[658] | 1 | /*
|
---|
| 2 | * $Id: eval.cc,v 1.1.1.1 1999-11-26 16:37:06 ansari Exp $
|
---|
| 3 | *
|
---|
| 4 | * $Log: not supported by cvs2svn $
|
---|
| 5 | // Revision 1.1.1.1 1999/04/09 17:59:03 ansari
|
---|
| 6 | // Creation module DPC/Blitz (blitz 0.4) Reza 09/04/99
|
---|
| 7 | //
|
---|
| 8 | * Revision 1.2 1998/03/14 00:04:47 tveldhui
|
---|
| 9 | * 0.2-alpha-05
|
---|
| 10 | *
|
---|
| 11 | * Revision 1.1 1998/02/25 20:04:01 tveldhui
|
---|
| 12 | * Initial revision
|
---|
| 13 | *
|
---|
| 14 | */
|
---|
| 15 |
|
---|
| 16 | #ifndef BZ_ARRAYEVAL_CC
|
---|
| 17 | #define BZ_ARRAYEVAL_CC
|
---|
| 18 |
|
---|
| 19 | #ifndef BZ_ARRAY_H
|
---|
| 20 | #error <blitz/array/eval.cc> must be included via <blitz/array.h>
|
---|
| 21 | #endif
|
---|
| 22 |
|
---|
| 23 | BZ_NAMESPACE(blitz)
|
---|
| 24 |
|
---|
| 25 | /*
|
---|
| 26 | * Assign an expression to an array. For performance reasons, there are
|
---|
| 27 | * several traversal mechanisms:
|
---|
| 28 | *
|
---|
| 29 | * - Index traversal scans through the destination array in storage order.
|
---|
| 30 | * The expression is evaluated using a TinyVector<int,N> operand. This
|
---|
| 31 | * version is used only when there are index placeholders in the expression
|
---|
| 32 | * (see <blitz/indexexpr.h>)
|
---|
| 33 | * - Stack traversal also scans through the destination array in storage
|
---|
| 34 | * order. However, push/pop stack iterators are used.
|
---|
| 35 | * - Fast traversal follows a Hilbert (or other) space-filling curve to
|
---|
| 36 | * improve cache reuse for stencilling operations. Currently, the
|
---|
| 37 | * space filling curves must be generated by calling
|
---|
| 38 | * generateFastTraversalOrder(TinyVector<int,N_dimensions>).
|
---|
| 39 | * - 2D tiled traversal follows a tiled traversal, to improve cache reuse
|
---|
| 40 | * for 2D stencils. Space filling curves have too much overhead to use
|
---|
| 41 | * in two-dimensions.
|
---|
| 42 | *
|
---|
| 43 | * _bz_tryFastTraversal is a helper class. Fast traversals are only
|
---|
| 44 | * attempted if the expression looks like a stencil -- it's at least
|
---|
| 45 | * three-dimensional, has at least six array operands, and there are
|
---|
| 46 | * no index placeholders in the expression. These are all things which
|
---|
| 47 | * can be checked at compile time, so the if()/else() syntax has been
|
---|
| 48 | * replaced with this class template.
|
---|
| 49 | */
|
---|
| 50 |
|
---|
| 51 | // Fast traversals require <set> from the ISO/ANSI C++ standard library
|
---|
| 52 | #ifdef BZ_HAVE_STD
|
---|
| 53 |
|
---|
| 54 | template<_bz_bool canTryFastTraversal>
|
---|
| 55 | struct _bz_tryFastTraversal {
|
---|
| 56 | template<class T_numtype, int N_rank, class T_expr, class T_update>
|
---|
| 57 | static _bz_bool tryFast(Array<T_numtype,N_rank>& array,
|
---|
| 58 | _bz_ArrayExpr<T_expr> expr, T_update)
|
---|
| 59 | {
|
---|
| 60 | return _bz_false;
|
---|
| 61 | }
|
---|
| 62 | };
|
---|
| 63 |
|
---|
| 64 | template<>
|
---|
| 65 | struct _bz_tryFastTraversal<_bz_true> {
|
---|
| 66 | template<class T_numtype, int N_rank, class T_expr, class T_update>
|
---|
| 67 | static _bz_bool tryFast(Array<T_numtype,N_rank>& array,
|
---|
| 68 | _bz_ArrayExpr<T_expr> expr, T_update)
|
---|
| 69 | {
|
---|
| 70 | // See if there's an appropriate space filling curve available.
|
---|
| 71 | // Currently fast traversals use an N-1 dimensional curve. The
|
---|
| 72 | // Nth dimension column corresponding to each point on the curve
|
---|
| 73 | // is traversed in the normal fashion.
|
---|
| 74 | TraversalOrderCollection<N_rank-1> traversals;
|
---|
| 75 | TinyVector<int, N_rank - 1> traversalGridSize;
|
---|
| 76 |
|
---|
| 77 | for (int i=0; i < N_rank - 1; ++i)
|
---|
| 78 | traversalGridSize[i] = array.length(array.ordering(i+1));
|
---|
| 79 |
|
---|
| 80 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 81 | cout << "traversalGridSize = " << traversalGridSize << endl;
|
---|
| 82 | cout.flush();
|
---|
| 83 | #endif
|
---|
| 84 |
|
---|
| 85 | const TraversalOrder<N_rank-1>* order =
|
---|
| 86 | traversals.find(traversalGridSize);
|
---|
| 87 |
|
---|
| 88 | if (order)
|
---|
| 89 | {
|
---|
| 90 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 91 | cerr << "Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype)
|
---|
| 92 | << ", " << N_rank << ">: Using stack traversal" << endl;
|
---|
| 93 | #endif
|
---|
| 94 | // A curve was available -- use fast traversal.
