| 1 | \documentclass[twoside,12pt]{article} | 
|---|
| 2 | %  Package standard : Utilisation de caracteres accentues, mode francais et graphique | 
|---|
| 3 | \usepackage[latin1]{inputenc} | 
|---|
| 4 | \usepackage[T1]{fontenc} | 
|---|
| 5 | \usepackage{babel} | 
|---|
| 6 | \usepackage{graphicx} | 
|---|
| 7 |  | 
|---|
| 8 | %  Extension de symboles mathematiques | 
|---|
| 9 | \usepackage{amssymb} | 
|---|
| 10 |  | 
|---|
| 11 | % package a mettre pour faire du pdf | 
|---|
| 12 | \usepackage{palatino} | 
|---|
| 13 |  | 
|---|
| 14 | %  Definition de taille de page | 
|---|
| 15 | \setlength{\textwidth}{16cm} | 
|---|
| 16 | \setlength{\textheight}{21.5cm} | 
|---|
| 17 | \setlength{\topmargin}{0.5cm} | 
|---|
| 18 | \setlength{\oddsidemargin}{0.cm} | 
|---|
| 19 | \setlength{\evensidemargin}{0.cm} | 
|---|
| 20 | \setlength{\unitlength}{1mm} | 
|---|
| 21 |  | 
|---|
| 22 | \newcommand{\bul}{$\bullet \ $} | 
|---|
| 23 |  | 
|---|
| 24 | \begin{document} | 
|---|
| 25 |  | 
|---|
| 26 | \begin{titlepage} | 
|---|
| 27 | \vspace{1cm} | 
|---|
| 28 | \vspace{1cm} | 
|---|
| 29 | \makebox[34mm][c]{\includegraphics[width=3cm]{hfi_icon_vsmall.eps}} | 
|---|
| 30 | \raisebox{12mm}{\rule{80 mm}{0.5 mm}\makebox[50 mm]{\bf Planck HFI L2}} | 
|---|
| 31 | \vspace{2cm} | 
|---|
| 32 | \vspace{2cm} | 
|---|
| 33 | \begin{center} | 
|---|
| 34 | \par \renewcommand{\baselinestretch}{2.0} \small | 
|---|
| 35 | {\LARGE \bf | 
|---|
| 36 | Planck HFI L2 \\ | 
|---|
| 37 | Software Development Guidelines | 
|---|
| 38 | } | 
|---|
| 39 | \par \renewcommand{\baselinestretch}{1.0} \normalsize | 
|---|
| 40 | \vspace{5 cm} | 
|---|
| 41 | \begin{tabular}{ll} | 
|---|
| 42 | {R. Ansari} & {\tt ansari@lal.in2p3.fr} \\ | 
|---|
| 43 | {É. Aubourg} & {\tt aubourg@hep.saclay.cea.fr} \\ | 
|---|
| 44 | % {É. Lesquoy} & {\tt lesquoy@hep.saclay.cea.fr} \\ | 
|---|
| 45 | {C. Magneville} & {\tt cmv@hep.saclay.cea.fr} \\ | 
|---|
| 46 | \end{tabular} | 
|---|
| 47 |  | 
|---|
| 48 | \end{center} | 
|---|
| 49 | \vfill | 
|---|
| 50 | \hfill | 
|---|
| 51 | % \includegraphics[width=4cm]{Fig/hfi_icon_vsmall.eps} | 
|---|
| 52 | \framebox[\textwidth]{\hspace{0.5cm} \bf Planck HFI Level 2 | 
|---|
| 53 | \hspace{1cm} \today } | 
|---|
| 54 | \end{titlepage} | 
|---|
| 55 |  | 
|---|
| 56 | \tableofcontents | 
|---|
| 57 |  | 
|---|
| 58 | \newpage | 
|---|
| 59 |  | 
|---|
| 60 | \section{Introduction} | 
|---|
| 61 | We intend to gather gradually in this document the guidelines | 
|---|
| 62 | for the development of Planck HFI Level 2 data processing software. | 
|---|
| 63 | We assume throughout this document that C++ is the baseline option | 
|---|
| 64 | as the programming language for the development of Planck HFI | 
|---|
| 65 | Level 2 processing software, we review here briefly some of | 
|---|
| 66 | the properties of the C++ and Java language and interoperability | 
|---|
| 67 | with other language, mainly C and Fortran. | 
|---|
| 68 |  | 
|---|
| 69 |  | 
|---|
| 70 | \section{C++} | 
|---|
| 71 | {\bf C++ \ } is an object-oriented programming language which | 
|---|
| 72 | has been developed by extending the {\bf C \ } language. | 
|---|
| 73 | Some of the additional possibilities incorporated in C++ are: | 
|---|
| 74 | \begin{itemize} | 
|---|
| 75 | \item Introduction of object and classes | 
|---|
| 76 | \item function overloading | 
|---|
| 77 | \item Operator overloading | 
|---|
| 78 | \item function and operator inlining | 
|---|
| 79 | \item virtual functions (polymorphism) | 
|---|
| 80 | \item public, protected and private members | 
