1 | #include <stdlib.h>
|
---|
2 | #include <stdio.h>
|
---|
3 |
|
---|
4 | #include <exception>
|
---|
5 | #include <string>
|
---|
6 |
|
---|
7 | #ifdef USEVECSTL
|
---|
8 | #include <vector>
|
---|
9 | #endif
|
---|
10 |
|
---|
11 | using namespace std;
|
---|
12 |
|
---|
13 | // class MyException : public exception
|
---|
14 | class MyException
|
---|
15 | {
|
---|
16 | public:
|
---|
17 | MyException(const char * msg) { _msg = msg; }
|
---|
18 | // virtual ~MyException() { }
|
---|
19 | string Msg() { return(_msg); }
|
---|
20 | private:
|
---|
21 | string _msg;
|
---|
22 | };
|
---|
23 |
|
---|
24 | template<class T> class Matrix
|
---|
25 | {
|
---|
26 | T* data;
|
---|
27 | int siz_x, siz_y, offset, step_x, step_y;
|
---|
28 | int size;
|
---|
29 |
|
---|
30 | public:
|
---|
31 | Matrix (int sx, int sy, int step=0, int offset=0, bool fg=false);
|
---|
32 | ~Matrix ();
|
---|
33 |
|
---|
34 | inline T operator [] (int k) const { return data[k]; }
|
---|
35 | inline T& operator [] (int k) { return data[k]; }
|
---|
36 |
|
---|
37 | inline T operator () (int ix, int iy) const { return data[ix+iy*siz_x]; }
|
---|
38 | inline T& operator () (int ix, int iy) { return data[ix+iy*siz_x]; }
|
---|
39 |
|
---|
40 | inline T elem (int ix, int iy) const { return data[offset+ix*step_x+iy*step_y]; }
|
---|
41 | inline T& elem (int ix, int iy) { return data[offset+ix*step_x+iy*step_y]; }
|
---|
42 |
|
---|
43 | inline T elemCk (int ix, int iy) const
|
---|
44 | { if ((ix < 0) || (ix >= siz_x) || (iy < 0) || (iy >= siz_y))
|
---|
45 | throw MyException("Matrix<T> Out of bound");
|
---|
46 | return data[offset+ix*step_x+iy*step_y]; }
|
---|
47 |
|
---|
48 | inline T& elemCk (int ix, int iy)
|
---|
49 | { if ((ix < 0) || (ix >= siz_x) || (iy < 0) || (iy >= siz_y))
|
---|
50 | throw MyException("Matrix<T> Out of bound");
|
---|
51 | return data[offset+ix*step_x+iy*step_y]; }
|
---|
52 |
|
---|
53 | inline int getSize () const { return size; }
|
---|
54 | inline int getSizeX () const { return siz_x; }
|
---|
55 | inline int getSizeY () const { return siz_y; }
|
---|
56 |
|
---|
57 | // Addition et multiplication en utilisant elem()
|
---|
58 | Matrix<T> * Add(Matrix<T> & v1, Matrix<T> & v2);
|
---|
59 | Matrix<T> * Mult(Matrix<T> & v1, Matrix<T> & v2);
|
---|
60 | // Addition et multiplication en utilisant elemCk()
|
---|
61 | Matrix<T> * AddCk(Matrix<T> & v1, Matrix<T> & v2);
|
---|
62 | Matrix<T> * MultCk(Matrix<T> & v1, Matrix<T> & v2);
|
---|
63 | // Addition et multiplication en utilisant l'operateur []
|
---|
64 | Matrix<T> * AddO1(Matrix<T> & v1, Matrix<T> & v2);
|
---|
65 | Matrix<T> * MultO1(Matrix<T> & v1, Matrix<T> & v2);
|
---|
66 | // Addition et multiplication en utilisant l'operateur ()
|
---|
67 | Matrix<T> * AddO2(Matrix<T> & v1, Matrix<T> & v2);
|
---|
68 | Matrix<T> * MultO2(Matrix<T> & v1, Matrix<T> & v2);
|
---|
69 | };
|
---|
70 |
|
---|
71 | template<class T> Matrix<T>::Matrix (int sx, int sy, int step, int off, bool fg)