|
---|
| 95 | array.evaluateWithFastTraversal(*order, expr, T_update());
|
---|
| 96 | return _bz_true;
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | return _bz_false;
|
---|
| 100 | }
|
---|
| 101 | };
|
---|
| 102 |
|
---|
| 103 | #endif // BZ_HAVE_STD
|
---|
| 104 |
|
---|
| 105 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 106 | inline Array<T_numtype, N_rank>&
|
---|
| 107 | Array<T_numtype, N_rank>::evaluate(_bz_ArrayExpr<T_expr> expr, T_update)
|
---|
| 108 | {
|
---|
| 109 | // Check that all arrays have the same shape
|
---|
| 110 | #ifdef BZ_DEBUG
|
---|
| 111 | if (!expr.shapeCheck(shape()))
|
---|
| 112 | {
|
---|
| 113 | if (assertFailMode == _bz_false)
|
---|
| 114 | {
|
---|
| 115 | cerr << "[Blitz++] Shape check failed: Module " << __FILE__
|
---|
| 116 | << " line " << __LINE__ << endl
|
---|
| 117 | << " Expression: ";
|
---|
| 118 | prettyPrintFormat format(_bz_true); // Use terse formatting
|
---|
| 119 | string str;
|
---|
| 120 | expr.prettyPrint(str, format);
|
---|
| 121 | cerr << str << endl ;
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | #if 0
|
---|
| 125 | // Shape dumping is broken by change to using string for prettyPrint
|
---|
| 126 | << " Shapes: " << shape() << " = ";
|
---|
| 127 | prettyPrintFormat format2;
|
---|
| 128 | format2.setDumpArrayShapesMode();
|
---|
| 129 | expr.prettyPrint(cerr, format2);
|
---|
| 130 | cerr << endl;
|
---|
| 131 | #endif
|
---|
| 132 | BZ_PRE_FAIL;
|
---|
| 133 | }
|
---|
| 134 | #endif
|
---|
| 135 |
|
---|
| 136 | BZPRECHECK(expr.shapeCheck(shape()),
|
---|
| 137 | "Shape check failed." << endl << "Expression:");
|
---|
| 138 |
|
---|
| 139 | BZPRECHECK((T_expr::rank == N_rank) || (T_expr::numArrayOperands == 0),
|
---|
| 140 | "Assigned rank " << T_expr::rank << " expression to rank "
|
---|
| 141 | << N_rank << " array.");
|
---|
| 142 |
|
---|
| 143 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 144 | cout << "T_expr::numIndexPlaceholders = " << T_expr::numIndexPlaceholders
|
---|
| 145 | << endl; cout.flush();
|
---|
| 146 | #endif
|
---|
| 147 |
|
---|
| 148 | // Tau profiling code. Provide Tau with a pretty-printed version of
|
---|
| 149 | // the expression.
|
---|
| 150 | // NEEDS_WORK-- use a static initializer somehow.
|
---|
| 151 |
|
---|
| 152 | #ifdef BZ_TAU_PROFILING
|
---|
| 153 | static string exprDescription;
|
---|
| 154 | if (!exprDescription.length()) // faked static initializer
|
---|
| 155 | {
|
---|
| 156 | exprDescription = "A";
|
---|
| 157 | prettyPrintFormat format(_bz_true); // Terse mode on
|
---|
| 158 | format.nextArrayOperandSymbol();
|
---|
| 159 | T_update::prettyPrint(exprDescription);
|
---|
| 160 | expr.prettyPrint(exprDescription, format);
|
---|
| 161 | }
|
---|
| 162 | TAU_PROFILE(" ", exprDescription, TAU_BLITZ);
|
---|
| 163 | #endif
|
---|
| 164 |
|
---|
| 165 | // Determine which evaluation mechanism to use
|
---|
| 166 | if (T_expr::numIndexPlaceholders > 0)
|
---|
| 167 | {
|
---|
| 168 | // The expression involves index placeholders, so have to
|
---|
| 169 | // use index traversal rather than stack traversal.
|
---|
| 170 |
|
---|
| 171 | if (N_rank == 1)
|
---|
| 172 | return evaluateWithIndexTraversal1(expr, T_update());
|
---|
| 173 | else
|
---|
| 174 | return evaluateWithIndexTraversalN(expr, T_update());
|
---|
| 175 | }
|
---|
| 176 | else {
|
---|
| 177 |
|
---|
| 178 | // If this expression looks like an array stencil, then attempt to
|
---|
| 179 | // use a fast traversal order.
|
---|
| 180 | // Fast traversals require <set> from the ISO/ANSI C++ standard
|
---|
| 181 | // library.
|
---|
| 182 |
|
---|
| 183 | #ifdef BZ_HAVE_STD
|
---|
| 184 |
|
---|
| 185 | enum { isStencil = (N_rank >= 3) && (T_expr::numArrayOperands > 6)
|
---|
| 186 | && (T_expr::numIndexPlaceholders == 0) };
|
---|
| 187 |
|
---|
| 188 | if (_bz_tryFastTraversal<isStencil>::tryFast(*this, expr, T_update()))
|
---|
| 189 | return *this;
|
---|
| 190 |
|
---|
| 191 | #endif
|
---|
| 192 |
|
---|
| 193 | #ifdef BZ_ARRAY_2D_STENCIL_TILING
|
---|
| 194 | // Does this look like a 2-dimensional stencil on a largeish
|
---|
| 195 | // array?
|
---|
| 196 |
|
---|
| 197 | if ((N_rank == 2) && (T_expr::numArrayOperands >= 5))
|
---|
| 198 | {
|
---|
| 199 | // Use a heuristic to determine whether a tiled traversal
|
---|
| 200 | // is desirable. First, estimate how much L1 cache is needed
|
---|
| 201 | // to achieve a high hit rate using the stack traversal.
|
---|
| 202 | // Try to err on the side of using tiled traversal even when
|
---|
| 203 | // it isn't strictly needed.
|
---|
| 204 |
|
---|
| 205 | // Assumptions:
|
---|
| 206 | // Stencil width 3
|
---|
| 207 | // 3 arrays involved in stencil
|
---|
| 208 | // Uniform data type in arrays (all T_numtype)
|
---|
| 209 |
|
---|
| 210 | int cacheNeeded = 3 * 3 * sizeof(T_numtype) * length(ordering(0));
|
---|
| 211 | if (cacheNeeded > BZ_L1_CACHE_ESTIMATED_SIZE)
|
---|
| 212 | return evaluateWithTiled2DTraversal(expr, T_update());
|
---|
| 213 | }
|
---|
| 214 |
|
---|
| 215 | #endif
|
---|
| 216 |
|
---|
| 217 | // If fast traversal isn't available or appropriate, then just
|
---|
| 218 | // do a stack traversal.