|---|
| 81 | \item dynamic memory management operators | 
|---|
| 82 | \item Exception handling | 
|---|
| 83 | \item generic (template) function and classes | 
|---|
| 84 | \end{itemize} | 
|---|
| 85 |  | 
|---|
| 86 | We discuss here the some of the problems and solutions arising when | 
|---|
| 87 | integrating software modules written in other languages into C++ programs. | 
|---|
| 88 |  | 
|---|
| 89 | \subsection{Calling C code from C++} | 
|---|
| 90 | C++ extends the possibilities offered by the C language. | 
|---|
| 91 | All of the C language data types and function call syntax are thus | 
|---|
| 92 | supported by C++. Among other features, C++ offers the function | 
|---|
| 93 | overloading possibility. This means that functions with different | 
|---|
| 94 | argument list can have the same name. | 
|---|
| 95 | \begin{verbatim} | 
|---|
| 96 | int fo(int a); | 
|---|
| 97 | int fo(int a, int b); | 
|---|
| 98 | int fo(double a, double b); | 
|---|
| 99 | \end{verbatim} | 
|---|
| 100 | Using {\bf C \ }, one would have written: | 
|---|
| 101 | \begin{verbatim} | 
|---|
| 102 | int foi(int a); | 
|---|
| 103 | int foii(int a, int b); | 
|---|
| 104 | int fodd(double a, double b); | 
|---|
| 105 | \end{verbatim} | 
|---|
| 106 | C++ compilers use internally a name containing the encoding of the | 
|---|
| 107 | argument list. In order to instruct the compiler to use simple | 
|---|
| 108 | names, {\bf C \ } functions should be declared as \\ | 
|---|
| 109 | {\tt extern "C" }. This is usually included in the header | 
|---|
| 110 | file (.h). In the example above, the header file (.h) file | 
|---|
| 111 | would be in the form: | 
|---|
| 112 | \begin{verbatim} | 
|---|
| 113 | #ifdef __cplusplus | 
|---|
| 114 | extern "C" { | 
|---|
| 115 | #endif | 
|---|
| 116 | int foi(int a); | 
|---|
| 117 | int foii(int a, int b); | 
|---|
| 118 | int fodd(double a, double b); | 
|---|
| 119 | #ifdef __cplusplus | 
|---|
| 120 | } | 
|---|
| 121 | #endif | 
|---|
| 122 | \end{verbatim} | 
|---|
| 123 |  | 
|---|
| 124 | \subsection{Calling Fortran code from C++} | 
|---|
| 125 | Fortran is a simple language and uses only basic data types. | 
|---|
| 126 | Although the exact mapping between Fortran and C/C++ basic data types | 
|---|
| 127 | may vary depending on the OS and hardware architecture, it is close | 
|---|
| 128 | to the one shown in the table below: | 
|---|
| 129 | \begin{center} | 
|---|
| 130 | \begin{tabular}{lll} | 
|---|
| 131 | INTEGER     &  int    & usually 4 bytes \\ | 
|---|
| 132 | REAL*4      &  float  & usually 4 bytes \\ | 
|---|
| 133 | REAL*8      &  double & usually 8 bytes \\ | 
|---|
| 134 | COMPLEX     &  complex<float> & \\ | 
|---|
| 135 | COMPLEX*16  &  complex<double> & \\ | 
|---|
| 136 | \end{tabular} | 
|---|
| 137 | \end{center} | 
|---|
| 138 | In fortran, all arguments are passed by address and | 
|---|
| 139 | fortran compilers (on Unix systems) add an underscore "\_" | 
|---|
| 140 | to all symbol names. It is thus rather easy to call | 
|---|
| 141 | Fortran subroutines or functions from C or C++. | 
|---|
| 142 | This is illustrated in the following example: | 
|---|
| 143 | \begin{verbatim} | 
|---|
| 144 | C   Fortran-Code | 
|---|
| 145 | SUBROUTINE FSUB(A,N,B,M) | 
|---|
| 146 | REAL A(*),B(*) | 
|---|
| 147 | INTEGER N,M | 
|---|
| 148 | RETURN | 
|---|
| 149 | END | 
|---|
| 150 | \end{verbatim} | 
|---|
| 151 | The corresponding C (or C++) declaration is: \\[3mm] | 
|---|
| 152 | {\tt void fsub\_(float *a, int *n, float *b, int *m); } \\[3mm] | 
|---|
