| [793] | 1 | \documentclass[twoside,12pt]{article}
 | 
|---|
 | 2 | %  Package standard : Utilisation de caracteres accentues, mode francais et graphique
 | 
|---|
 | 3 | \usepackage[latin1]{inputenc}
 | 
|---|
 | 4 | \usepackage[T1]{fontenc}
 | 
|---|
 | 5 | \usepackage{babel}
 | 
|---|
 | 6 | \usepackage{graphicx}
 | 
|---|
 | 7 | 
 | 
|---|
 | 8 | %  Extension de symboles mathematiques
 | 
|---|
 | 9 | \usepackage{amssymb}
 | 
|---|
 | 10 | 
 | 
|---|
| [1015] | 11 | % package a mettre pour faire du pdf
 | 
|---|
 | 12 | \usepackage{palatino}
 | 
|---|
 | 13 | 
 | 
|---|
| [793] | 14 | %  Definition de taille de page
 | 
|---|
 | 15 | \setlength{\textwidth}{16cm}
 | 
|---|
 | 16 | \setlength{\textheight}{21.5cm}
 | 
|---|
 | 17 | \setlength{\topmargin}{0.5cm}
 | 
|---|
 | 18 | \setlength{\oddsidemargin}{0.cm}
 | 
|---|
 | 19 | \setlength{\evensidemargin}{0.cm}
 | 
|---|
 | 20 | \setlength{\unitlength}{1mm}
 | 
|---|
 | 21 | 
 | 
|---|
 | 22 | \newcommand{\bul}{$\bullet \ $}
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | \begin{document}
 | 
|---|
 | 25 | 
 | 
|---|
 | 26 | \begin{titlepage}
 | 
|---|
 | 27 | \vspace{1cm}
 | 
|---|
| [1015] | 28 | \vspace{1cm}
 | 
|---|
 | 29 | \makebox[34mm][c]{\includegraphics[width=3cm]{hfi_icon_vsmall.eps}}
 | 
|---|
 | 30 | \raisebox{12mm}{\rule{80 mm}{0.5 mm}\makebox[50 mm]{\bf Planck HFI L2}}
 | 
|---|
| [793] | 31 | \vspace{2cm}
 | 
|---|
| [1015] | 32 | \vspace{2cm}
 | 
|---|
| [793] | 33 | \begin{center}
 | 
|---|
 | 34 | \par \renewcommand{\baselinestretch}{2.0} \small 
 | 
|---|
 | 35 | {\LARGE \bf 
 | 
|---|
 | 36 | Planck HFI L2 \\ 
 | 
|---|
 | 37 | Software Development Guidelines
 | 
|---|
 | 38 | }
 | 
|---|
 | 39 | \par \renewcommand{\baselinestretch}{1.0} \normalsize
 | 
|---|
 | 40 | \vspace{5 cm}
 | 
|---|
 | 41 | \begin{tabular}{ll}
 | 
|---|
 | 42 | {R. Ansari} & {\tt ansari@lal.in2p3.fr} \\
 | 
|---|
 | 43 | {É. Aubourg} & {\tt aubourg@hep.saclay.cea.fr} \\
 | 
|---|
 | 44 | % {É. Lesquoy} & {\tt lesquoy@hep.saclay.cea.fr} \\
 | 
|---|
| [1015] | 45 | {C. Magneville} & {\tt cmv@hep.saclay.cea.fr} \\
 | 
|---|
| [793] | 46 | \end{tabular}
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 | \end{center}
 | 
|---|
 | 49 | \vfill
 | 
|---|
 | 50 | \hfill 
 | 
|---|
 | 51 | % \includegraphics[width=4cm]{Fig/hfi_icon_vsmall.eps}
 | 
|---|
 | 52 | \framebox[\textwidth]{\hspace{0.5cm} \bf Planck HFI Level 2 
 | 
|---|
 | 53 | \hspace{1cm} \today }
 | 
|---|
 | 54 | \end{titlepage}
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 | \tableofcontents
 | 
|---|
 | 57 | 
 | 
|---|
 | 58 | \newpage
 | 
|---|
 | 59 | 
 | 
|---|
 | 60 | \section{Introduction}
 | 
|---|
 | 61 | We intend to gather gradually in this document the guidelines 
 | 
|---|
| [1015] | 62 | for the development of Planck HFI Level 2 data processing software.