|
---|
| 219 | if (N_rank == 1)
|
---|
| 220 | return evaluateWithStackTraversal1(expr, T_update());
|
---|
| 221 | else
|
---|
| 222 | return evaluateWithStackTraversalN(expr, T_update());
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 227 | inline Array<T_numtype, N_rank>&
|
---|
| 228 | Array<T_numtype, N_rank>::evaluateWithStackTraversal1(_bz_ArrayExpr<T_expr>
|
---|
| 229 | expr, T_update)
|
---|
| 230 | {
|
---|
| 231 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 232 | BZ_DEBUG_MESSAGE("Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype)
|
---|
| 233 | << ", " << N_rank << ">: Using stack traversal");
|
---|
| 234 | #endif
|
---|
| 235 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 236 | iter.loadStride(firstRank);
|
---|
| 237 | expr.loadStride(firstRank);
|
---|
| 238 |
|
---|
| 239 | _bz_bool useUnitStride = iter.isUnitStride(firstRank)
|
---|
| 240 | && expr.isUnitStride(firstRank);
|
---|
| 241 |
|
---|
| 242 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 243 | int commonStride = expr.suggestStride(firstRank);
|
---|
| 244 | if (iter.suggestStride(firstRank) > commonStride)
|
---|
| 245 | commonStride = iter.suggestStride(firstRank);
|
---|
| 246 | bool useCommonStride = iter.isStride(firstRank,commonStride)
|
---|
| 247 | && expr.isStride(firstRank,commonStride);
|
---|
| 248 |
|
---|
| 249 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 250 | BZ_DEBUG_MESSAGE("BZ_ARRAY_EXPR_USE_COMMON_STRIDE:" << endl
|
---|
| 251 | << " commonStride = " << commonStride << " useCommonStride = "
|
---|
| 252 | << useCommonStride);
|
---|
| 253 | #endif
|
---|
| 254 | #else
|
---|
| 255 | int commonStride = 1;
|
---|
| 256 | bool useCommonStride = _bz_false;
|
---|
| 257 | #endif
|
---|
| 258 |
|
---|
| 259 | const T_numtype * last = iter.data() + length(firstRank)
|
---|
| 260 | * stride(firstRank);
|
---|
| 261 |
|
---|
| 262 | if (useUnitStride || useCommonStride)
|
---|
| 263 | {
|
---|
| 264 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 265 |
|
---|
| 266 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 267 | BZ_DEBUG_MESSAGE("BZ_USE_FAST_READ_ARRAY_EXPR with commonStride");
|
---|
| 268 | #endif
|
---|
| 269 | int ubound = length(firstRank) * commonStride;
|
---|
| 270 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data());
|
---|
| 271 |
|
---|
| 272 | if (commonStride == 1)
|
---|
| 273 | {
|
---|
| 274 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_UNROLL
|
---|
| 275 | for (int i=0; i < ubound; ++i)
|
---|
| 276 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 277 | #else
|
---|
| 278 | int n1 = ubound & 3;
|
---|
| 279 | int i = 0;
|
---|
| 280 | for (; i < n1; ++i)
|
---|
| 281 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 282 |
|
---|
| 283 | for (; i < ubound; i += 4)
|
---|
| 284 | {
|
---|
| 285 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_CSE_AND_ANTIALIAS
|
---|
| 286 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 287 | T_update::update(data[i+1], expr.fastRead(i+1));
|
---|
| 288 | T_update::update(data[i+2], expr.fastRead(i+2));
|
---|
| 289 | T_update::update(data[i+3], expr.fastRead(i+3));
|
---|
| 290 | #else
|
---|
| 291 | int t1 = i+1;
|
---|
| 292 | int t2 = i+2;
|
---|
| 293 | int t3 = i+3;
|
---|
| 294 |
|
---|
| 295 | _bz_typename T_expr::T_numtype tmp1, tmp2, tmp3, tmp4;
|
---|
| 296 |
|
---|
| 297 | tmp1 = expr.fastRead(i);
|
---|
| 298 | tmp2 = expr.fastRead(BZ_NO_PROPAGATE(t1));
|
---|
| 299 | tmp3 = expr.fastRead(BZ_NO_PROPAGATE(t2));
|
---|
| 300 | tmp4 = expr.fastRead(BZ_NO_PROPAGATE(t3));
|
---|
| 301 |
|
---|
| 302 | T_update::update(data[i], BZ_NO_PROPAGATE(tmp1));
|
---|
| 303 | T_update::update(data[BZ_NO_PROPAGATE(t1)], tmp2);
|
---|
| 304 | T_update::update(data[BZ_NO_PROPAGATE(t2)], tmp3);
|
---|
| 305 | T_update::update(data[BZ_NO_PROPAGATE(t3)], tmp4);
|
---|
| 306 | #endif
|
---|
| 307 | }
|
---|
| 308 | #endif // BZ_ARRAY_STACK_TRAVERSAL_UNROLL
|
---|
| 309 |
|
---|
| 310 | }
|
---|
| 311 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 312 | else {
|
---|
| 313 |
|
---|
| 314 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_UNROLL
|
---|
| 315 | for (int i=0; i < ubound; i += commonStride)
|
---|
| 316 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 317 | #else
|
---|
| 318 | int n1 = (length(firstRank) & 3) * commonStride;
|
---|
| 319 |
|
---|
| 320 | int i = 0;
|
---|
| 321 | for (; i < n1; i += commonStride)
|
---|
| 322 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 323 |
|
---|
| 324 | int strideInc = 4 * commonStride;
|
---|
| 325 | for (; i < ubound; i += strideInc)
|
---|
| 326 | {
|
---|
| 327 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 328 | int i2 = i + commonStride;
|
---|
| 329 | T_update::update(data[i2], expr.fastRead(i2));
|
---|
| 330 | int i3 = i + 2 * commonStride;
|
---|
| 331 | T_update::update(data[i3], expr.fastRead(i3));
|
---|
| 332 | int i4 = i + 3 * commonStride;
|
---|
| 333 | T_update::update(data[i4], expr.fastRead(i4));
|
---|
| 334 | }
|
---|
| 335 | #endif // BZ_ARRAY_STACK_TRAVERSAL_UNROLL
|
---|
| 336 | }
|
---|
| 337 | #endif // BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 338 |
|
---|
| 339 | #else // ! BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 340 |
|
---|
| 341 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 342 | BZ_DEBUG_MESSAGE("Common stride, no fast read");
|
---|
| 343 | #endif
|
---|
| 344 | while (iter.data() != last)
|
---|
| 345 | {
|
---|
| 346 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr);
|
---|
| 347 | iter.advance(commonStride);
|
---|
| 348 | expr.advance(commonStride);
|
---|
| 349 | }
|
---|
| 350 | #endif
|
---|
| 351 | }
|
---|
| 352 | else {
|
---|
| 353 | while (iter.data() != last)
|
---|
| 354 | {
|
---|
| 355 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr);
|
---|
| 356 | iter.advance();
|
---|
| 357 | expr.advance();
|
---|
| 358 | }
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | return *this;
|
---|
| 362 | }
|
---|
| 363 |
|
---|
| 364 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 365 | inline Array<T_numtype, N_rank>&
|
---|
| 366 | Array<T_numtype, N_rank>::evaluateWithStackTraversalN(_bz_ArrayExpr<T_expr>
|
---|
| 367 | expr, T_update)
|
---|
| 368 | {
|
---|
| 369 | /*
|
---|
| 370 | * A stack traversal replaces the usual nested loops:
|
---|
| 371 | *
|
---|
| 372 | * for (int i=A.lbound(firstDim); i <= A.ubound(firstDim); ++i)
|
---|
| 373 | * for (int j=A.lbound(secondDim); j <= A.ubound(secondDim); ++j)
|
---|
| 374 | * for (int k=A.lbound(thirdDim); k <= A.ubound(thirdDim); ++k)
|
---|
| 375 | * A(i,j,k) = 0;
|
---|
| 376 | *
|
---|
| 377 | * with a stack data structure. The stack allows this single
|
---|
| 378 | * routine to replace any number of nested loops.