| 153 | {\tt FSUB} can be called from C code, as is shown below : | 
|---|
| 154 | \begin{verbatim} | 
|---|
| 155 | float aa[10]; | 
|---|
| 156 | int na=10; | 
|---|
| 157 | float bb[10]; | 
|---|
| 158 | int mb=10; | 
|---|
| 159 | fsub_(aa, &na, bb, &mb); | 
|---|
| 160 | \end{verbatim} | 
|---|
| 161 |  | 
|---|
| 162 | The case of character string arguments in Fortran subroutines | 
|---|
| 163 | needs a bit more attention, and the string length needs to be passed | 
|---|
| 164 | as an additional integer type argument. | 
|---|
| 165 | As with {\bf C \ } functions, Fortran functions or subroutines | 
|---|
| 166 | have to be declared {\tt extern "C"} to be used within {\bf C++ \ } | 
|---|
| 167 | programs. {\bf C/C++ \ } driver routines can easily be written for | 
|---|
| 168 | extensively used Fortran modules, simplifying calling sequences. | 
|---|
| 169 |  | 
|---|
| 170 | It should also be noted that the Fortran support libraries have to be | 
|---|
| 171 | included for the link with the C++ driver. | 
|---|
| 172 | It is also possible to translate the whole Fortran source code | 
|---|
| 173 | into {\bf C \ } code using {\bf f2c \ } program. The call syntax | 
|---|
| 174 | will be exactly the same as with a Fortran compiler, and | 
|---|
| 175 | {\tt libf2c.a} should be used when linking the program. | 
|---|
| 176 |  | 
|---|
| 177 | It is very difficult to use C++ classes directly from Fortran. | 
|---|
| 178 | However, high level functionalities based on a C++ library can | 
|---|
| 179 | be wrapped in a Fortran style function which can be | 
|---|
| 180 | called from Fortran. One looses of course many of the | 
|---|
| 181 | possibilities offered by underlying C++ library. | 
|---|
| 182 |  | 
|---|
| 183 | We illustrate below the wrapping of a simple C++ class: | 
|---|
| 184 | \begin{verbatim} | 
|---|
| 185 | // An example class performing some computation | 
|---|
| 186 | class Example { | 
|---|
| 187 | Example(); | 
|---|
| 188 | ~Example(); | 
|---|
| 189 | void compute(int sz, float *x); | 
|---|
| 190 | int getSize(); | 
|---|
| 191 | float getResult(int k); | 
|---|
| 192 | }; | 
|---|
| 193 | \end{verbatim} | 
|---|
| 194 |  | 
|---|
| 195 | The wrapper would then look like: | 
|---|
| 196 | \begin{verbatim} | 
|---|
| 197 | extern "C" { | 
|---|
| 198 | void foradapt_(float *a, int *n, float *b, int *m); | 
|---|
| 199 | } | 
|---|
| 200 |  | 
|---|
| 201 | foradapt_(float *a, int *m, float *b, int *n) | 
|---|
| 202 | { | 
|---|
| 203 | // a is the input array, m it's size | 
|---|
| 204 | // b is the output array, n the returned size | 
|---|
| 205 | // b has to dimensioned big enough in the calling program | 
|---|
| 206 |  | 
|---|
| 207 | Example ex; | 
|---|
| 208 | ex.compute(*n, a); | 
|---|
| 209 | *m = ex.getSize(); | 
|---|
| 210 | for(int i=0; i<ex.getSize(); i++) | 
|---|
| 211 | b[i] = ex.getResult(i); | 
|---|
| 212 | } | 
|---|
| 213 | \end{verbatim} | 
|---|
| 214 |  | 
|---|
| 215 | One can then call {\tt FORADPAT} from fortran : | 
|---|
| 216 | \begin{verbatim} | 
|---|
| 217 | REAL  A(1000) | 
|---|
| 218 | REAL  B(1000) | 
|---|
| 219 | INTEGER N,M | 
|---|
| 220 | M = 1000 | 
|---|
| 221 | N = 1000 | 
|---|
| 222 | CALL FORADPAT(A, M, B, N) | 
|---|
| 223 | \end{verbatim} | 
|---|
| 224 |  | 
|---|
| 225 |  | 
|---|
| 226 | \subsection{Fortran-90 and C++} | 
|---|
| 227 | Fortran-90 (F90) is a much more complex language than Fortran 77 | 
|---|
| 228 | (F77). Compared to F77, it introduces many new constructions, including: | 
|---|
| 229 | \begin{itemize} | 
|---|
| 230 | \item[-] pointers | 
|---|