|
---|
72 | {
|
---|
73 | int k;
|
---|
74 | int s = offset+sx*sy*step;
|
---|
75 | if (s < 1) s = 1;
|
---|
76 | size = s;
|
---|
77 | siz_x = sx;
|
---|
78 | siz_y = sy;
|
---|
79 | offset = off;
|
---|
80 | step_x = step;
|
---|
81 | step_y = step*siz_x;
|
---|
82 | data = new T[size];
|
---|
83 | if (!fg) return;
|
---|
84 |
|
---|
85 | T * p = data;
|
---|
86 | for(k=0; k<s; k++) p[k] = (T)0;
|
---|
87 | }
|
---|
88 |
|
---|
89 | template<class T> Matrix<T>::~Matrix()
|
---|
90 | {
|
---|
91 | delete[] data;
|
---|
92 | }
|
---|
93 |
|
---|
94 |
|
---|
95 |
|
---|
96 | template<class T> Matrix<T> * Matrix<T>::Add(Matrix<T> &v1, Matrix<T> &v2)
|
---|
97 | {
|
---|
98 | int i,j;
|
---|
99 |
|
---|
100 | for (i = 0; i < siz_x; i++)
|
---|
101 | for (j = 0; j < siz_y; j++)
|
---|
102 | elem(i,j) = v1.elem(i,j)+v2.elem(i,j);
|
---|
103 | return (this);
|
---|
104 | }
|
---|
105 |
|
---|
106 | template<class T> Matrix<T> * Matrix<T>::Mult(Matrix<T> &v1, Matrix<T> &v2)
|
---|
107 | {
|
---|
108 | int i,j;
|
---|
109 |
|
---|
110 | for (i = 0; i < siz_x; i++)
|
---|
111 | for (j = 0; j < siz_y; j++)
|
---|
112 | elem(i,j) = v1.elem(i,j)*v2.elem(i,j);
|
---|
113 | return (this);
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 | template<class T> Matrix<T> * Matrix<T>::AddCk(Matrix<T> &v1, Matrix<T> &v2)
|
---|
118 | {
|
---|
119 | int i,j;
|
---|
120 |
|
---|
121 | for (i = 0; i < siz_x; i++)
|
---|
122 | for (j = 0; j < siz_y; j++)
|
---|
123 | elem(i,j) = v1.elemCk(i,j)+v2.elemCk(i,j);
|
---|
124 | return (this);
|
---|
125 | }
|
---|
126 |
|
---|
127 | template<class T> Matrix<T> * Matrix<T>::MultCk(Matrix<T> &v1, Matrix<T> &v2)
|
---|
128 | {
|
---|
129 | int i,j;
|
---|
130 |
|
---|
131 | for (i = 0; i < siz_x; i++)
|
---|
132 | for (j = 0; j < siz_y; j++)
|
---|
133 | elem(i,j) = v1.elemCk(i,j)*v2.elemCk(i,j);
|
---|
134 | return (this);
|
---|
135 | }
|
---|
136 |
|
---|
137 | template<class T> Matrix<T> * Matrix<T>::AddO1(Matrix<T> &v1, Matrix<T> &v2)
|
---|
138 | {
|
---|
139 | int i;
|
---|
140 | for (i = 0; i < size; i++) (*this)[i] = v1[i] + v2[i];
|
---|
141 | return (this);
|
---|
142 | }
|
---|
143 |
|
---|
144 | template<class T> Matrix<T> * Matrix<T>::MultO1(Matrix<T> &v1, Matrix<T> &v2)
|
---|
145 | {
|
---|
146 | int i;
|
---|
147 | for (i = 0; i < size; i++) (*this)[i] = v1[i] * v2[i];
|
---|
148 | return (this);
|
---|
149 | }
|
---|
150 |
|
---|
151 | template<class T> Matrix<T> * Matrix<T>::AddO2(Matrix<T> &v1, Matrix<T> &v2)
|
---|
152 | {
|
---|
153 | int i,j;
|
---|
154 |
|
---|
155 | for (i = 0; i < siz_x; i++)
|
---|
156 | for (j = 0; j < siz_y; j++) (*this)(i,j) = v1(i,j) + v2(i,j);
|
---|
157 | return (this);
|
---|
158 | }
|
---|
159 |
|
---|
160 | template<class T> Matrix<T> * Matrix<T>::MultO2(Matrix<T> &v1, Matrix<T> &v2)
|
---|
161 | {
|
---|
162 | int i,j;
|
---|
163 |
|
---|
164 | for (i = 0; i < siz_x; i++)
|
---|