 | 
|---|
| [793] | 63 | We assume throughout this document that C++ is the baseline option
 | 
|---|
 | 64 | as the programming language for the development of Planck HFI 
 | 
|---|
| [1015] | 65 | Level 2 processing software, we review here briefly some of 
 | 
|---|
 | 66 | the properties of the C++ and Java language and interoperability
 | 
|---|
 | 67 | with other language, mainly C and Fortran.
 | 
|---|
| [793] | 68 | 
 | 
|---|
 | 69 | 
 | 
|---|
| [1015] | 70 | \section{C++}
 | 
|---|
 | 71 | {\bf C++ \ } is an object-oriented programming language which 
 | 
|---|
 | 72 | has been developed by extending the {\bf C \ } language.
 | 
|---|
 | 73 | Some of the additional possibilities incorporated in C++ are:
 | 
|---|
 | 74 | \begin{itemize}
 | 
|---|
 | 75 | \item Introduction of object and classes
 | 
|---|
 | 76 | \item function overloading
 | 
|---|
 | 77 | \item Operator overloading
 | 
|---|
 | 78 | \item function and operator inlining 
 | 
|---|
 | 79 | \item virtual functions (polymorphism)
 | 
|---|
 | 80 | \item public, protected and private members
 | 
|---|
 | 81 | \item dynamic memory management operators
 | 
|---|
 | 82 | \item Exception handling
 | 
|---|
 | 83 | \item generic (template) function and classes
 | 
|---|
 | 84 | \end{itemize}
 | 
|---|
 | 85 | 
 | 
|---|
 | 86 | We discuss here the some of the problems and solutions arising when 
 | 
|---|
 | 87 | integrating software modules written in other languages into C++ programs.
 | 
|---|
 | 88 | 
 | 
|---|
 | 89 | \subsection{Calling C code from C++} 
 | 
|---|
| [793] | 90 | C++ extends the possibilities offered by the C language. 
 | 
|---|
 | 91 | All of the C language data types and function call syntax are thus 
 | 
|---|
 | 92 | supported by C++. Among other features, C++ offers the function 
 | 
|---|
 | 93 | overloading possibility. This means that functions with different 
 | 
|---|
 | 94 | argument list can have the same name.
 | 
|---|
 | 95 | \begin{verbatim} 
 | 
|---|
 | 96 | int fo(int a);
 | 
|---|
 | 97 | int fo(int a, int b);
 | 
|---|
 | 98 | int fo(double a, double b);
 | 
|---|
 | 99 | \end{verbatim}
 | 
|---|
| [1015] | 100 | Using {\bf C \ }, one would have written:
 | 
|---|
| [793] | 101 | \begin{verbatim} 
 | 
|---|
 | 102 | int foi(int a);
 | 
|---|
 | 103 | int foii(int a, int b);
 | 
|---|
 | 104 | int fodd(double a, double b);
 | 
|---|
 | 105 | \end{verbatim}
 | 
|---|
 | 106 | C++ compilers use internally a name containing the encoding of the
 | 
|---|
 | 107 | argument list. In order to instruct the compiler to use simple 
 | 
|---|
| [1015] | 108 | names, {\bf C \ } functions should be declared as \\
 | 
|---|
| [793] | 109 | {\tt extern "C" }. This is usually included in the header
 | 
|---|
 | 110 | file (.h). In the example above, the header file (.h) file
 | 
|---|
 | 111 | would be in the form:
 | 
|---|
 | 112 | \begin{verbatim} 
 | 
|---|
 | 113 | #ifdef __cplusplus
 | 
|---|
 | 114 | extern "C" {
 | 
|---|
 | 115 | #endif
 | 
|---|
 | 116 | int foi(int a);
 | 
|---|
 | 117 | int foii(int a, int b);
 | 
|---|
 | 118 | int fodd(double a, double b);
 | 
|---|
 | 119 | #ifdef __cplusplus
 | 
|---|
 | 120 | }
 | 
|---|
 | 121 | #endif
 | 
|---|
 | 122 | \end{verbatim}
 | 
|---|
 | 123 | 
 | 
|---|
| [1015] | 124 | \subsection{Calling Fortran code from C++}
 | 
|---|
| [793] | 125 | Fortran is a simple language and uses only basic data types.