|
---|
| 379 | *
|
---|
| 380 | * For each dimension (loop), these quantities are needed:
|
---|
| 381 | * - a pointer to the first element encountered in the loop
|
---|
| 382 | * - the stride associated with the dimension/loop
|
---|
| 383 | * - a pointer to the last element encountered in the loop
|
---|
| 384 | *
|
---|
| 385 | * The basic idea is that entering each loop is a "push" onto the
|
---|
| 386 | * stack, and exiting each loop is a "pop". In practice, this
|
---|
| 387 | * routine treats accesses the stack in a random-access way,
|
---|
| 388 | * which confuses the picture a bit. But conceptually, that's
|
---|
| 389 | * what is going on.
|
---|
| 390 | */
|
---|
| 391 |
|
---|
| 392 | /*
|
---|
| 393 | * ordering(0) gives the dimension associated with the smallest
|
---|
| 394 | * stride (usually; the exceptions have to do with subarrays and
|
---|
| 395 | * are uninteresting). We call this dimension maxRank; it will
|
---|
| 396 | * become the innermost "loop".
|
---|
| 397 | *
|
---|
| 398 | * Ordering the loops from ordering(N_rank-1) down to
|
---|
| 399 | * ordering(0) ensures that the largest stride is associated
|
---|
| 400 | * with the outermost loop, and the smallest stride with the
|
---|
| 401 | * innermost. This is critical for good performance on
|
---|
| 402 | * cached machines.
|
---|
| 403 | */
|
---|
| 404 | const int maxRank = ordering(0);
|
---|
| 405 | const int secondLastRank = ordering(1);
|
---|
| 406 |
|
---|
| 407 | // Create an iterator for the array receiving the result
|
---|
| 408 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 409 |
|
---|
| 410 | // Set the initial stack configuration by pushing the pointer
|
---|
| 411 | // to the first element of the array onto the stack N times.
|
---|
| 412 |
|
---|
| 413 | int i;
|
---|
| 414 | for (i=1; i < N_rank; ++i)
|
---|
| 415 | {
|
---|
| 416 | iter.push(i);
|
---|
| 417 | expr.push(i);
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | // Load the strides associated with the innermost loop.
|
---|
| 421 | iter.loadStride(maxRank);
|
---|
| 422 | expr.loadStride(maxRank);
|
---|
| 423 |
|
---|
| 424 | /*
|
---|
| 425 | * Is the stride in the innermost loop equal to 1? If so,
|
---|
| 426 | * we might take advantage of this and generate more
|
---|
| 427 | * efficient code.
|
---|
| 428 | */
|
---|
| 429 | _bz_bool useUnitStride = iter.isUnitStride(maxRank)
|
---|
| 430 | && expr.isUnitStride(maxRank);
|
---|
| 431 |
|
---|
| 432 | /*
|
---|
| 433 | * Do all array operands share a common stride in the innermost
|
---|
| 434 | * loop? If so, we can generate more efficient code (but only
|
---|
| 435 | * if this optimization has been enabled).
|
---|
| 436 | */
|
---|
| 437 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 438 | int commonStride = expr.suggestStride(maxRank);
|
---|
| 439 | if (iter.suggestStride(maxRank) > commonStride)
|
---|
| 440 | commonStride = iter.suggestStride(maxRank);
|
---|
| 441 | bool useCommonStride = iter.isStride(maxRank,commonStride)
|
---|
| 442 | && expr.isStride(maxRank,commonStride);
|
---|
| 443 |
|
---|
| 444 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 445 | BZ_DEBUG_MESSAGE("BZ_ARRAY_EXPR_USE_COMMON_STRIDE" << endl
|
---|
| 446 | << "commonStride = " << commonStride << " useCommonStride = "
|
---|
| 447 | << useCommonStride);
|
---|
| 448 | #endif
|
---|
| 449 |
|
---|
| 450 | #else
|
---|
| 451 | int commonStride = 1;
|
---|
| 452 | bool useCommonStride = _bz_false;
|
---|
| 453 | #endif
|
---|
| 454 |
|
---|
| 455 | /*
|
---|
| 456 | * The "last" array contains a pointer to the last element
|
---|
| 457 | * encountered in each "loop".
|
---|
| 458 | */
|
---|
| 459 | const T_numtype* _bz_restrict last[N_rank];
|
---|
| 460 |
|
---|
| 461 | // Set up the initial state of the "last" array
|
---|
| 462 | for (i=1; i < N_rank; ++i)
|
---|
| 463 | last[i] = iter.data() + length(ordering(i)) * stride(ordering(i));
|
---|
| 464 |
|
---|
| 465 | int lastLength = length(maxRank);
|
---|
| 466 | int firstNoncollapsedLoop = 1;
|
---|
| 467 |
|
---|
| 468 | #ifdef BZ_COLLAPSE_LOOPS
|
---|
| 469 |
|
---|
| 470 | /*
|
---|
| 471 | * This bit of code handles collapsing loops. When possible,
|
---|
| 472 | * the N nested loops are converted into a single loop (basically,
|
---|
| 473 | * the N-dimensional array is treated as a long vector).
|
---|
| 474 | * This is important for cases where the length of the innermost
|
---|
| 475 | * loop is very small, for example a 100x100x3 array.
|
---|
| 476 | * If this code can't collapse all the loops into a single loop,
|
---|
| 477 | * it will collapse as many loops as possible starting from the
|
---|
| 478 | * innermost and working out.
|
---|
| 479 | */
|
---|
| 480 |
|
---|
| 481 | // Collapse loops when possible
|
---|
| 482 | for (i=1; i < N_rank; ++i)
|
---|
| 483 | {
|
---|
| 484 | // Figure out which pair of loops we are considering combining.
|
---|
| 485 | int outerLoopRank = ordering(i);
|
---|
| 486 | int innerLoopRank = ordering(i-1);
|
---|
| 487 |
|
---|
| 488 | /*
|
---|
| 489 | * The canCollapse() routines look at the strides and extents
|
---|
| 490 | * of the loops, and determine if they can be combined into
|
---|
| 491 | * one loop.