165 | for (j = 0; j < siz_y; j++) (*this)(i,j) = v1(i,j) * v2(i,j);
|
---|
166 | return (this);
|
---|
167 | }
|
---|
168 |
|
---|
169 |
|
---|
170 | extern "C" void InitTim();
|
---|
171 | extern "C" void PrtTim(const char *Comm);
|
---|
172 |
|
---|
173 | /* --------------------------------------------------------------------- */
|
---|
174 | /* --------------------------- Main Program ---------------------------- */
|
---|
175 | /* --------------------------------------------------------------------- */
|
---|
176 |
|
---|
177 | int main (int narg, char *arg[])
|
---|
178 | {
|
---|
179 |
|
---|
180 | int pos, N, M, Mx, My, Off, Step, OPT, OPE, i;
|
---|
181 |
|
---|
182 |
|
---|
183 | if (narg < 2) {
|
---|
184 | printf("\n Usage: matrix Type(=1,2,3 Int,Float,Double) Ope(=1...10) [N [Mx,My,...] ] \n");
|
---|
185 | printf("Ope: 1=Create/Delete 2=1+FillVect \n");
|
---|
186 | printf("Ope: 3=AddO1 4=MultO1 (Using operator [k]) \n");
|
---|
187 | printf("Ope: 5=AddO2 6=MultO2 (Using operator (i,j)) \n");
|
---|
188 | printf("Ope: 7=Add 8=Mult (Using elem()) \n");
|
---|
189 | printf("Ope: 9=AddCk 10=MultCk (Using elemCk() - with bound checking) \n");
|
---|
190 | printf("N: Number of operations (def= 100) \n");
|
---|
191 | printf("Mx,My,Step,Offset: Matrix size (def= 300,200,1,0) \n\n");
|
---|
192 | exit(0);
|
---|
193 | }
|
---|
194 |
|
---|
195 | InitTim();
|
---|
196 |
|
---|
197 | OPT = 1; OPE = 1;
|
---|
198 | if (narg > 1) OPT = atoi(arg[1]);
|
---|
199 | if ( (OPT < 1) || (OPT > 3) ) OPT = 1;
|
---|
200 |
|
---|
201 | if (narg > 2) OPE = atoi(arg[2]);
|
---|
202 | if ( (OPE < 1) || (OPE > 10) ) OPE = 1;
|
---|
203 |
|
---|
204 | N = 100;
|
---|
205 | if (narg > 3) N = atoi(arg[3]);
|
---|
206 | if (N < 1) N = 1;
|
---|
207 | if (N > 100000) N = 100000;
|
---|
208 | Mx = 300;
|
---|
209 | My = 200;
|
---|
210 | Off = 0;
|
---|
211 | Step = 1;
|
---|
212 | if (narg > 4) sscanf(arg[4], "%d,%d,%d,%d", &Mx, &My, &Step, &Off);
|
---|
213 | if (Mx < 100) Mx = 100;
|
---|
214 | if (My < 100) My = 100;
|
---|
215 | if (Mx > 10000) Mx = 10000;
|
---|
216 | if (My > 10000) My = 10000;
|
---|
217 | if (Step < 1) Step = 1;
|
---|
218 | if (Step > 5) Step = 5;
|
---|
219 | if (Off < 0) Off = 0;
|
---|
220 | if (Off > 1000) Off = 1000;
|
---|
221 |
|
---|
222 | M = Mx*My*Step;
|
---|
223 |
|
---|
224 |
|
---|
225 | printf(" MatrixC++ TestSpeed Typ=%d Ope=%d N=%d MSz=%d\n", OPT, OPE, N,M);
|
---|
226 | printf(" Matrix Size X= %d Y = %d Step= %d Offset= %d \n", Mx, My, Step, Off);
|
---|
227 | if (OPE < 3) { /* Test creation / destruction */
|
---|
228 | int fg = OPE-1;
|
---|
229 | bool fgf = (fg != 0) ? true : false;
|
---|
230 | printf("\n\n Test new/delete Matrix<T> - fg= %d ( <> 0 ---> FillVec) \n", fg);
|
---|
231 | switch (OPT)
|
---|
232 | {
|
---|
233 | case 1 :
|
---|
234 | {
|
---|
235 | Matrix<int> * v;
|
---|
236 | printf("Test %d new/delete Matrix<int>[%d] \n",N,M);
|
---|
237 | for(i=0; i<N; i++) {