 | 
|---|
 | 126 | Although the exact mapping between Fortran and C/C++ basic data types 
 | 
|---|
 | 127 | may vary depending on the OS and hardware architecture, it is close
 | 
|---|
 | 128 | to the one shown in the table below: 
 | 
|---|
 | 129 | \begin{center}
 | 
|---|
 | 130 | \begin{tabular}{lll}
 | 
|---|
 | 131 | INTEGER     &  int    & usually 4 bytes \\
 | 
|---|
 | 132 | REAL*4      &  float  & usually 4 bytes \\
 | 
|---|
 | 133 | REAL*8      &  double & usually 8 bytes \\
 | 
|---|
 | 134 | COMPLEX     &  complex<float> & \\
 | 
|---|
 | 135 | COMPLEX*16  &  complex<double> & \\
 | 
|---|
 | 136 | \end{tabular}
 | 
|---|
 | 137 | \end{center}
 | 
|---|
 | 138 | In fortran, all arguments are passed by address and 
 | 
|---|
 | 139 | fortran compilers (on Unix systems) add an underscore "\_"
 | 
|---|
 | 140 | to all symbol names. It is thus rather easy to call 
 | 
|---|
 | 141 | Fortran subroutines or functions from C or C++. 
 | 
|---|
 | 142 | This is illustrated in the following example:
 | 
|---|
 | 143 | \begin{verbatim}
 | 
|---|
 | 144 | C   Fortran-Code
 | 
|---|
 | 145 |       SUBROUTINE FSUB(A,N,B,M)
 | 
|---|
 | 146 |       REAL A(*),B(*)
 | 
|---|
 | 147 |       INTEGER N,M
 | 
|---|
 | 148 |       RETURN
 | 
|---|
 | 149 |       END
 | 
|---|
 | 150 | \end{verbatim}
 | 
|---|
 | 151 | The corresponding C (or C++) declaration is: \\[3mm]
 | 
|---|
 | 152 | {\tt void fsub\_(float *a, int *n, float *b, int *m); } \\[3mm]
 | 
|---|
 | 153 | {\tt FSUB} can be called from C code, as is shown below : 
 | 
|---|
 | 154 | \begin{verbatim}
 | 
|---|
 | 155 | float aa[10];
 | 
|---|
 | 156 | int na=10;
 | 
|---|
 | 157 | float bb[10];    
 | 
|---|
 | 158 | int mb=10;
 | 
|---|
 | 159 | fsub_(aa, &na, bb, &mb);
 | 
|---|
 | 160 | \end{verbatim}
 | 
|---|
 | 161 | 
 | 
|---|
| [1015] | 162 | The case of character string arguments in Fortran subroutines
 | 
|---|
| [793] | 163 | needs a bit more attention, and the string length needs to be passed 
 | 
|---|
 | 164 | as an additional integer type argument.
 | 
|---|
| [1015] | 165 | As with {\bf C \ } functions, Fortran functions or subroutines 
 | 
|---|
 | 166 | have to be declared {\tt extern "C"} to be used within {\bf C++ \ }
 | 
|---|
 | 167 | programs. {\bf C/C++ \ } driver routines can easily be written for
 | 
|---|
 | 168 | extensively used Fortran modules, simplifying calling sequences.
 | 
|---|
| [793] | 169 | 
 | 
|---|
| [1015] | 170 | It should also be noted that the Fortran support libraries have to be 
 | 
|---|
| [793] | 171 | included for the link with the C++ driver.
 | 
|---|
| [1015] | 172 | It is also possible to translate the whole Fortran source code 
 | 
|---|
 | 173 | into {\bf C \ } code using {\bf f2c \ } program. The call syntax 
 | 
|---|
| [793] | 174 | will be exactly the same as with a Fortran compiler, and 
 | 
|---|
 | 175 | {\tt libf2c.a} should be used when linking the program.
 | 
|---|
 | 176 | 
 | 
|---|
| [1015] | 177 | It is very difficult to use C++ classes directly from Fortran.