| 231 | \item[-] local and global variables | 
|---|
| 232 | \item[-] in, out, in-out argument type for function and subroutines | 
|---|
| 233 | \item[-] compound data types, similar to structures in C | 
|---|
| 234 | \item[-] multidimensional arrays | 
|---|
| 235 | \item[-] function and operator overloading. | 
|---|
| 236 | \end{itemize} | 
|---|
| 237 | It is thus more difficult to use full featured F90 modules from | 
|---|
| 238 | {\bf C} or {\bf C++}. One would have to map all these different | 
|---|
| 239 | data structures with their attributes between the two languages, | 
|---|
| 240 | in a OS/compiler independent way. | 
|---|
| 241 | It should however be possible to encapsulate F90 modules into simple F77 | 
|---|
| 242 | like subroutines that could be called from C/C++. | 
|---|
| 243 |  | 
|---|
| 244 |  | 
|---|
| 245 | \section{Java} | 
|---|
| 246 | Java \footnote{Information on the Java platform and language | 
|---|
| 247 | can be found at {\bf http://java.sun.com} } | 
|---|
| 248 | is a rather recent object-oriented programming language. It is | 
|---|
| 249 | based on the concept of a virtual machine, and a very extended | 
|---|
| 250 | standard library. | 
|---|
| 251 |  | 
|---|
| 252 | Java compilers produce "byte-codes" that are interpreted in a virtual | 
|---|
| 253 | machine (JVM). Thus, pure Java programs are platform-independent and | 
|---|
| 254 | portable. The very extended libraries that are available for the | 
|---|
| 255 | language make it a very good choice for user interfaces, network | 
|---|
| 256 | programming, distributed objects, database access. Numeric | 
|---|
| 257 | computation libraries start to appear but are still in early stages | 
|---|
| 258 | of development. | 
|---|
| 259 |  | 
|---|
| 260 | The Java language is strongly typed, with dynamic typing information. | 
|---|
| 261 | It is dynamic in essence as class bytecodes can be loaded into the | 
|---|
| 262 | JVM on request. | 
|---|
| 263 | It uses a garbage collector for memory management. Memory leaks and | 
|---|
| 264 | memory access errors cannot exist. All this makes debugging easier | 
|---|
| 265 | than with C++. | 
|---|
| 266 |  | 
|---|
| 267 | The overhead of interpreting the bytecodes in the virtual machine is | 
|---|
| 268 | alleviated by the development of "JIT" (Just In Time) compilers, that | 
|---|
| 269 | do a dynamic compilation. Java programs are typically 3 times slower | 
|---|
| 270 | than their equivalent in C++, but the exact figure might vary between | 
|---|
| 271 | 1 and 5 depending on the type of program. | 
|---|
| 272 |  | 
|---|
| 273 | Two features convenient for numeric library development and usage | 
|---|
| 274 | present in C++ are missing in Java: templates and operator overloading. | 
|---|
| 275 | Typically, a single code cannot be specialised for | 
|---|
| 276 | floats and doubles automatically, and one must write, if A, B and C | 
|---|
| 277 | are matrices, {\tt C = A.mult(B) instead of C = A*B} . | 
|---|
| 278 |  | 
|---|
| 279 | \subsection{Calling C/C++ code from Java } | 
|---|
| 280 |  | 
|---|
| 281 | A Java library (JNI, Java Native Interface) allows to call C/C++ code | 
|---|
| 282 | from Java programs. Of course, portability is then lost. | 
|---|
| 283 | Methods in Java objects can be declared {\tt native}. A tool then | 
|---|
| 284 | produces C/C++ headers for coding these methods in C/C++. This code | 
|---|
| 285 | can call existing C/C++/Fortran code, and even map the Java object to | 
|---|
| 286 | a C++ object. | 
|---|
| 287 |  | 
|---|
