1 | \documentclass[twoside,12pt]{article}
|
---|
2 | % Package standard : Utilisation de caracteres accentues, mode francais et graphique
|
---|
3 | \usepackage[latin1]{inputenc}
|
---|
4 | \usepackage[T1]{fontenc}
|
---|
5 | \usepackage{babel}
|
---|
6 | \usepackage{graphicx}
|
---|
7 |
|
---|
8 | % Extension de symboles mathematiques
|
---|
9 | \usepackage{amssymb}
|
---|
10 |
|
---|
11 | % package a mettre pour faire du pdf
|
---|
12 | \usepackage{palatino}
|
---|
13 |
|
---|
14 | % Definition de taille de page
|
---|
15 | \setlength{\textwidth}{16cm}
|
---|
16 | \setlength{\textheight}{21.5cm}
|
---|
17 | \setlength{\topmargin}{0.5cm}
|
---|
18 | \setlength{\oddsidemargin}{0.cm}
|
---|
19 | \setlength{\evensidemargin}{0.cm}
|
---|
20 | \setlength{\unitlength}{1mm}
|
---|
21 |
|
---|
22 | \newcommand{\bul}{$\bullet \ $}
|
---|
23 |
|
---|
24 | \begin{document}
|
---|
25 |
|
---|
26 | \begin{titlepage}
|
---|
27 | \vspace{1cm}
|
---|
28 | \vspace{1cm}
|
---|
29 | \makebox[34mm][c]{\includegraphics[width=3cm]{hfi_icon_vsmall.eps}}
|
---|
30 | \raisebox{12mm}{\rule{80 mm}{0.5 mm}\makebox[50 mm]{\bf Planck HFI L2}}
|
---|
31 | \vspace{2cm}
|
---|
32 | \vspace{2cm}
|
---|
33 | \begin{center}
|
---|
34 | \par \renewcommand{\baselinestretch}{2.0} \small
|
---|
35 | {\LARGE \bf
|
---|
36 | Planck HFI L2 \\
|
---|
37 | Software Development Guidelines
|
---|
38 | }
|
---|
39 | \par \renewcommand{\baselinestretch}{1.0} \normalsize
|
---|
40 | \vspace{5 cm}
|
---|
41 | \begin{tabular}{ll}
|
---|
42 | {R. Ansari} & {\tt ansari@lal.in2p3.fr} \\
|
---|
43 | {É. Aubourg} & {\tt aubourg@hep.saclay.cea.fr} \\
|
---|
44 | % {É. Lesquoy} & {\tt lesquoy@hep.saclay.cea.fr} \\
|
---|
45 | {C. Magneville} & {\tt cmv@hep.saclay.cea.fr} \\
|
---|
46 | \end{tabular}
|
---|
47 |
|
---|
48 | \end{center}
|
---|
49 | \vfill
|
---|
50 | \hfill
|
---|
51 | % \includegraphics[width=4cm]{Fig/hfi_icon_vsmall.eps}
|
---|
52 | \framebox[\textwidth]{\hspace{0.5cm} \bf Planck HFI Level 2
|
---|
53 | \hspace{1cm} \today }
|
---|
54 | \end{titlepage}
|
---|
55 |
|
---|
56 | \tableofcontents
|
---|
57 |
|
---|
58 | \newpage
|
---|
59 |
|
---|
60 | \section{Introduction}
|
---|
61 | We intend to gather gradually in this document the guidelines
|
---|
62 | for the development of Planck HFI Level 2 data processing software.
|
---|
63 | We assume throughout this document that C++ is the baseline option
|
---|
64 | as the programming language for the development of Planck HFI
|
---|
65 | Level 2 processing software, we review here briefly some of
|
---|
66 | the properties of the C++ and Java language and interoperability
|
---|
67 | with other language, mainly C and Fortran.
