |
|
---|
430 | void PkSpectrumZ::SetTypSpec(unsigned short typspec)
|
---|
431 | // typsec = 0 : compute Pk(k)
|
---|
432 | // = 1 : compute Delta^2(k) = k^3*Pk(k)/2Pi^2
|
---|
433 | {
|
---|
434 | if(typspec>1) {
|
---|
435 | cout<<"PkSpectrumZ::SetTypSpec: Error bad typspec value: "<<typspec<<endl;
|
---|
436 | throw ParmError("PkSpectrumZ::SetTypSpec: Error bad typspec value");
|
---|
437 | }
|
---|
438 | typspec_ = typspec;
|
---|
439 | }
|
---|
440 |
|
---|
441 | double PkSpectrumZ::operator() (double k)
|
---|
442 | {
|
---|
443 | return (*this)(k,zref_);
|
---|
444 | }
|
---|
445 |
|
---|
446 | double PkSpectrumZ::operator() (double k,double z)
|
---|
447 | {
|
---|
448 | double d1;
|
---|
449 | if(z == zold_) d1 = d1old_;
|
---|
450 | else {d1 = d1old_ = d1_(z); zold_ = z;}
|
---|
451 |
|
---|
452 | double v = pk0_(k) * d1*d1;
|
---|
453 | if(typspec_) v *= k*k*k/(2.*M_PI*M_PI);
|
---|
454 |
|
---|
455 | return scale_ * v;
|
---|
456 | }
|
---|
457 |
|
---|
458 |
|
---|
459 |
|
---|
460 | ///////////////////////////////////////////////////////////
|
---|
461 | //******************* VarianceSpectrum ******************//
|
---|
462 | ///////////////////////////////////////////////////////////
|
---|
463 |
|
---|
464 | VarianceSpectrum::VarianceSpectrum(GenericFunc& pk,unsigned short typfilter=0)
|
---|
465 | : pk_(pk) , R_(0.)
|
---|
466 | {
|
---|
467 | SetFilter(typfilter);
|
---|
468 | }
|
---|
469 |
|
---|
470 | VarianceSpectrum::VarianceSpectrum(VarianceSpectrum& vpk)
|
---|
471 | : pk_(vpk.pk_) , R_(vpk.R_)
|
---|
472 | {
|
---|
473 | SetFilter(vpk.typfilter_);
|
---|
474 | }
|
---|
475 |
|
---|
476 | VarianceSpectrum::~VarianceSpectrum(void)
|
---|
477 | {
|
---|
478 | }
|
---|
479 |
|
---|
480 | //------------------------------------
|
---|
481 | void VarianceSpectrum::SetFilter(unsigned short typfilter)
|
---|
482 | // typfilter = 0 : spherical 3D top-hat
|
---|
483 | // = 1 : spherical 3D gaussian
|
---|
484 | // = 2 : no filter juste integrate spectrum)
|
---|
485 | {
|
---|
486 | if(typfilter>2) {
|
---|
487 | cout<<"VarianceSpectrum::SetFilter: Error bad value for type of filter"<<endl;
|
---|
488 | throw ParmError("VarianceSpectrum::SetFilter: Error bad value for type of filter");
|
---|
489 | }
|
---|
490 | typfilter_ = typfilter;
|
---|
491 | }
|
---|
492 |
|
---|
493 | void VarianceSpectrum::SetInteg(double dperc,double dlogkinc,double dlogkmax,unsigned short glorder)
|
---|
494 | // ATTENTION: on n'integre pas f(k)*dk mais k*f(k)*d(log10(k))
|
---|
495 | // see argument details in function IntegrateFuncLog (geneutils.cc)
|
---|
496 | {
|
---|