|
---|
| 492 | */
|
---|
| 493 |
|
---|
| 494 | if (canCollapse(outerLoopRank,innerLoopRank)
|
---|
| 495 | && expr.canCollapse(outerLoopRank,innerLoopRank))
|
---|
| 496 | {
|
---|
| 497 | lastLength *= length(outerLoopRank);
|
---|
| 498 | firstNoncollapsedLoop = i+1;
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
| 501 | #endif // BZ_COLLAPSE_LOOPS
|
---|
| 502 |
|
---|
| 503 | /*
|
---|
| 504 | * Now we actually perform the loops. This while loop contains
|
---|
| 505 | * two parts: first, the innermost loop is performed. Then we
|
---|
| 506 | * exit the loop, and pop our way down the stack until we find
|
---|
| 507 | * a loop that isn't completed. We then restart the inner loops
|
---|
| 508 | * and push them onto the stack.
|
---|
| 509 | */
|
---|
| 510 |
|
---|
| 511 | while (true) {
|
---|
| 512 |
|
---|
| 513 | /*
|
---|
| 514 | * This bit of code handles the innermost loop. It would look
|
---|
| 515 | * a lot simpler if it weren't for unit stride and common stride
|
---|
| 516 | * optimizations; these clutter up the code with multiple versions.
|
---|
| 517 | */
|
---|
| 518 |
|
---|
| 519 | if ((useUnitStride) || (useCommonStride))
|
---|
| 520 | {
|
---|
| 521 | T_numtype * _bz_restrict end = const_cast<T_numtype*>(iter.data())
|
---|
| 522 | + lastLength;
|
---|
| 523 |
|
---|
| 524 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 525 |
|
---|
| 526 | /*
|
---|
| 527 | * The check for BZ_USE_FAST_READ_ARRAY_EXPR can probably
|
---|
| 528 | * be taken out. This was put in place while the unit stride/
|
---|
| 529 | * common stride optimizations were being implemented and
|
---|
| 530 | * tested.
|
---|
| 531 | */
|
---|
| 532 |
|
---|
| 533 | // Calculate the end of the innermost loop
|
---|
| 534 | int ubound = lastLength * commonStride;
|
---|
| 535 |
|
---|
| 536 | /*
|
---|
| 537 | * This is a real kludge. I didn't want to have to write
|
---|
| 538 | * a const and non-const version of ArrayIterator, so I use a
|
---|
| 539 | * const iterator and cast away const. This could
|
---|
| 540 | * probably be avoided with some trick, but the whole routine
|
---|
| 541 | * is ugly, so why bother.
|
---|
| 542 | */
|
---|
| 543 |
|
---|
| 544 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data());
|
---|
| 545 |
|
---|
| 546 | /*
|
---|
| 547 | * BZ_NEEDS_WORK-- need to implement optional unrolling.
|
---|
| 548 | */
|
---|
| 549 | if (commonStride == 1)
|
---|
| 550 | {
|
---|
| 551 | for (int i=0; i < ubound; ++i)
|
---|
| 552 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 553 | }
|
---|
| 554 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 555 | else {
|
---|
| 556 | for (int i=0; i < ubound; i += commonStride)
|
---|
| 557 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 558 | }
|
---|
| 559 | #endif
|
---|
| 560 | /*
|
---|
| 561 | * Tidy up for the fact that we haven't actually been
|
---|
| 562 | * incrementing the iterators in the innermost loop, by
|
---|
| 563 | * faking it afterward.
|
---|
| 564 | */
|
---|
| 565 | iter.advance(lastLength * commonStride);
|
---|
| 566 | expr.advance(lastLength * commonStride);
|
---|
| 567 | #else
|
---|
| 568 | // !BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 569 | // This bit of code not really needed; should remove at some
|
---|
| 570 | // point, along with the test for BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 571 |
|
---|
| 572 | while (iter.data() != end)
|
---|
| 573 | {
|
---|
| 574 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr);
|
---|
| 575 | iter.advance(commonStride);
|
---|
| 576 | expr.advance(commonStride);
|
---|
| 577 | }
|
---|
| 578 | #endif
|
---|
| 579 | }
|
---|
| 580 | else {
|
---|
| 581 | /*
|
---|
| 582 | * We don't have a unit stride or common stride in the innermost
|
---|
| 583 | * loop. This is going to hurt performance. Luckily 95% of
|
---|
| 584 | * the time, we hit the cases above.
|
---|
| 585 | */
|
---|
| 586 | T_numtype * _bz_restrict end = const_cast<T_numtype*>(iter.data())
|
---|
| 587 | + lastLength * stride(maxRank);
|
---|
| 588 |
|
---|
| 589 | while (iter.data() != end)
|
---|
| 590 | {
|
---|
| 591 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr);
|
---|
| 592 | iter.advance();
|
---|
| 593 | expr.advance();
|
---|
| 594 | }
|
---|
| 595 | }
|
---|
| 596 |
|
---|
| 597 |
|
---|
| 598 | /*
|
---|
| 599 | * We just finished the innermost loop. Now we pop our way down
|
---|
| 600 | * the stack, until we hit a loop that hasn't completed yet.
|
---|
| 601 | */
|
---|
| 602 | int j = firstNoncollapsedLoop;
|
---|
| 603 | for (; j < N_rank; ++j)
|
---|
| 604 | {
|
---|
| 605 | // Get the next loop
|
---|
| 606 | int r = ordering(j);
|
---|
| 607 |
|
---|
| 608 | // Pop-- this restores the data pointers to the first element
|
---|
| 609 | // encountered in the loop.
|
---|
| 610 | iter.pop(j);
|
---|
| 611 | expr.pop(j);
|
---|
| 612 |
|
---|
| 613 | // Load the stride associated with this loop, and increment
|
---|
| 614 | // once.
|
---|
| 615 | iter.loadStride(r);
|
---|
| 616 | expr.loadStride(r);
|
---|
| 617 | iter.advance();
|
---|
| 618 | expr.advance();
|
---|
| 619 |
|
---|
| 620 | // If we aren't at the end of this loop, then stop popping.
|
---|
| 621 | if (iter.data() != last[j])
|
---|
| 622 | break;
|
---|
| 623 | }
|
---|
| 624 |
|
---|
| 625 | // Are we completely done?
|
---|
| 626 | if (j == N_rank)
|
---|
| 627 | break;
|
---|
| 628 |
|
---|
| 629 | // No, so push all the inner loops back onto the stack.