|
---|
68 |
|
---|
69 |
|
---|
70 | \section{C++}
|
---|
71 | {\bf C++ \ } is an object-oriented programming language which
|
---|
72 | has been developed by extending the {\bf C \ } language.
|
---|
73 | Some of the additional possibilities incorporated in C++ are:
|
---|
74 | \begin{itemize}
|
---|
75 | \item Introduction of object and classes
|
---|
76 | \item function overloading
|
---|
77 | \item Operator overloading
|
---|
78 | \item function and operator inlining
|
---|
79 | \item virtual functions (polymorphism)
|
---|
80 | \item public, protected and private members
|
---|
81 | \item dynamic memory management operators
|
---|
82 | \item Exception handling
|
---|
83 | \item generic (template) function and classes
|
---|
84 | \end{itemize}
|
---|
85 |
|
---|
86 | We discuss here the some of the problems and solutions arising when
|
---|
87 | integrating software modules written in other languages into C++ programs.
|
---|
88 |
|
---|
89 | \subsection{Calling C code from C++}
|
---|
90 | C++ extends the possibilities offered by the C language.
|
---|
91 | All of the C language data types and function call syntax are thus
|
---|
92 | supported by C++. Among other features, C++ offers the function
|
---|
93 | overloading possibility. This means that functions with different
|
---|
94 | argument list can have the same name.
|
---|
95 | \begin{verbatim}
|
---|
96 | int fo(int a);
|
---|
97 | int fo(int a, int b);
|
---|
98 | int fo(double a, double b);
|
---|
99 | \end{verbatim}
|
---|
100 | Using {\bf C \ }, one would have written:
|
---|
101 | \begin{verbatim}
|
---|
102 | int foi(int a);
|
---|
103 | int foii(int a, int b);
|
---|
104 | int fodd(double a, double b);
|
---|
105 | \end{verbatim}
|
---|
106 | C++ compilers use internally a name containing the encoding of the
|
---|
107 | argument list. In order to instruct the compiler to use simple
|
---|
108 | names, {\bf C \ } functions should be declared as \\
|
---|
109 | {\tt extern "C" }. This is usually included in the header
|
---|
110 | file (.h). In the example above, the header file (.h) file
|
---|
111 | would be in the form:
|
---|
112 | \begin{verbatim}
|
---|
113 | #ifdef __cplusplus
|
---|
114 | extern "C" {
|
---|
115 | #endif
|
---|
116 | int foi(int a);
|
---|
117 | int foii(int a, int b);
|
---|
118 | int fodd(double a, double b);
|
---|
119 | #ifdef __cplusplus
|
---|
120 | }
|
---|
121 | #endif
|
---|
122 | \end{verbatim}
|
---|
123 |
|
---|
124 | \subsection{Calling Fortran code from C++}
|
---|
125 | Fortran is a simple language and uses only basic data types.
|
---|
126 | Although the exact mapping between Fortran and C/C++ basic data types
|
---|
127 | may vary depending on the OS and hardware architecture, it is close
|
---|
128 | to the one shown in the table below:
|
---|
129 | \begin{center}
|
---|
130 | \begin{tabular}{lll}
|
---|
131 | INTEGER & int & usually 4 bytes \\
|
---|
132 | REAL*4 & float & usually 4 bytes \\
|
---|
133 | REAL*8 & double & usually 8 bytes \\
|
---|
134 | COMPLEX & complex<float> & \\
|
---|
135 | COMPLEX*16 & complex<double> & \\
|
---|
136 | \end{tabular}
|
---|
137 | \end{center}
|
---|
138 | In fortran, all arguments are passed by address and
|
---|
139 | fortran compilers (on Unix systems) add an underscore "\_"
|
---|
140 | to all symbol names. It is thus rather easy to call
|
---|
141 | Fortran subroutines or functions from C or C++.