497 | dperc_ = dperc; if(dperc_<=0.) dperc_ = 0.1;
|
---|
498 | dlogkinc_ = dlogkinc;
|
---|
499 | dlogkmax_ = dlogkmax;
|
---|
500 | glorder_ = glorder;
|
---|
501 | }
|
---|
502 |
|
---|
503 |
|
---|
504 | //------------------------------------
|
---|
505 | double VarianceSpectrum::Filter2(double x)
|
---|
506 | // ATTENTION: c'est le filtre au carre qui est renvoye
|
---|
507 | {
|
---|
508 | // Just integrate the spectrum without filtering
|
---|
509 | if(typfilter_ == 2) return 1.;
|
---|
510 |
|
---|
511 | double x2 = x*x;
|
---|
512 | // Filtre gaussien G(x) = exp(-x^2/2)
|
---|
513 | // remarque G(x)^2 = exp(-x^2)
|
---|
514 | // on prend le DL de G(x)^2 pour x->0 a l'ordre O(x^6)
|
---|
515 | // DL(x) = 1-x^2*(1-x^2/2)
|
---|
516 | // pour x<0.01 |DL(x)-G(X)^2|<2.0e-13
|
---|
517 | if(typfilter_ == 1)
|
---|
518 | if(x<0.01) return 1.-x2*(1.-x2/2.); else return exp(-x2);
|
---|
519 |
|
---|
520 | // Filtre top-hat T(x) = 3*(sin(x)-x*cos(x))/x^3
|
---|
521 | // --- Gestion de la pseudo-divergence pour x->0
|
---|
522 | // on prend le DL de T(x)^2 pour x->0 a l'ordre O(x^7)
|
---|
523 | // DL(x) = 1-x^2/5*(1-3*x^2/35*(1-4*x^2/81))
|
---|
524 | // pour x<0.1 |DL(x)-T(X)^2|<2.5e-13
|
---|
525 | double f2=0.;
|
---|
526 | if(x<0.1) {
|
---|
527 | f2 = 1.-x2/5.*(1.-3.*x2/35.*(1.-4.*x2/81.));
|
---|
528 | } else {
|
---|
529 | f2 = 3.*(sin(x)-x*cos(x))/(x2*x);
|
---|
530 | f2 *= f2;
|
---|
531 | }
|
---|
532 | return f2;
|
---|
533 |
|
---|
534 | }
|
---|
535 |
|
---|
536 | double VarianceSpectrum::Variance(double R,double kmin,double kmax)
|
---|
537 | // Compute variance of spectrum pk_ by integration
|
---|
538 | // Input:
|
---|
539 | // R = taille du filter top-hat ou gaussien
|
---|
540 | // kmin,kmax = bornes en k de l'integrale pour calculer la variance
|
---|
541 | // Return:
|
---|
542 | // valeur de la variance (sigma^2)
|
---|
543 | // Remarque:
|
---|
544 | // la meilleure approximation du filtre top-hat (R) est un filtre gaussien avec (Rg=R/sqrt(5))
|
---|
545 | // la variance renvoyee est la variance de la masse
|
---|
546 | {
|
---|
547 | if(R<=0. || kmin<=0 || kmax<=0. || kmin>=kmax) {
|
---|
548 | cout<<"VarianceSpectrum::Variance: Error R<=0 or kmin<=0 or kmax<=0 or kmin>=kmax"<<endl;
|
---|
549 | throw ParmError("VarianceSpectrum::Variance: Error R<=0 or kmin<=0 or kmax<=0 or kmin>=kmax");
|
---|
550 | }
|
---|
551 |
|
---|
552 | R_ = R;
|
---|
553 | double lkmin = log10(kmin), lkmax = log10(kmax);
|
---|
554 |
|
---|
555 | double var = IntegrateFuncLog(*this,lkmin,lkmax,dperc_,dlogkinc_,dlogkmax_,glorder_);
|
---|
556 |
|
---|
557 | return var;
|
---|
558 | }