|
---|
238 | v = new Matrix<int>(Mx, My, Step, Off, fgf);
|
---|
239 | delete v;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | break;
|
---|
243 | case 2 :
|
---|
244 | {
|
---|
245 | Matrix<float> * v;
|
---|
246 | printf("Test %d new/delete Matrix<float>[%d] \n",N,M);
|
---|
247 | for(i=0; i<N; i++) {
|
---|
248 | v = new Matrix<float>(Mx, My, Step, Off, fgf);
|
---|
249 | delete v;
|
---|
250 | }
|
---|
251 | }
|
---|
252 | break;
|
---|
253 | case 3 :
|
---|
254 | {
|
---|
255 | Matrix<double> * v;
|
---|
256 | printf("Test %d new/delete Matrix<double>[%d] \n",N,M);
|
---|
257 | for(i=0; i<N; i++) {
|
---|
258 | v = new Matrix<double>(Mx, My, Step, Off, fgf);
|
---|
259 | delete v;
|
---|
260 | }
|
---|
261 | }
|
---|
262 | break;
|
---|
263 | }
|
---|
264 | PrtTim("Fin New/Delete ");
|
---|
265 | printf(" .......... Fin de MatrixC++ ........... \n");
|
---|
266 | return (0);
|
---|
267 | }
|
---|
268 |
|
---|
269 | // ---------- Test Addition, Multiplication -------------
|
---|
270 |
|
---|
271 | switch (OPT)
|
---|
272 | {
|
---|
273 | case 1 :
|
---|
274 | {
|
---|
275 | printf("\n\n Test %d operations Matrix<int>[%d] \n",N,M);
|
---|
276 |
|
---|
277 | Matrix<int> *v1,*v2,*v3;
|
---|
278 | v1 = new Matrix<int>(Mx, My, Step, Off);
|
---|
279 | v2 = new Matrix<int>(Mx, My, Step, Off);
|
---|
280 | v3 = new Matrix<int>(Mx, My, Step, Off);
|
---|
281 | PrtTim("Fin_Creation ");
|
---|
282 |
|
---|
283 | for(pos=0; pos<M; pos++)
|
---|
284 | { (*v1)[pos] = random()%1000;
|
---|
285 | (*v2)[pos] = random()%5000; }
|
---|
286 |
|
---|
287 | PrtTim("Fin remplissage ");
|
---|
288 |
|
---|
289 | if (OPE == 3) {
|
---|
290 | for(pos=0; pos<N; pos++)
|
---|
291 | v3->AddO1(*v1, *v2);
|
---|
292 | PrtTim("Fin Addition AddO1 operator [k]");
|
---|
293 | }
|
---|
294 | else if (OPE == 4) {
|
---|
295 | for(pos=0; pos<N; pos++)
|
---|
296 | v3->MultO1(*v1, *v2);
|
---|
297 | PrtTim("Fin Multiplication MultO1 operator [k]");
|
---|
298 | }
|
---|
299 | else if (OPE == 5) {
|
---|
300 | for(pos=0; pos<N; pos++)
|
---|
301 | v3->AddO2(*v1, *v2);
|
---|
302 | PrtTim("Fin Addition AddO2 operator (i,j)");
|
---|
303 | }
|
---|
304 | else if (OPE == 6) {
|
---|
305 | for(pos=0; pos<N; pos++)
|
---|
306 | v3->MultO2(*v1, *v2);
|
---|
307 | PrtTim("Fin Multiplication MultO2 operator (i,j)");
|
---|
308 | }
|
---|
309 | else if (OPE == 7) {
|
---|
310 | for(pos=0; pos<N; pos++)
|
---|
311 | v3->Add(*v1, *v2);
|
---|
312 | PrtTim("Fin Addition Add");
|
---|
313 | }
|
---|
314 | else if (OPE == 8) {
|
---|
315 | for(pos=0; pos<N; pos++)
|
---|
316 | v3->Mult(*v1, *v2);
|
---|
317 | PrtTim("Fin Multiplication Mult");
|
---|
318 | }
|
---|
319 | else if (OPE == 9) {
|
---|
320 | for(pos=0; pos<N; pos++)
|
---|
321 | v3->AddCk(*v1, *v2);
|
---|
322 | PrtTim("Fin Addition AddCk");
|
---|
323 | }
|
---|
324 | else if (OPE == 10) {
|
---|
325 | for(pos=0; pos<N; pos++)
|
---|
326 | v3->MultCk(*v1, *v2);
|
---|