|
---|
142 | This is illustrated in the following example:
|
---|
143 | \begin{verbatim}
|
---|
144 | C Fortran-Code
|
---|
145 | SUBROUTINE FSUB(A,N,B,M)
|
---|
146 | REAL A(*),B(*)
|
---|
147 | INTEGER N,M
|
---|
148 | RETURN
|
---|
149 | END
|
---|
150 | \end{verbatim}
|
---|
151 | The corresponding C (or C++) declaration is: \\[3mm]
|
---|
152 | {\tt void fsub\_(float *a, int *n, float *b, int *m); } \\[3mm]
|
---|
153 | {\tt FSUB} can be called from C code, as is shown below :
|
---|
154 | \begin{verbatim}
|
---|
155 | float aa[10];
|
---|
156 | int na=10;
|
---|
157 | float bb[10];
|
---|
158 | int mb=10;
|
---|
159 | fsub_(aa, &na, bb, &mb);
|
---|
160 | \end{verbatim}
|
---|
161 |
|
---|
162 | The case of character string arguments in Fortran subroutines
|
---|
163 | needs a bit more attention, and the string length needs to be passed
|
---|
164 | as an additional integer type argument.
|
---|
165 | As with {\bf C \ } functions, Fortran functions or subroutines
|
---|
166 | have to be declared {\tt extern "C"} to be used within {\bf C++ \ }
|
---|
167 | programs. {\bf C/C++ \ } driver routines can easily be written for
|
---|
168 | extensively used Fortran modules, simplifying calling sequences.
|
---|
169 |
|
---|
170 | It should also be noted that the Fortran support libraries have to be
|
---|
171 | included for the link with the C++ driver.
|
---|
172 | It is also possible to translate the whole Fortran source code
|
---|
173 | into {\bf C \ } code using {\bf f2c \ } program. The call syntax
|
---|
174 | will be exactly the same as with a Fortran compiler, and
|
---|
175 | {\tt libf2c.a} should be used when linking the program.
|
---|
176 |
|
---|
177 | It is very difficult to use C++ classes directly from Fortran.
|
---|
178 | However, high level functionalities based on a C++ library can
|
---|
179 | be wrapped in a Fortran style function which can be
|
---|
180 | called from Fortran. One looses of course many of the
|
---|
181 | possibilities offered by underlying C++ library.
|
---|
182 |
|
---|
183 | We illustrate below the wrapping of a simple C++ class:
|
---|
184 | \begin{verbatim}
|
---|
185 | // An example class performing some computation
|
---|
186 | class Example {
|
---|
187 | Example();
|
---|
188 | ~Example();
|
---|
189 | void compute(int sz, float *x);
|
---|
190 | int getSize();
|
---|
191 | float getResult(int k);
|
---|
192 | };
|
---|
193 | \end{verbatim}
|
---|
194 |
|
---|
195 | The wrapper would then look like:
|
---|
196 | \begin{verbatim}
|
---|
197 | extern "C" {
|
---|
198 | void foradapt_(float *a, int *n, float *b, int *m);
|
---|
199 | }
|
---|
200 |
|
---|
201 | foradapt_(float *a, int *m, float *b, int *n)
|
---|
202 | {
|
---|
203 | // a is the input array, m it's size
|
---|
204 | // b is the output array, n the returned size
|
---|
205 | // b has to dimensioned big enough in the calling program
|
---|
206 |
|
---|
207 | Example ex;
|
---|
208 | ex.compute(*n, a);
|
---|
209 | *m = ex.getSize();
|
---|
210 | for(int i=0; i<ex.getSize(); i++)
|
---|
211 | b[i] = ex.getResult(i);
|
---|
212 | }
|
---|
213 | \end{verbatim}
|
---|
214 |
|
---|
215 | One can then call {\tt FORADPAT} from fortran :
|
---|
216 | \begin{verbatim}
|
---|
217 | REAL A(1000)
|
---|
218 | REAL B(1000)
|
---|
219 | INTEGER N,M
|
---|
220 | M = 1000
|
---|
221 | N = 1000
|
---|
222 | CALL FORADPAT(A, M, B, N)
|
---|
223 | \end{verbatim}
|
---|
224 |
|
---|
225 |
|
---|
226 | \subsection{Fortran-90 and C++}
|
---|
227 | Fortran-90 (F90) is a much more complex language than Fortran 77
|
---|
228 | (F77). Compared to F77, it introduces many new constructions, including:
|
---|
229 | \begin{itemize}
|
---|
230 | \item[-] pointers
|
---|
231 | \item[-] local and global variables
|
---|
232 | \item[-] in, out, in-out argument type for function and subroutines
|
---|
233 | \item[-] compound data types, similar to structures in C
|
---|
234 | \item[-] multidimensional arrays
|
---|
235 | \item[-] function and operator overloading.