| 288 | Because the layout of objects in memory is not fixed in the JVM | 
|---|
| 289 | specifications, all accesses to methods and member variables are done | 
|---|
| 290 | through interface pointers. Accessing arrays can imply a copy of the | 
|---|
| 291 | array on input, and a copy back on return if the array was modified. | 
|---|
| 292 |  | 
|---|
| 293 | Since Java memory management is garbage-collector-based, C/C++ | 
|---|
| 294 | programs that want to hold references to Java objects, or create Java | 
|---|
| 295 | objects, must interact with the garbage collector explicitly. | 
|---|
| 296 |  | 
|---|
| 297 | JNI allows also C/C++ programs to instantiate a JVM and Java objects, | 
|---|
| 298 | and access them. | 
|---|
| 299 |  | 
|---|
| 300 | \subsection{Java and CORBA} | 
|---|
| 301 |  | 
|---|
| 302 | Another solution to call C++ objects from Java, or vice-versa, is to | 
|---|
| 303 | use CORBA. CORBA is a standard distributed objects framework, and | 
|---|
| 304 | Java 2 comes with a CORBA-2 compliant ORB (Object Request Broker), | 
|---|
| 305 | JavaIDL. | 
|---|
| 306 |  | 
|---|
| 307 | Objects distributed through CORBA must have their interface defined | 
|---|
| 308 | in a specific language, IDL. Tools then creates stubs for any | 
|---|
| 309 | language, as well as implementation skeletons. | 
|---|
| 310 |  | 
|---|
| 311 | An object can then physically exist on a machine, implemented in C++, | 
|---|
| 312 | and be manipulated remotely through Java stubs, as if it were a local | 
|---|
| 313 | Java object. CORBA offers thus language-independent distributed | 
|---|
| 314 | objects. | 
|---|
| 315 |  | 
|---|
| 316 | It adds overhead compared to JNI, because of the presence of a | 
|---|
| 317 | network layer, but offers more functionality. In particular, the C++ | 
|---|
| 318 | objects are platform-dependent, but the Java code that uses them, | 
|---|
| 319 | being pure Java code, remains portable. | 
|---|
| 320 |  | 
|---|
| 321 |  | 
|---|
| 322 | \newpage | 
|---|
| 323 | \appendix | 
|---|
| 324 |  | 
|---|
| 325 | \section{C++ standard and compilers} | 
|---|
| 326 | \vspace{5 mm} | 
|---|
| 327 |  | 
|---|
| 328 | {\bf C++} can be considered now as a mature language. | 
|---|
| 329 | The current standard for C++ and C are defined by | 
|---|
| 330 | \footnote{Available from {\bf http://www.ansi.org/ } }: | 
|---|
| 331 | \begin{itemize} | 
|---|
| 332 | \item[] {\bf ISO/IEC 14882-1998(E) \ } Programming languages -- C++ | 
|---|
| 333 | \item[] {\bf ANSI/ISO 9899-1990 \ } for Programming Languages C | 
|---|
| 334 | \end{itemize} | 
|---|
| 335 |  | 
|---|
| 336 | Powerful compilers are available on most platforms, including: | 
|---|
| 337 |  | 
|---|
| 338 | \begin{itemize} | 
|---|
| 339 | \item[-] the GNU multiplatform g++ \footnote{http://gcc.gnu.org/}, | 
|---|
| 340 | \item[-] KAI KCC \footnote{http://www.kai.com/C\_plus\_plus/} which is a | 
|---|
| 341 | nice multiplatform optimising C++ compiler. | 
|---|
| 342 | \item[-] Digital (Compaq) cxx \footnote{http://www.unix.digital.com/cplus/} | 
|---|
| 343 | \item[-] IBM VisualAge C++ \footnote{http://www-4.ibm.com/software/ad/vacpp/} | 
|---|
| 344 | \item[-] HP aCC \footnote{http://www.hp.com/esy/lang/cpp/} | 
|---|
| 345 | \item[-] Silicon Graphics SGI-CC on IRIX \footnote{http://www.sgi.com/developers/devtools/languages/c++.html} | 
|---|
| 346 | \item[-] Cray C++ compiler on Unicos \footnote{http://www.sgi.com/software/unicos/cplusoverview.html} | 
|---|
| 347 | \end{itemize} | 
|---|
| 348 |  | 
|---|
| 349 |  | 
|---|
| 350 | \end{document} | 
|---|