|
---|
559 |
|
---|
560 | //------------------------------------
|
---|
561 | double VarianceSpectrum::FindMaximum(double R,double kmin,double kmax,double eps)
|
---|
562 | // Retourne le maximum de la fonction a integrer
|
---|
563 | // La recherche a lieu entre [kmin,kmax] par pas logarithmiques
|
---|
564 | // Input:
|
---|
565 | // R : taille du filter top-hat ou gaussien
|
---|
566 | // kmin,kmax : intervalle de recherche
|
---|
567 | // eps : precision requise sur les valeurs
|
---|
568 | // Return:
|
---|
569 | // position (en k) du maximum
|
---|
570 | {
|
---|
571 | if(R<=0. || kmin<=0 || kmax<=0. || kmin>=kmax) {
|
---|
572 | cout<<"VarianceSpectrum::FindMaximum: Error R<=0 or kmin<=0 or kmax<=0 or kmin>=kmax || eps<=0"<<endl;
|
---|
573 | throw ParmError("VarianceSpectrum::FindMaximum: Error R<=0 or kmin<=0 or kmax<=0 or kmin>=kmax || eps<=0");
|
---|
574 | }
|
---|
575 |
|
---|
576 | R_ = R;
|
---|
577 |
|
---|
578 | int n = 10; // toujours >2
|
---|
579 | double lkmin = log10(kmin), lkmax = log10(kmax), dlk = (lkmax-lkmin)/n;
|
---|
580 |
|
---|
581 | double lkfind=lkmin, pkfind=-1.;
|
---|
582 | while(1) {
|
---|
583 | for(int i=0; i<=n; i++) {
|
---|
584 | double lk = lkmin + i*dlk;
|
---|
585 | double v = (*this)(pow(10.,lk));
|
---|
586 | if(v<pkfind) continue;
|
---|
587 | pkfind = v; lkfind = lk;
|
---|
588 | }
|
---|
589 | //cout<<"VarianceSpectrum::FindMaximum: lkfind="<<lkfind<<" pkfind="<<pkfind
|
---|
590 | // <<" lkmin,max="<<lkmin<<","<<lkmax<<" dlk="<<dlk<<endl;
|
---|
591 | // --- Convergence si l'encadrement de "kfind" est tel que "dk/kfind<eps"
|
---|
592 | // On a dk = 10^(lkfind+dlk) - 10^(lkfind-dlk) = kfind * (10^(dlk) - 10^(-dlk))
|
---|
593 | if( pow(10.,dlk)-pow(10.,-dlk) < eps ) break;
|
---|
594 | if(lkfind-dlk>lkmin) lkmin = lkfind-dlk;
|
---|
595 | if(lkfind+dlk<lkmax) lkmax = lkfind+dlk;
|
---|
596 | dlk = (lkmax-lkmin)/n;
|
---|
597 | }
|
---|
598 |
|
---|
599 | return pow(10.,lkfind);
|
---|
600 | }
|
---|
601 |
|
---|
602 | int VarianceSpectrum::FindLimits(double R,double high,double &kmin,double &kmax,double eps)
|
---|
603 | // Retourne "[kmin,kmax]" tel que la fonction a integrer soit "f(k) <= high"
|
---|
604 | // La recherche a lieu entre [kmin,kmax] par pas logarithmiques
|
---|
605 | // Input:
|
---|
606 | // R : taille du filter top-hat ou gaussien
|
---|
607 | // kmin,kmax : intervalle de recherche
|
---|
608 | // eps : precision requise sur les valeurs kmin et kmax
|
---|
609 | // Output:
|
---|
610 | // kmin,kmax telles que "f(k) <= high"
|
---|
611 | // Return:
|
---|
612 | // rc = 0 si OK
|
---|