|
---|
| 630 | for (; j >= firstNoncollapsedLoop; --j)
|
---|
| 631 | {
|
---|
| 632 | int r2 = ordering(j-1);
|
---|
| 633 | iter.push(j);
|
---|
| 634 | expr.push(j);
|
---|
| 635 | last[j-1] = iter.data() + length(r2) * stride(r2);
|
---|
| 636 | }
|
---|
| 637 |
|
---|
| 638 | // Load the stride for the innermost loop again.
|
---|
| 639 | iter.loadStride(maxRank);
|
---|
| 640 | expr.loadStride(maxRank);
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | return *this;
|
---|
| 644 | }
|
---|
| 645 |
|
---|
| 646 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 647 | inline Array<T_numtype, N_rank>&
|
---|
| 648 | Array<T_numtype, N_rank>::evaluateWithIndexTraversal1(_bz_ArrayExpr<T_expr>
|
---|
| 649 | expr, T_update)
|
---|
| 650 | {
|
---|
| 651 | TinyVector<int,N_rank> index;
|
---|
| 652 |
|
---|
| 653 | if (stride(firstRank) == 1)
|
---|
| 654 | {
|
---|
| 655 | T_numtype * _bz_restrict iter = data_;
|
---|
| 656 | int last = ubound(firstRank);
|
---|
| 657 |
|
---|
| 658 | for (index[0] = lbound(firstRank); index[0] <= last;
|
---|
| 659 | ++index[0])
|
---|
| 660 | {
|
---|
| 661 | iter[index[0]] = expr(index);
|
---|
| 662 | }
|
---|
| 663 | }
|
---|
| 664 | else {
|
---|
| 665 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 666 | iter.loadStride(0);
|
---|
| 667 | int last = ubound(firstRank);
|
---|
| 668 |
|
---|
| 669 | for (index[0] = lbound(firstRank); index[0] <= last;
|
---|
| 670 | ++index[0])
|
---|
| 671 | {
|
---|
| 672 | T_update::update(*const_cast<T_numtype*>(iter.data()),
|
---|
| 673 | expr(index));
|
---|
| 674 | iter.advance();
|
---|
| 675 | }
|
---|
| 676 | }
|
---|
| 677 |
|
---|
| 678 | return *this;
|
---|
| 679 | }
|
---|
| 680 |
|
---|
| 681 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 682 | inline Array<T_numtype, N_rank>&
|
---|
| 683 | Array<T_numtype, N_rank>::evaluateWithIndexTraversalN(_bz_ArrayExpr<T_expr>
|
---|
| 684 | expr, T_update)
|
---|
| 685 | {
|
---|
| 686 | // Do a stack-type traversal for the destination array and use
|
---|
| 687 | // index traversal for the source expression
|
---|
| 688 |
|
---|
| 689 | const int maxRank = ordering(0);
|
---|
| 690 | const int secondLastRank = ordering(1);
|
---|
| 691 |
|
---|
| 692 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 693 | cout << "Index traversal: N_rank = " << N_rank << endl;
|
---|
| 694 | cout << "maxRank = " << maxRank << " secondLastRank = " << secondLastRank
|
---|
| 695 | << endl;
|
---|
| 696 | cout.flush();
|
---|
| 697 | #endif
|
---|
| 698 |
|
---|
| 699 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 700 | for (int i=1; i < N_rank; ++i)
|
---|
| 701 | iter.push(ordering(i));
|
---|
| 702 |
|
---|
| 703 | iter.loadStride(maxRank);
|
---|
| 704 |
|
---|
| 705 | TinyVector<int,N_rank> index, last;
|
---|
| 706 |
|
---|
| 707 | index = storage_.base();
|
---|
| 708 | last = storage_.base() + length_;
|
---|
| 709 |
|
---|
| 710 | int lastLength = length(maxRank);
|
---|
| 711 |
|
---|
| 712 | while (true) {
|
---|
| 713 |
|
---|
| 714 | for (index[maxRank] = base(maxRank);
|
---|
| 715 | index[maxRank] < last[maxRank];
|
---|
| 716 | ++index[maxRank])
|
---|
| 717 | {
|
---|
| 718 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 719 | #if 0
|
---|
| 720 | cout << "(" << index[0] << "," << index[1] << ") " << endl;
|
---|
| 721 | cout.flush();
|
---|
| 722 | #endif
|
---|
| 723 | #endif
|
---|
| 724 |
|
---|
| 725 | T_update::update(*const_cast<T_numtype*>(iter.data()), expr(index));
|
---|
| 726 | iter.advance();
|
---|
| 727 | }
|
---|
| 728 |
|
---|
| 729 | int j = 1;
|
---|
| 730 | for (; j < N_rank; ++j)
|
---|
| 731 | {
|
---|
| 732 | iter.pop(ordering(j));
|
---|
| 733 | iter.loadStride(ordering(j));
|
---|
| 734 | iter.advance();
|
---|
| 735 |
|
---|
| 736 | index[ordering(j-1)] = base(ordering(j-1));
|
---|
| 737 | ++index[ordering(j)];
|
---|
| 738 | if (index[ordering(j)] != last[ordering(j)])
|
---|
| 739 | break;
|
---|
| 740 | }
|
---|
| 741 |
|
---|
| 742 | if (j == N_rank)
|
---|
| 743 | break;
|
---|
| 744 |
|
---|
| 745 | for (; j > 0; --j)
|
---|
| 746 | {
|
---|
| 747 | iter.push(ordering(j));
|
---|
| 748 | }
|
---|
| 749 | iter.loadStride(maxRank);
|
---|
| 750 | }
|
---|
| 751 |
|
---|
| 752 | return *this;
|
---|
| 753 | }
|
---|
| 754 |
|
---|
| 755 | // Fast traversals require <set> from the ISO/ANSI C++ standard library
|
---|
| 756 |
|
---|
| 757 | #ifdef BZ_HAVE_STD
|
---|
| 758 |
|
---|
| 759 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 760 | inline Array<T_numtype, N_rank>&
|
---|
| 761 | Array<T_numtype, N_rank>::evaluateWithFastTraversal(
|
---|
| 762 | const TraversalOrder<N_rank - 1>& order, _bz_ArrayExpr<T_expr> expr,
|
---|
| 763 | T_update)
|
---|
| 764 | {
|
---|
| 765 | const int maxRank = ordering(0);
|
---|
| 766 | const int secondLastRank = ordering(1);
|
---|
| 767 |
|
---|
| 768 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 769 | cerr << "maxRank = " << maxRank << " secondLastRank = " << secondLastRank
|
---|
| 770 | << endl;
|
---|
| 771 | #endif