327 | PrtTim("Fin Multiplication MultCk");
|
---|
328 | }
|
---|
329 |
|
---|
330 | printf("Result[1.2] I1= %d %d I2= %d %d I3= %d %d \n",
|
---|
331 | v1->elem(1,0),v1->elem(2,0), v2->elem(1,0),v2->elem(2,0),
|
---|
332 | v3->elem(1,0),v3->elem(2,0));
|
---|
333 | printf("ResAdd[991-2] I1= %d %d I2= %d %d I3= %d %d \n",
|
---|
334 | v1->elem(991,0),v1->elem(992,0), v2->elem(991,0),v2->elem(992,0),
|
---|
335 | v3->elem(991,0),v3->elem(992,0));
|
---|
336 | }
|
---|
337 | break;
|
---|
338 |
|
---|
339 | case 2 :
|
---|
340 | {
|
---|
341 | printf("\n\n Test %d operations Matrix<float>[%d] \n",N,M);
|
---|
342 | Matrix<float> *v1,*v2,*v3;
|
---|
343 | v1 = new Matrix<float>(Mx, My, Step, Off);
|
---|
344 | v2 = new Matrix<float>(Mx, My, Step, Off);
|
---|
345 | v3 = new Matrix<float>(Mx, My, Step, Off);
|
---|
346 | PrtTim("Fin_Creation ");
|
---|
347 |
|
---|
348 | for(pos=0; pos<M; pos++)
|
---|
349 | { (*v1)[pos] = (float)(random()%1000)/250.;
|
---|
350 | (*v2)[pos] = (float)(random()%5000)/250.; }
|
---|
351 |
|
---|
352 | PrtTim("Fin remplissage ");
|
---|
353 |
|
---|
354 | if (OPE == 3) {
|
---|
355 | for(pos=0; pos<N; pos++)
|
---|
356 | v3->AddO1(*v1, *v2);
|
---|
357 | PrtTim("Fin Addition AddO1 operator [k]");
|
---|
358 | }
|
---|
359 | else if (OPE == 4) {
|
---|
360 | for(pos=0; pos<N; pos++)
|
---|
361 | v3->MultO1(*v1, *v2);
|
---|
362 | PrtTim("Fin Multiplication MultO1 operator [k]");
|
---|
363 | }
|
---|
364 | else if (OPE == 5) {
|
---|
365 | for(pos=0; pos<N; pos++)
|
---|
366 | v3->AddO2(*v1, *v2);
|
---|
367 | PrtTim("Fin Addition AddO2 operator (i,j)");
|
---|
368 | }
|
---|
369 | else if (OPE == 6) {
|
---|
370 | for(pos=0; pos<N; pos++)
|
---|
371 | v3->MultO2(*v1, *v2);
|
---|
372 | PrtTim("Fin Multiplication MultO2 operator (i,j)");
|
---|
373 | }
|
---|
374 | else if (OPE == 7) {
|
---|
375 | for(pos=0; pos<N; pos++)
|
---|
376 | v3->Add(*v1, *v2);
|
---|
377 | PrtTim("Fin Addition Add");
|
---|
378 | }
|
---|
379 | else if (OPE == 8) {
|
---|
380 | for(pos=0; pos<N; pos++)
|
---|
381 | v3->Mult(*v1, *v2);
|
---|
382 | PrtTim("Fin Multiplication Mult");
|
---|
383 | }
|
---|
384 | else if (OPE == 9) {
|
---|
385 | for(pos=0; pos<N; pos++)
|
---|
386 | v3->AddCk(*v1, *v2);
|
---|
387 | PrtTim("Fin Addition AddCk");
|
---|
388 | }
|
---|
389 | else if (OPE == 10) {
|
---|
390 | for(pos=0; pos<N; pos++)
|
---|
391 | v3->MultCk(*v1, *v2);
|
---|
392 | PrtTim("Fin Multiplication MultCk");
|
---|
393 | }
|
---|
394 |
|
---|
395 | printf("Result[1.2] F1= %g %g F2= %g %g F3= %g %g \n",
|
---|
396 | v1->elem(1,0),v1->elem(2,0), v2->elem(1,0),v2->elem(2,0),
|
---|
397 | v3->elem(1,0),v3->elem(2,0));
|
---|
398 | printf("Result[991-2] F1= %g %g F2= %g %g F3= %g %g \n",
|
---|
399 | v1->elem(991,0),v1->elem(992,0), v2->elem(991,0),v2->elem(992,0),
|
---|
400 | v3->elem(991,0),v3->elem(992,0));
|
---|
401 | }
|
---|
402 | break;
|
---|
403 |
|
---|
404 | case 3 :
|
---|
405 | {
|