613 | // rc |= 1 "f(kmin) >= high" (bit0 =1)
|
---|
614 | // rc |= 2 "f(kmax) >= high" (bit1 =1)
|
---|
615 | // rc |= 4 "f(k) < high pour tout k" (bit2 =1)
|
---|
616 | {
|
---|
617 | if(R<=0. || kmin<=0 || kmax<=0. || kmin>=kmax || eps<=0.) {
|
---|
618 | cout<<"VarianceSpectrum::FindLimits: Error R<=0 or kmin<=0 or kmax<=0 or kmin>=kmax or eps<=0"<<endl;
|
---|
619 | throw ParmError("VarianceSpectrum::FindLimits: Error R<=0 or kmin<=0 or kmax<=0 or kmin>=kmax || eps<=0");
|
---|
620 | }
|
---|
621 |
|
---|
622 | R_ = R;
|
---|
623 | int n = 10; // toujours >2
|
---|
624 |
|
---|
625 | int rc = 0;
|
---|
626 | double lkmin,lkmax,dlk,lkfind;
|
---|
627 |
|
---|
628 | // --- Find kmin
|
---|
629 | lkmin=log10(kmin); lkmax=log10(kmax); dlk=(lkmax-lkmin)/n;
|
---|
630 | while(1) {
|
---|
631 | lkfind = lkmin;
|
---|
632 | for(int i=0;i<=n;i++) {
|
---|
633 | if( (*this)(pow(10,lkfind)) >= high ) break;
|
---|
634 | lkfind = lkmin + i*dlk;
|
---|
635 | }
|
---|
636 | //cout<<"VarianceSpectrum::FindLimits[kmin]: lkfind="<<lkfind
|
---|
637 | // <<" lkmin,max="<<lkmin<<","<<lkmax<<" dlk="<<dlk<<endl;
|
---|
638 | if(fabs(lkfind-lkmax)<dlk/2.) {rc |= 4; return rc;} // protect against f(k)<high for all k
|
---|
639 | if( pow(10.,dlk)-pow(10.,-dlk) < eps ) break;
|
---|
640 | if(lkfind-dlk>lkmin) lkmin = lkfind-dlk;
|
---|
641 | if(lkfind+dlk<lkmax) lkmax = lkfind+dlk;
|
---|
642 | dlk = (lkmax-lkmin)/n;
|
---|
643 | }
|
---|
644 | if(lkfind-lkmin<dlk/2.) rc |= 1; // f(kmin) >= high
|
---|
645 | else kmin = pow(10.,lkmin);
|
---|
646 | //cout<<"rc="<<rc<<" lkmin="<<lkmin<<" pk="<<(*this)(pow(10.,lkmin))<<endl;
|
---|
647 |
|
---|
648 | // --- Find kmax
|
---|
649 | lkmin=log10(kmin); lkmax=log10(kmax); dlk=(lkmax-lkmin)/n;
|
---|
650 | while(1) {
|
---|
651 | lkfind=lkmax;
|
---|
652 | for(int i=0;i<=n;i++) {
|
---|
653 | if( (*this)(pow(10,lkfind)) >= high ) break;
|
---|
654 | lkfind -= dlk;
|
---|
655 | lkfind = lkmax - i*dlk;
|
---|
656 | }
|
---|
657 | //cout<<"VarianceSpectrum::FindLimits[kmax]: lkfind="<<lkfind
|
---|
658 | // <<" lkmin,max="<<lkmin<<","<<lkmax<<" dlk="<<dlk<<endl;
|
---|
659 | if( pow(10.,dlk)-pow(10.,-dlk) < eps ) break;
|
---|
660 | if(lkfind-dlk>lkmin) lkmin = lkfind-dlk;
|
---|
661 | if(lkfind+dlk<lkmax) lkmax = lkfind+dlk;
|
---|
662 | dlk = (lkmax-lkmin)/n;
|
---|
663 | }
|
---|
664 | if(lkmax-lkfind<dlk/2.) rc |= 2; // f(kmax) >= high
|
---|
665 | else kmax = pow(10.,lkmax);
|
---|
666 | //cout<<"rc="<<rc<<" lkmax="<<lkmax<<" pk="<<(*this)(pow(10.,lkmax))<<endl;
|
---|
667 |
|
---|
668 | return rc;
|
---|
669 | }
|
---|
670 |
|
---|
671 | } // Fin namespace SOPHYA
|
---|