 | 
|---|
 | 178 | However, high level functionalities based on a C++ library can 
 | 
|---|
 | 179 | be wrapped in a Fortran style function which can be 
 | 
|---|
 | 180 | called from Fortran. One looses of course many of the 
 | 
|---|
| [793] | 181 | possibilities offered by underlying C++ library.
 | 
|---|
 | 182 | 
 | 
|---|
 | 183 | We illustrate below the wrapping of a simple C++ class:
 | 
|---|
 | 184 | \begin{verbatim}
 | 
|---|
 | 185 | // An example class performing some computation
 | 
|---|
 | 186 | class Example {
 | 
|---|
 | 187 |   Example();
 | 
|---|
 | 188 |   ~Example();
 | 
|---|
 | 189 |   void compute(int sz, float *x);
 | 
|---|
 | 190 |   int getSize();
 | 
|---|
 | 191 |   float getResult(int k);
 | 
|---|
 | 192 | };
 | 
|---|
 | 193 | \end{verbatim}
 | 
|---|
 | 194 | 
 | 
|---|
 | 195 | The wrapper would then look like:
 | 
|---|
 | 196 | \begin{verbatim}
 | 
|---|
 | 197 | extern "C" {
 | 
|---|
 | 198 |   void foradapt_(float *a, int *n, float *b, int *m);
 | 
|---|
 | 199 | }
 | 
|---|
 | 200 | 
 | 
|---|
 | 201 | foradapt_(float *a, int *m, float *b, int *n)
 | 
|---|
 | 202 | {
 | 
|---|
 | 203 | // a is the input array, m it's size
 | 
|---|
 | 204 | // b is the output array, n the returned size
 | 
|---|
 | 205 | // b has to dimensioned big enough in the calling program
 | 
|---|
 | 206 | 
 | 
|---|
 | 207 | Example ex;
 | 
|---|
 | 208 | ex.compute(*n, a);
 | 
|---|
 | 209 | *m = ex.getSize();
 | 
|---|
 | 210 | for(int i=0; i<ex.getSize(); i++) 
 | 
|---|
 | 211 |   b[i] = ex.getResult(i);
 | 
|---|
 | 212 | }
 | 
|---|
 | 213 | \end{verbatim}
 | 
|---|
 | 214 | 
 | 
|---|
 | 215 | One can then call {\tt FORADPAT} from fortran :
 | 
|---|
 | 216 | \begin{verbatim}
 | 
|---|
 | 217 | REAL  A(1000)
 | 
|---|
 | 218 | REAL  B(1000)
 | 
|---|
 | 219 | INTEGER N,M
 | 
|---|
 | 220 | M = 1000
 | 
|---|
 | 221 | N = 1000
 | 
|---|
 | 222 | CALL FORADPAT(A, M, B, N)
 | 
|---|
 | 223 | \end{verbatim}
 | 
|---|
 | 224 | 
 | 
|---|
 | 225 | 
 | 
|---|
 | 226 | \subsection{Fortran-90 and C++}
 | 
|---|
 | 227 | Fortran-90 (F90) is a much more complex language than Fortran 77
 | 
|---|
 | 228 | (F77). Compared to F77, it introduces many new constructions, including:
 | 
|---|
 | 229 | \begin{itemize}
 | 
|---|
 | 230 | \item[-] pointers 
 | 
|---|
 | 231 | \item[-] local and global variables
 | 
|---|
 | 232 | \item[-] in, out, in-out argument type for function and subroutines
 | 
|---|
 | 233 | \item[-] compound data types, similar to structures in C 
 | 
|---|
 | 234 | \item[-] multidimensional arrays
 | 
|---|
 | 235 | \item[-] function and operator overloading.
 | 
|---|
 | 236 | \end{itemize}
 | 
|---|
 | 237 | It is thus more difficult to use full featured F90 modules from 
 | 
|---|
 | 238 | {\bf C} or {\bf C++}. One would have to map all these different 
 | 
|---|
 | 239 | data structures with their attributes between the two languages,
 | 
|---|
 | 240 | in a OS/compiler independent way.
 | 
|---|
 | 241 | It should however be possible to encapsulate F90 modules into simple F77 
 | 
|---|
 | 242 | like subroutines that could be called from C/C++. 