|
---|
236 | \end{itemize}
|
---|
237 | It is thus more difficult to use full featured F90 modules from
|
---|
238 | {\bf C} or {\bf C++}. One would have to map all these different
|
---|
239 | data structures with their attributes between the two languages,
|
---|
240 | in a OS/compiler independent way.
|
---|
241 | It should however be possible to encapsulate F90 modules into simple F77
|
---|
242 | like subroutines that could be called from C/C++.
|
---|
243 |
|
---|
244 |
|
---|
245 | \section{Java}
|
---|
246 | Java \footnote{Information on the Java platform and language
|
---|
247 | can be found at {\bf http://java.sun.com} }
|
---|
248 | is a rather recent object-oriented programming language. It is
|
---|
249 | based on the concept of a virtual machine, and a very extended
|
---|
250 | standard library.
|
---|
251 |
|
---|
252 | Java compilers produce "byte-codes" that are interpreted in a virtual
|
---|
253 | machine (JVM). Thus, pure Java programs are platform-independent and
|
---|
254 | portable. The very extended libraries that are available for the
|
---|
255 | language make it a very good choice for user interfaces, network
|
---|
256 | programming, distributed objects, database access. Numeric
|
---|
257 | computation libraries start to appear but are still in early stages
|
---|
258 | of development.
|
---|
259 |
|
---|
260 | The Java language is strongly typed, with dynamic typing information.
|
---|
261 | It is dynamic in essence as class bytecodes can be loaded into the
|
---|
262 | JVM on request.
|
---|
263 | It uses a garbage collector for memory management. Memory leaks and
|
---|
264 | memory access errors cannot exist. All this makes debugging easier
|
---|
265 | than with C++.
|
---|
266 |
|
---|
267 | The overhead of interpreting the bytecodes in the virtual machine is
|
---|
268 | alleviated by the development of "JIT" (Just In Time) compilers, that
|
---|
269 | do a dynamic compilation. Java programs are typically 3 times slower
|
---|
270 | than their equivalent in C++, but the exact figure might vary between
|
---|
271 | 1 and 5 depending on the type of program.
|
---|
272 |
|
---|
273 | Two features convenient for numeric library development and usage
|
---|
274 | present in C++ are missing in Java: templates and operator overloading.
|
---|
275 | Typically, a single code cannot be specialised for
|
---|
276 | floats and doubles automatically, and one must write, if A, B and C
|
---|
277 | are matrices, {\tt C = A.mult(B) instead of C = A*B} .
|
---|
278 |
|
---|
279 | \subsection{Calling C/C++ code from Java }
|
---|
280 |
|
---|
281 | A Java library (JNI, Java Native Interface) allows to call C/C++ code
|
---|
282 | from Java programs. Of course, portability is then lost.
|
---|
283 | Methods in Java objects can be declared {\tt native}. A tool then
|
---|
284 | produces C/C++ headers for coding these methods in C/C++. This code
|
---|
285 | can call existing C/C++/Fortran code, and even map the Java object to
|
---|
286 | a C++ object.