|
---|
| 772 |
|
---|
| 773 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 774 | iter.push(0);
|
---|
| 775 | expr.push(0);
|
---|
| 776 |
|
---|
| 777 | _bz_bool useUnitStride = iter.isUnitStride(maxRank)
|
---|
| 778 | && expr.isUnitStride(maxRank);
|
---|
| 779 |
|
---|
| 780 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 781 | int commonStride = expr.suggestStride(maxRank);
|
---|
| 782 | if (iter.suggestStride(maxRank) > commonStride)
|
---|
| 783 | commonStride = iter.suggestStride(maxRank);
|
---|
| 784 | bool useCommonStride = iter.isStride(maxRank,commonStride)
|
---|
| 785 | && expr.isStride(maxRank,commonStride);
|
---|
| 786 | #else
|
---|
| 787 | int commonStride = 1;
|
---|
| 788 | bool useCommonStride = _bz_false;
|
---|
| 789 | #endif
|
---|
| 790 |
|
---|
| 791 | int lastLength = length(maxRank);
|
---|
| 792 |
|
---|
| 793 | for (int i=0; i < order.length(); ++i)
|
---|
| 794 | {
|
---|
| 795 | iter.pop(0);
|
---|
| 796 | expr.pop(0);
|
---|
| 797 |
|
---|
| 798 | #ifdef BZ_DEBUG_TRAVERSE
|
---|
| 799 | cerr << "Traversing: " << order[i] << endl;
|
---|
| 800 | #endif
|
---|
| 801 | // Position the iterator at the start of the next column
|
---|
| 802 | for (int j=1; j < N_rank; ++j)
|
---|
| 803 | {
|
---|
| 804 | iter.loadStride(ordering(j));
|
---|
| 805 | expr.loadStride(ordering(j));
|
---|
| 806 |
|
---|
| 807 | int offset = order[i][j-1];
|
---|
| 808 | iter.advance(offset);
|
---|
| 809 | expr.advance(offset);
|
---|
| 810 | }
|
---|
| 811 |
|
---|
| 812 | iter.loadStride(maxRank);
|
---|
| 813 | expr.loadStride(maxRank);
|
---|
| 814 |
|
---|
| 815 | // Evaluate the expression along the column
|
---|
| 816 |
|
---|
| 817 | if ((useUnitStride) || (useCommonStride))
|
---|
| 818 | {
|
---|
| 819 | T_numtype* _bz_restrict last = const_cast<T_numtype*>(iter.data())
|
---|
| 820 | + lastLength * commonStride;
|
---|
| 821 |
|
---|
| 822 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 823 | int ubound = lastLength * commonStride;
|
---|
| 824 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data());
|
---|
| 825 |
|
---|
| 826 | if (commonStride == 1)
|
---|
| 827 | {
|
---|
| 828 | #ifndef BZ_ARRAY_FAST_TRAVERSAL_UNROLL
|
---|
| 829 | for (int i=0; i < ubound; ++i)
|
---|
| 830 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 831 | #else
|
---|
| 832 | int n1 = ubound & 3;
|
---|
| 833 | int i=0;
|
---|
| 834 | for (; i < n1; ++i)
|
---|
| 835 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 836 |
|
---|
| 837 | for (; i < ubound; i += 4)
|
---|
| 838 | {
|
---|
| 839 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 840 | T_update::update(data[i+1], expr.fastRead(i+1));
|
---|
| 841 | T_update::update(data[i+2], expr.fastRead(i+2));
|
---|
| 842 | T_update::update(data[i+3], expr.fastRead(i+3));
|
---|
| 843 | }
|
---|
| 844 | #endif // BZ_ARRAY_FAST_TRAVERSAL_UNROLL
|
---|
| 845 | }
|
---|
| 846 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 847 | else {
|
---|
| 848 | for (int i=0; i < ubound; i += commonStride)
|
---|
| 849 | T_update::update(data[i], expr.fastRead(i));
|
---|
| 850 | }
|
---|
| 851 | #endif // BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 852 |
|
---|
| 853 | iter.advance(lastLength * commonStride);
|
---|
| 854 | expr.advance(lastLength * commonStride);
|
---|
| 855 | #else // ! BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 856 | while (iter.data() != last)
|
---|
| 857 | {
|
---|
| 858 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr);
|
---|
| 859 | iter.advance(commonStride);
|
---|
| 860 | expr.advance(commonStride);
|
---|
| 861 | }
|
---|
| 862 | #endif // BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
| 863 |
|
---|
| 864 | }
|
---|
| 865 | else {
|
---|
| 866 | // No common stride
|
---|
| 867 |
|
---|
| 868 | T_numtype* _bz_restrict last = const_cast<T_numtype*>(iter.data())
|
---|
| 869 | + lastLength * stride(maxRank);
|
---|
| 870 |
|
---|
| 871 | while (iter.data() != last)
|
---|
| 872 | {
|
---|
| 873 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr);
|
---|
| 874 | iter.advance();
|
---|
| 875 | expr.advance();
|
---|
| 876 | }
|
---|
| 877 | }
|
---|
| 878 | }
|
---|
| 879 |
|
---|
| 880 | return *this;
|
---|
| 881 | }
|
---|
| 882 | #endif // BZ_HAVE_STD
|
---|
| 883 |
|
---|
| 884 | #ifdef BZ_ARRAY_2D_NEW_STENCIL_TILING
|
---|
| 885 |
|
---|
| 886 | #ifdef BZ_ARRAY_2D_STENCIL_TILING
|
---|
| 887 |
|
---|
| 888 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 889 | inline Array<T_numtype, N_rank>&
|
---|
| 890 | Array<T_numtype, N_rank>::evaluateWithTiled2DTraversal(_bz_ArrayExpr<T_expr>
|
---|
| 891 | expr, T_update)
|
---|
| 892 | {
|
---|
| 893 | const int minorRank = ordering(0);
|
---|
| 894 | const int majorRank = ordering(1);
|
---|
| 895 |
|
---|
| 896 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 897 | iter.push(0);
|
---|
| 898 | expr.push(0);
|
---|
| 899 |
|
---|
| 900 | #ifdef BZ_2D_STENCIL_DEBUG
|
---|
| 901 | int count = 0;
|
---|
| 902 | #endif
|
---|
| 903 |
|
---|
