1 | \documentclass[twoside,12pt]{article}
|
---|
2 | % Package standard : Utilisation de caracteres accentues, mode francais et graphique
|
---|
3 | \usepackage[latin1]{inputenc}
|
---|
4 | \usepackage[T1]{fontenc}
|
---|
5 | \usepackage{babel}
|
---|
6 | \usepackage{graphicx}
|
---|
7 |
|
---|
8 | % Extension de symboles mathematiques
|
---|
9 | \usepackage{amssymb}
|
---|
10 |
|
---|
11 | % Definition de taille de page
|
---|
12 | \setlength{\textwidth}{16cm}
|
---|
13 | \setlength{\textheight}{21.5cm}
|
---|
14 | \setlength{\topmargin}{0.5cm}
|
---|
15 | \setlength{\oddsidemargin}{0.cm}
|
---|
16 | \setlength{\evensidemargin}{0.cm}
|
---|
17 | \setlength{\unitlength}{1mm}
|
---|
18 |
|
---|
19 | \newcommand{\bul}{$\bullet \ $}
|
---|
20 |
|
---|
21 | \begin{document}
|
---|
22 |
|
---|
23 | \begin{titlepage}
|
---|
24 | \vspace{1cm}
|
---|
25 | \rule{110 mm}{0.5 mm}\makebox[50 mm]{\bf Planck HFI L2}
|
---|
26 | \vspace{2cm}
|
---|
27 | \begin{center}
|
---|
28 | \par \renewcommand{\baselinestretch}{2.0} \small
|
---|
29 | {\LARGE \bf
|
---|
30 | Planck HFI L2 \\
|
---|
31 | Software Development Guidelines
|
---|
32 | }
|
---|
33 | \par \renewcommand{\baselinestretch}{1.0} \normalsize
|
---|
34 | \vspace{5 cm}
|
---|
35 | \begin{tabular}{ll}
|
---|
36 | {R. Ansari} & {\tt ansari@lal.in2p3.fr} \\
|
---|
37 | {É. Aubourg} & {\tt aubourg@hep.saclay.cea.fr} \\
|
---|
38 | % {É. Lesquoy} & {\tt lesquoy@hep.saclay.cea.fr} \\
|
---|
39 | % {C. Magneville} & {\tt cmv@hep.saclay.cea.fr} \\
|
---|
40 | \end{tabular}
|
---|
41 |
|
---|
42 | \end{center}
|
---|
43 | \vfill
|
---|
44 | \hfill
|
---|
45 | % \includegraphics[width=4cm]{Fig/hfi_icon_vsmall.eps}
|
---|
46 | \framebox[\textwidth]{\hspace{0.5cm} \bf Planck HFI Level 2
|
---|
47 | \hspace{1cm} \today }
|
---|
48 | \end{titlepage}
|
---|
49 |
|
---|
50 | \tableofcontents
|
---|
51 |
|
---|
52 | \newpage
|
---|
53 | % \tableofcontents
|
---|
54 |
|
---|
55 | \section{Introduction}
|
---|
56 | We intend to gather gradually in this document the guidelines
|
---|
57 | for the development of Planck HFI Level 2 data processing softwares.
|
---|
58 | We assume throughout this document that C++ is the baseline option
|
---|
59 | as the programming language for the development of Planck HFI
|
---|
60 | Level 2 processing software.
|
---|
61 |
|
---|
62 | \section{Integration of software modules in different languages}
|
---|
63 | We review here some of the problems which may arise when integrating software
|
---|
64 | modules written in other languages into C++ programs.
|
---|
65 |
|
---|
66 | \subsection{C and C++}
|
---|
67 | C++ extends the possibilities offered by the C language.
|
---|
68 | All of the C language data types and function call syntax are thus
|
---|
69 | supported by C++. Among other features, C++ offers the function
|
---|
70 | overloading possibility. This means that functions with different
|
---|
71 | argument list can have the same name.
|
---|
72 | \begin{verbatim}
|
---|
73 | int fo(int a);
|
---|
74 | int fo(int a, int b);
|
---|
75 | int fo(double a, double b);
|
---|
76 | \end{verbatim}
|
---|
77 | Using {\bf C}, one would have written:
|
---|
78 | \begin{verbatim}
|
---|
79 | int foi(int a);
|
---|
80 | int foii(int a, int b);
|
---|
81 | int fodd(double a, double b);
|
---|
82 | \end{verbatim}
|
---|
83 | C++ compilers use internally a name containing the encoding of the
|
---|
84 | argument list. In order to instruct the compiler to use simple
|
---|
85 | names, {\bf C} functions should be declared as \\
|
---|
86 | {\tt extern "C" }. This is usually included in the header
|
---|
87 | file (.h). In the example above, the header file (.h) file
|
---|
88 | would be in the form:
|
---|
89 | \begin{verbatim}
|
---|
90 | #ifdef __cplusplus
|
---|
91 | extern "C" {
|
---|
92 | #endif
|
---|
93 | int foi(int a);
|
---|
94 | int foii(int a, int b);
|
---|
95 | int fodd(double a, double b);
|
---|
96 | #ifdef __cplusplus
|
---|
97 | }
|
---|
98 | #endif
|
---|
99 | \end{verbatim}
|
---|
100 |
|
---|
101 | \subsection{Fortran and C++}
|
---|
102 | Fortran is a simple language and uses only basic data types.