 | 
|---|
 | 243 | 
 | 
|---|
 | 244 | 
 | 
|---|
| [1015] | 245 | \section{Java}
 | 
|---|
 | 246 | Java \footnote{Information on the Java platform and language 
 | 
|---|
 | 247 | can be found at {\bf http://java.sun.com} }
 | 
|---|
 | 248 | is a rather recent object-oriented programming language. It is 
 | 
|---|
 | 249 | based on the concept of a virtual machine, and a very extended 
 | 
|---|
 | 250 | standard library.
 | 
|---|
 | 251 | 
 | 
|---|
 | 252 | Java compilers produce "byte-codes" that are interpreted in a virtual 
 | 
|---|
 | 253 | machine (JVM). Thus, pure Java programs are platform-independent and 
 | 
|---|
 | 254 | portable. The very extended libraries that are available for the 
 | 
|---|
 | 255 | language make it a very good choice for user interfaces, network 
 | 
|---|
 | 256 | programming, distributed objects, database access. Numeric 
 | 
|---|
 | 257 | computation libraries start to appear but are still in early stages 
 | 
|---|
 | 258 | of development.
 | 
|---|
 | 259 | 
 | 
|---|
 | 260 | The Java language is strongly typed, with dynamic typing information. 
 | 
|---|
 | 261 | It is dynamic in essence as class bytecodes can be loaded into the 
 | 
|---|
 | 262 | JVM on request.
 | 
|---|
 | 263 | It uses a garbage collector for memory management. Memory leaks and 
 | 
|---|
 | 264 | memory access errors cannot exist. All this makes debugging easier 
 | 
|---|
 | 265 | than with C++.
 | 
|---|
 | 266 | 
 | 
|---|
 | 267 | The overhead of interpreting the bytecodes in the virtual machine is 
 | 
|---|
 | 268 | alleviated by the development of "JIT" (Just In Time) compilers, that 
 | 
|---|
 | 269 | do a dynamic compilation. Java programs are typically 3 times slower 
 | 
|---|
 | 270 | than their equivalent in C++, but the exact figure might vary between 
 | 
|---|
 | 271 | 1 and 5 depending on the type of program.
 | 
|---|
 | 272 | 
 | 
|---|
 | 273 | Two features convenient for numeric library development and usage 
 | 
|---|
 | 274 | present in C++ are missing in Java: templates and operator overloading. 
 | 
|---|
 | 275 | Typically, a single code cannot be specialised for 
 | 
|---|
 | 276 | floats and doubles automatically, and one must write, if A, B and C 
 | 
|---|
 | 277 | are matrices, {\tt C = A.mult(B) instead of C = A*B} . 
 | 
|---|
 | 278 | 
 | 
|---|
 | 279 | \subsection{Calling C/C++ code from Java }
 | 
|---|
 | 280 | 
 | 
|---|
 | 281 | A Java library (JNI, Java Native Interface) allows to call C/C++ code 
 | 
|---|
 | 282 | from Java programs. Of course, portability is then lost.
 | 
|---|
 | 283 | Methods in Java objects can be declared {\tt native}. A tool then 
 | 
|---|
 | 284 | produces C/C++ headers for coding these methods in C/C++. This code 
 | 
|---|
 | 285 | can call existing C/C++/Fortran code, and even map the Java object to 
 | 
|---|
 | 286 | a C++ object.
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 | Because the layout of objects in memory is not fixed in the JVM 
 | 
|---|
 | 289 | specifications, all accesses to methods and member variables are done 
 | 
|---|
 | 290 | through interface pointers. Accessing arrays can imply a copy of the 
 | 
|---|
 | 291 | array on input, and a copy back on return if the array was modified.
 | 
|---|
 | 292 | 
 | 
|---|
 | 293 | Since Java memory management is garbage-collector-based, C/C++ 
 | 
|---|
 | 294 | programs that want to hold references to Java objects, or create Java 
 | 
|---|
 | 295 | objects, must interact with the garbage collector explicitly.
 | 
|---|
 | 296 | 
 | 
|---|
 | 297 | JNI allows also C/C++ programs to instantiate a JVM and Java objects, 
 | 
|---|
 | 298 | and access them.