|
---|
287 |
|
---|
288 | Because the layout of objects in memory is not fixed in the JVM
|
---|
289 | specifications, all accesses to methods and member variables are done
|
---|
290 | through interface pointers. Accessing arrays can imply a copy of the
|
---|
291 | array on input, and a copy back on return if the array was modified.
|
---|
292 |
|
---|
293 | Since Java memory management is garbage-collector-based, C/C++
|
---|
294 | programs that want to hold references to Java objects, or create Java
|
---|
295 | objects, must interact with the garbage collector explicitly.
|
---|
296 |
|
---|
297 | JNI allows also C/C++ programs to instantiate a JVM and Java objects,
|
---|
298 | and access them.
|
---|
299 |
|
---|
300 | \subsection{Java and CORBA}
|
---|
301 |
|
---|
302 | Another solution to call C++ objects from Java, or vice-versa, is to
|
---|
303 | use CORBA. CORBA is a standard distributed objects framework, and
|
---|
304 | Java 2 comes with a CORBA-2 compliant ORB (Object Request Broker),
|
---|
305 | JavaIDL.
|
---|
306 |
|
---|
307 | Objects distributed through CORBA must have their interface defined
|
---|
308 | in a specific language, IDL. Tools then creates stubs for any
|
---|
309 | language, as well as implementation skeletons.
|
---|
310 |
|
---|
311 | An object can then physically exist on a machine, implemented in C++,
|
---|
312 | and be manipulated remotely through Java stubs, as if it were a local
|
---|
313 | Java object. CORBA offers thus language-independent distributed
|
---|
314 | objects.
|
---|
315 |
|
---|
316 | It adds overhead compared to JNI, because of the presence of a
|
---|
317 | network layer, but offers more functionality. In particular, the C++
|
---|
318 | objects are platform-dependent, but the Java code that uses them,
|
---|
319 | being pure Java code, remains portable.
|
---|
320 |
|
---|
321 |
|
---|
322 | \newpage
|
---|
323 | \appendix
|
---|
324 |
|
---|
325 | \section{C++ standard and compilers}
|
---|
326 | \vspace{5 mm}
|
---|
327 |
|
---|
328 | {\bf C++} can be considered now as a mature language.
|
---|
329 | The current standard for C++ and C are defined by
|
---|
330 | \footnote{Available from {\bf http://www.ansi.org/ } }:
|
---|
331 | \begin{itemize}
|
---|
332 | \item[] {\bf ISO/IEC 14882-1998(E) \ } Programming languages -- C++
|
---|
333 | \item[] {\bf ANSI/ISO 9899-1990 \ } for Programming Languages C
|
---|
334 | \end{itemize}
|
---|
335 |
|
---|
336 | Powerful compilers are available on most platforms, including:
|
---|
337 |
|
---|
338 | \begin{itemize}
|
---|
339 | \item[-] the GNU multiplatform g++ \footnote{http://gcc.gnu.org/},
|
---|
340 | \item[-] KAI KCC \footnote{http://www.kai.com/C\_plus\_plus/} which is a
|
---|
341 | nice multiplatform optimising C++ compiler.
|
---|
342 | \item[-] Digital (Compaq) cxx \footnote{http://www.unix.digital.com/cplus/}
|
---|
343 | \item[-] IBM VisualAge C++ \footnote{http://www-4.ibm.com/software/ad/vacpp/}
|
---|
344 | \item[-] HP aCC \footnote{http://www.hp.com/esy/lang/cpp/}
|
---|
345 | \item[-] Silicon Graphics SGI-CC on IRIX \footnote{http://www.sgi.com/developers/devtools/languages/c++.html}
|
---|
346 | \item[-] Cray C++ compiler on Unicos \footnote{http://www.sgi.com/software/unicos/cplusoverview.html}
|
---|
347 | \end{itemize}
|
---|
348 |
|
---|
349 |
|
---|
350 | \end{document}
|
---|