|
---|
103 | Although the exact mapping between Fortran and C/C++ basic data types
|
---|
104 | may vary depending on the OS and hardware architecture, it is close
|
---|
105 | to the one shown in the table below:
|
---|
106 | \begin{center}
|
---|
107 | \begin{tabular}{lll}
|
---|
108 | INTEGER & int & usually 4 bytes \\
|
---|
109 | REAL*4 & float & usually 4 bytes \\
|
---|
110 | REAL*8 & double & usually 8 bytes \\
|
---|
111 | COMPLEX & complex<float> & \\
|
---|
112 | COMPLEX*16 & complex<double> & \\
|
---|
113 | \end{tabular}
|
---|
114 | \end{center}
|
---|
115 | In fortran, all arguments are passed by address and
|
---|
116 | fortran compilers (on Unix systems) add an underscore "\_"
|
---|
117 | to all symbol names. It is thus rather easy to call
|
---|
118 | Fortran subroutines or functions from C or C++.
|
---|
119 | This is illustrated in the following example:
|
---|
120 | \begin{verbatim}
|
---|
121 | C Fortran-Code
|
---|
122 | SUBROUTINE FSUB(A,N,B,M)
|
---|
123 | REAL A(*),B(*)
|
---|
124 | INTEGER N,M
|
---|
125 | RETURN
|
---|
126 | END
|
---|
127 | \end{verbatim}
|
---|
128 | The corresponding C (or C++) declaration is: \\[3mm]
|
---|
129 | {\tt void fsub\_(float *a, int *n, float *b, int *m); } \\[3mm]
|
---|
130 | {\tt FSUB} can be called from C code, as is shown below :
|
---|
131 | \begin{verbatim}
|
---|
132 | float aa[10];
|
---|
133 | int na=10;
|
---|
134 | float bb[10];
|
---|
135 | int mb=10;
|
---|
136 | fsub_(aa, &na, bb, &mb);
|
---|
137 | \end{verbatim}
|
---|
138 |
|
---|
139 | The case of character string arguments in fortran subroutines
|
---|
140 | needs a bit more attention, and the string length needs to be passed
|
---|
141 | as an additional integer type argument.
|
---|
142 | As with {\bf C} functions, fortran functions or subroutines
|
---|
143 | have to be delared {\tt extern "C"} to be used within {\bf C++}
|
---|
144 | programs. {\bf C/C++} driver routines can easily be written for
|
---|
145 | extensively used fortran modules, simplifying calling sequences.
|
---|
146 |
|
---|
147 | It should also be noted that the fortran support libraries have to be
|
---|
148 | included for the link with the C++ driver.
|
---|
149 | It is also possible to translate the whole fortran source code
|
---|
150 | into {\bf C} code using {\bf f2c} program. The call syntax
|
---|
151 | will be exactly the same as with a Fortran compiler, and
|
---|
152 | {\tt libf2c.a} should be used when linking the program.
|
---|
153 |
|
---|
154 | It is very difficult to use C++ classes directly from fortran.
|
---|
155 | However, high level functionalities based on a C++ libray can
|
---|
156 | be wrapped in a fortran style function which can be
|
---|
157 | called from fortran. One looses of course many of the
|
---|
158 | possibilities offered by underlying C++ library.
|
---|
159 |
|
---|
160 | We illustrate below the wrapping of a simple C++ class:
|
---|
161 | \begin{verbatim}
|
---|
162 | // An example class performing some computation
|
---|
163 | class Example {
|
---|
164 | Example();
|
---|
165 | ~Example();
|
---|
166 | void compute(int sz, float *x);
|
---|
167 | int getSize();
|
---|
168 | float getResult(int k);
|
---|
169 | };
|
---|
170 | \end{verbatim}
|
---|
171 |
|
---|
172 | The wrapper would then look like:
|
---|
173 | \begin{verbatim}
|
---|
174 | extern "C" {
|
---|
175 | void foradapt_(float *a, int *n, float *b, int *m);
|
---|
176 | }
|
---|
177 |
|
---|
178 | foradapt_(float *a, int *m, float *b, int *n)
|
---|
179 | {
|
---|
180 | // a is the input array, m it's size
|
---|
181 | // b is the output array, n the returned size
|
---|
182 | // b has to dimensioned big enough in the calling program
|
---|
183 |
|
---|
184 | Example ex;
|
---|
185 | ex.compute(*n, a);
|
---|
186 | *m = ex.getSize();
|
---|
187 | for(int i=0; i<ex.getSize(); i++)
|
---|
188 | b[i] = ex.getResult(i);
|
---|
189 | }
|
---|
190 | \end{verbatim}
|
---|
191 |
|
---|
192 | One can then call {\tt FORADPAT} from fortran :
|
---|
193 | \begin{verbatim}
|
---|
194 | REAL A(1000)
|
---|
195 | REAL B(1000)
|
---|
196 | INTEGER N,M
|
---|
197 | M = 1000
|
---|
198 | N = 1000
|
---|
199 | CALL FORADPAT(A, M, B, N)
|
---|
200 | \end{verbatim}
|
---|
201 |
|
---|
202 |
|
---|
203 | \subsection{Fortran-90 and C++}
|
---|
204 | Fortran-90 (F90) is a much more complex language than Fortran 77
|
---|
205 | (F77). Compared to F77, it introduces many new constructions, including:
|
---|
206 | \begin{itemize}
|
---|
207 | \item[-] pointers
|
---|
208 | \item[-] local and global variables
|
---|
209 | \item[-] in, out, in-out argument type for function and subroutines
|
---|
210 | \item[-] compound data types, similar to structures in C
|
---|
211 | \item[-] multidimensional arrays
|
---|
212 | \item[-] function and operator overloading.