---|
406 | printf("\n\n Test %d operations Matrix<double>[%d] \n",N,M);
|
---|
407 | Matrix<double> *v1,*v2,*v3;
|
---|
408 | v1 = new Matrix<double>(Mx, My, Step, Off);
|
---|
409 | v2 = new Matrix<double>(Mx, My, Step, Off);
|
---|
410 | v3 = new Matrix<double>(Mx, My, Step, Off);
|
---|
411 | PrtTim("Fin_Creation ");
|
---|
412 |
|
---|
413 |
|
---|
414 | if (OPE == 3) {
|
---|
415 | for(pos=0; pos<N; pos++)
|
---|
416 | v3->AddO1(*v1, *v2);
|
---|
417 | PrtTim("Fin Addition AddO1 operator [k]");
|
---|
418 | }
|
---|
419 | else if (OPE == 4) {
|
---|
420 | for(pos=0; pos<N; pos++)
|
---|
421 | v3->MultO1(*v1, *v2);
|
---|
422 | PrtTim("Fin Multiplication MultO1 operator [k]");
|
---|
423 | }
|
---|
424 | else if (OPE == 5) {
|
---|
425 | for(pos=0; pos<N; pos++)
|
---|
426 | v3->AddO2(*v1, *v2);
|
---|
427 | PrtTim("Fin Addition AddO2 operator (i,j)");
|
---|
428 | }
|
---|
429 | else if (OPE == 6) {
|
---|
430 | for(pos=0; pos<N; pos++)
|
---|
431 | v3->MultO2(*v1, *v2);
|
---|
432 | PrtTim("Fin Multiplication MultO2 operator (i,j)");
|
---|
433 | }
|
---|
434 | else if (OPE == 7) {
|
---|
435 | for(pos=0; pos<N; pos++)
|
---|
436 | v3->Add(*v1, *v2);
|
---|
437 | PrtTim("Fin Addition Add");
|
---|
438 | }
|
---|
439 | else if (OPE == 8) {
|
---|
440 | for(pos=0; pos<N; pos++)
|
---|
441 | v3->Mult(*v1, *v2);
|
---|
442 | PrtTim("Fin Multiplication Mult");
|
---|
443 | }
|
---|
444 | else if (OPE == 9) {
|
---|
445 | for(pos=0; pos<N; pos++)
|
---|
446 | v3->AddCk(*v1, *v2);
|
---|
447 | PrtTim("Fin Addition AddCk");
|
---|
448 | }
|
---|
449 | else if (OPE == 10) {
|
---|
450 | for(pos=0; pos<N; pos++)
|
---|
451 | v3->MultCk(*v1, *v2);
|
---|
452 | PrtTim("Fin Multiplication MultCk");
|
---|
453 | }
|
---|
454 |
|
---|
455 |
|
---|
456 | printf("Result[1.2] D1= %g %g D2= %g %g D3= %g %g \n",
|
---|
457 | v1->elem(1,0),v1->elem(2,0), v2->elem(1,0),v2->elem(2,0),
|
---|
458 | v3->elem(1,0),v3->elem(2,0));
|
---|
459 | printf("Result[991-2] D1= %g %g D2= %g %g D3= %g %g \n",
|
---|
460 | v1->elem(991,0),v1->elem(992,0), v2->elem(991,0),v2->elem(992,0),
|
---|
461 | v3->elem(991,0),v3->elem(992,0));
|
---|
462 | }
|
---|
463 | break;
|
---|
464 |
|
---|
465 | default:
|
---|
466 | puts("Erreur d'option !");
|
---|
467 | break;
|
---|
468 | }
|
---|
469 |
|
---|
470 |
|
---|
471 |
|
---|
472 | PrtTim("Fin de Matrix/C++ ");
|
---|
473 | printf(" .......... Fin de MatrixC++ ........... \n");
|
---|
474 | return (0);
|
---|
475 | }
|
---|
476 |
|
---|
477 | /*
|
---|
478 | #ifdef DECCXX
|
---|
479 | #pragma define_template Matrix<int>
|
---|
480 | #pragma define_template Matrix<float>
|
---|
481 | #pragma define_template Matrix<double>
|
---|
482 | #endif
|
---|
483 |
|
---|
484 | #if defined(GNUGCC) || defined (HPaCC)
|
---|
485 | template class Matrix<int>;
|
---|
486 | template class Matrix<float>;
|
---|
487 | template class Matrix<double>;
|
---|
488 | #endif
|
---|
489 |
|
---|
490 | */
|
---|