 | 
|---|
 | 299 | 
 | 
|---|
 | 300 | \subsection{Java and CORBA}
 | 
|---|
 | 301 | 
 | 
|---|
 | 302 | Another solution to call C++ objects from Java, or vice-versa, is to 
 | 
|---|
 | 303 | use CORBA. CORBA is a standard distributed objects framework, and 
 | 
|---|
 | 304 | Java 2 comes with a CORBA-2 compliant ORB (Object Request Broker), 
 | 
|---|
 | 305 | JavaIDL.
 | 
|---|
 | 306 | 
 | 
|---|
 | 307 | Objects distributed through CORBA must have their interface defined 
 | 
|---|
 | 308 | in a specific language, IDL. Tools then creates stubs for any 
 | 
|---|
 | 309 | language, as well as implementation skeletons.
 | 
|---|
 | 310 | 
 | 
|---|
 | 311 | An object can then physically exist on a machine, implemented in C++, 
 | 
|---|
 | 312 | and be manipulated remotely through Java stubs, as if it were a local 
 | 
|---|
 | 313 | Java object. CORBA offers thus language-independent distributed 
 | 
|---|
 | 314 | objects.
 | 
|---|
 | 315 | 
 | 
|---|
 | 316 | It adds overhead compared to JNI, because of the presence of a 
 | 
|---|
 | 317 | network layer, but offers more functionality. In particular, the C++ 
 | 
|---|
 | 318 | objects are platform-dependent, but the Java code that uses them, 
 | 
|---|
 | 319 | being pure Java code, remains portable.
 | 
|---|
 | 320 | 
 | 
|---|
 | 321 | 
 | 
|---|
| [793] | 322 | \newpage
 | 
|---|
 | 323 | \appendix
 | 
|---|
 | 324 | 
 | 
|---|
| [1015] | 325 | \section{C++ standard and compilers}
 | 
|---|
| [793] | 326 | \vspace{5 mm}
 | 
|---|
 | 327 | 
 | 
|---|
 | 328 | {\bf C++} can be considered now as a mature language. 
 | 
|---|
 | 329 | The current standard for C++ and C are defined by
 | 
|---|
 | 330 | \footnote{Available from {\bf http://www.ansi.org/ } }: 
 | 
|---|
 | 331 | \begin{itemize}
 | 
|---|
| [1015] | 332 | \item[] {\bf ISO/IEC 14882-1998(E) \ } Programming languages -- C++ 
 | 
|---|
 | 333 | \item[] {\bf ANSI/ISO 9899-1990 \ } for Programming Languages C  
 | 
|---|
| [793] | 334 | \end{itemize}
 | 
|---|
 | 335 | 
 | 
|---|
| [1015] | 336 | Powerful compilers are available on most platforms, including:
 | 
|---|
| [793] | 337 | 
 | 
|---|
 | 338 | \begin{itemize}
 | 
|---|
 | 339 | \item[-] the GNU multiplatform g++ \footnote{http://gcc.gnu.org/},
 | 
|---|
 | 340 | \item[-] KAI KCC \footnote{http://www.kai.com/C\_plus\_plus/} which is a 
 | 
|---|
 | 341 | nice multiplatform optimising C++ compiler.
 | 
|---|
 | 342 | \item[-] Digital (Compaq) cxx \footnote{http://www.unix.digital.com/cplus/}
 | 
|---|
 | 343 | \item[-] IBM VisualAge C++ \footnote{http://www-4.ibm.com/software/ad/vacpp/}
 | 
|---|
 | 344 | \item[-] HP aCC \footnote{http://www.hp.com/esy/lang/cpp/}
 | 
|---|
 | 345 | \item[-] Silicon Graphics SGI-CC on IRIX \footnote{http://www.sgi.com/developers/devtools/languages/c++.html} 
 | 
|---|
 | 346 | \item[-] Cray C++ compiler on Unicos \footnote{http://www.sgi.com/software/unicos/cplusoverview.html}
 | 
|---|
 | 347 | \end{itemize} 
 | 
|---|
 | 348 | 
 | 
|---|
 | 349 | 
 | 
|---|
 | 350 | \end{document}
 | 
|---|