|
---|
213 | \end{itemize}
|
---|
214 | It is thus more difficult to use full featured F90 modules from
|
---|
215 | {\bf C} or {\bf C++}. One would have to map all these different
|
---|
216 | data structures with their attributes between the two languages,
|
---|
217 | in a OS/compiler independent way.
|
---|
218 | It should however be possible to encapsulate F90 modules into simple F77
|
---|
219 | like subroutines that could be called from C/C++.
|
---|
220 |
|
---|
221 |
|
---|
222 | \newpage
|
---|
223 | \appendix
|
---|
224 |
|
---|
225 | \section{The C++ language}
|
---|
226 | \vspace{5 mm}
|
---|
227 | {\bf C++} is a very powerful Object Oriented language.
|
---|
228 | It has been developped by extending the {\bf C} language,
|
---|
229 | keeping in mind the efficiency and performance,
|
---|
230 | as well as easy integration with existing softwares.
|
---|
231 | It incorporates new possibilities such as:
|
---|
232 |
|
---|
233 | \begin{itemize}
|
---|
234 | \item Introduction of object and classes
|
---|
235 | \item function overloading
|
---|
236 | \item Operator overloading
|
---|
237 | \item function and operator inlining (optimisation)
|
---|
238 | \item virtual functions (polymorphism)
|
---|
239 | \item public, protected and private members
|
---|
240 | \item dynamic memory management operators
|
---|
241 | \item Exception handling
|
---|
242 | \item generic (template) function and classes
|
---|
243 | \end{itemize}
|
---|
244 |
|
---|
245 | {\bf C++} can be considered now as a mature language.
|
---|
246 | C++ class library covering various areas, including
|
---|
247 | numerical data processing are available as freeware
|
---|
248 | or commercial products. Many software tools feature
|
---|
249 | a standard C++ API.
|
---|
250 | \par \vspace{3mm}
|
---|
251 | The current standard for C++ and C are defined by
|
---|
252 | \footnote{Available from {\bf http://www.ansi.org/ } }:
|
---|
253 | \begin{itemize}
|
---|
254 | \item[] {\bf ISO/IEC 14882-1998(E)} Programming languages -- C++
|
---|
255 | \item[] {\bf ANSI/ISO 9899-1990} for Programming Languages C
|
---|
256 | \end{itemize}
|
---|
257 |
|
---|
258 |
|
---|
259 | \newpage
|
---|
260 | \section{C++ compilers}
|
---|
261 |
|
---|
262 |
|
---|
263 | Powerful compilers are available on most platforms,
|
---|
264 | including:
|
---|
265 |
|
---|
266 | \begin{itemize}
|
---|
267 | \item[-] the GNU multiplatform g++ \footnote{http://gcc.gnu.org/},
|
---|
268 | \item[-] KAI KCC \footnote{http://www.kai.com/C\_plus\_plus/} which is a
|
---|
269 | nice multiplatform optimising C++ compiler.
|
---|
270 | \item[-] Digital (Compaq) cxx \footnote{http://www.unix.digital.com/cplus/}
|
---|
271 | \item[-] IBM VisualAge C++ \footnote{http://www-4.ibm.com/software/ad/vacpp/}
|
---|
272 | \item[-] HP aCC \footnote{http://www.hp.com/esy/lang/cpp/}
|
---|
273 | \item[-] Silicon Graphics SGI-CC on IRIX \footnote{http://www.sgi.com/developers/devtools/languages/c++.html}
|
---|
274 | \item[-] Cray C++ compiler on Unicos \footnote{http://www.sgi.com/software/unicos/cplusoverview.html}
|
---|
275 | \end{itemize}
|
---|
276 |
|
---|
277 |
|
---|
278 | \end{document}
|
---|