| 904 | _bz_bool useUnitStride = iter.isUnitStride(minorRank)
|
---|
| 905 | && expr.isUnitStride(minorRank);
|
---|
| 906 |
|
---|
| 907 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 908 | int commonStride = expr.suggestStride(minorRank);
|
---|
| 909 | if (iter.suggestStride(minorRank) > commonStride)
|
---|
| 910 | commonStride = iter.suggestStride(minorRank);
|
---|
| 911 | bool useCommonStride = iter.isStride(minorRank,commonStride)
|
---|
| 912 | && expr.isStride(minorRank,commonStride);
|
---|
| 913 | #else
|
---|
| 914 | int commonStride = 1;
|
---|
| 915 | bool useCommonStride = _bz_false;
|
---|
| 916 | #endif
|
---|
| 917 |
|
---|
| 918 | // Determine if a common major stride exists
|
---|
| 919 | int commonMajorStride = expr.suggestStride(majorRank);
|
---|
| 920 | if (iter.suggestStride(majorRank) > commonMajorStride)
|
---|
| 921 | commonMajorStride = iter.suggestStride(majorRank);
|
---|
| 922 | bool haveCommonMajorStride = iter.isStride(majorRank,commonMajorStride)
|
---|
| 923 | && expr.isStride(majorRank,commonMajorStride);
|
---|
| 924 |
|
---|
| 925 |
|
---|
| 926 | int maxi = length(majorRank);
|
---|
| 927 | int maxj = length(minorRank);
|
---|
| 928 |
|
---|
| 929 | const int tileHeight = 16, tileWidth = 3;
|
---|
| 930 |
|
---|
| 931 | int bi, bj;
|
---|
| 932 | for (bi=0; bi < maxi; bi += tileHeight)
|
---|
| 933 | {
|
---|
| 934 | int ni = bi + tileHeight;
|
---|
| 935 | if (ni > maxi)
|
---|
| 936 | ni = maxi;
|
---|
| 937 |
|
---|
| 938 | // Move back to the beginning of the array
|
---|
| 939 | iter.pop(0);
|
---|
| 940 | expr.pop(0);
|
---|
| 941 |
|
---|
| 942 | // Move to the start of this tile row
|
---|
| 943 | iter.loadStride(majorRank);
|
---|
| 944 | iter.advance(bi);
|
---|
| 945 | expr.loadStride(majorRank);
|
---|
| 946 | expr.advance(bi);
|
---|
| 947 |
|
---|
| 948 | // Save this position
|
---|
| 949 | iter.push(1);
|
---|
| 950 | expr.push(1);
|
---|
| 951 |
|
---|
| 952 | for (bj=0; bj < maxj; bj += tileWidth)
|
---|
| 953 | {
|
---|
| 954 | // Move to the beginning of the tile row
|
---|
| 955 | iter.pop(1);
|
---|
| 956 | expr.pop(1);
|
---|
| 957 |
|
---|
| 958 | // Move to the top of the current tile (bi,bj)
|
---|
| 959 | iter.loadStride(minorRank);
|
---|
| 960 | iter.advance(bj);
|
---|
| 961 | expr.loadStride(minorRank);
|
---|
| 962 | expr.advance(bj);
|
---|
| 963 |
|
---|
| 964 | if (bj + tileWidth <= maxj)
|
---|
| 965 | {
|
---|
| 966 | // Strip mining
|
---|
| 967 |
|
---|
| 968 | if ((useUnitStride) && (haveCommonMajorStride))
|
---|
| 969 | {
|
---|
| 970 | int offset = 0;
|
---|
| 971 | T_numtype* _bz_restrict data = const_cast<T_numtype*>
|
---|
| 972 | (iter.data());
|
---|
| 973 |
|
---|
| 974 | for (int i=bi; i < ni; ++i)
|
---|
| 975 | {
|
---|
| 976 | _bz_typename T_expr::T_numtype tmp1, tmp2, tmp3;
|
---|
| 977 |
|
---|
| 978 | // Common subexpression elimination -- compilers
|
---|
| 979 | // won't necessarily do this on their own.
|
---|
| 980 | int t1 = offset+1;
|
---|
| 981 | int t2 = offset+2;
|
---|
| 982 |
|
---|
| 983 | tmp1 = expr.fastRead(offset);
|
---|
| 984 | tmp2 = expr.fastRead(t1);
|
---|
| 985 | tmp3 = expr.fastRead(t2);
|
---|
| 986 |
|
---|
| 987 | T_update::update(data[0], tmp1);
|
---|
| 988 | T_update::update(data[1], tmp2);
|
---|
| 989 | T_update::update(data[2], tmp3);
|
---|
| 990 |
|
---|
| 991 | offset += commonMajorStride;
|
---|
| 992 | data += commonMajorStride;
|
---|
| 993 |
|
---|
| 994 | #ifdef BZ_2D_STENCIL_DEBUG
|
---|
| 995 | count += 3;
|
---|
| 996 | #endif
|
---|
| 997 | }
|
---|
| 998 | }
|
---|
| 999 | else {
|
---|
| 1000 |
|
---|
| 1001 | for (int i=bi; i < ni; ++i)
|
---|
| 1002 | {
|
---|
| 1003 | iter.loadStride(minorRank);
|
---|
| 1004 | expr.loadStride(minorRank);
|
---|
| 1005 |
|
---|
| 1006 | // Loop through current row elements
|
---|
| 1007 | T_update::update(*const_cast<T_numtype*>(iter.data()),
|
---|
| 1008 | *expr);
|
---|
| 1009 | iter.advance();
|
---|
| 1010 | expr.advance();
|
---|
| 1011 |
|
---|
| 1012 | T_update::update(*const_cast<T_numtype*>(iter.data()),
|
---|
| 1013 | *expr);
|
---|
| 1014 | iter.advance();
|
---|
| 1015 | expr.advance();
|
---|
| 1016 |
|
---|
| 1017 | T_update::update(*const_cast<T_numtype*>(iter.data()),
|
---|
| 1018 | *expr);
|
---|
| 1019 | iter.advance(-2);
|
---|
| 1020 | expr.advance(-2);
|
---|
| 1021 |
|
---|
| 1022 | iter.loadStride(majorRank);
|
---|
| 1023 | expr.loadStride(majorRank);
|
---|
| 1024 | iter.advance();
|
---|
| 1025 | expr.advance();
|
---|
| 1026 |
|
---|
| 1027 | #ifdef BZ_2D_STENCIL_DEBUG
|
---|
| 1028 | count += 3;
|
---|
| 1029 | #endif
|
---|
| 1030 |
|
---|
| 1031 | }
|
---|
| 1032 | }
|
---|
| 1033 | }
|
---|
| 1034 | else {
|
---|
| 1035 |
|
---|
| 1036 | // This code handles partial tiles at the bottom of the
|
---|
| 1037 | // array.
|
---|
| 1038 |
|
---|
| 1039 | for (int j=bj; j < maxj; ++j)
|
---|
| 1040 | {
|
---|
| 1041 | iter.loadStride(majorRank);
|
---|
| 1042 | expr.loadStride(majorRank);
|
---|
| 1043 |
|
---|
| 1044 | for (int i=bi; i < ni; ++i)
|
---|
| 1045 | {
|
---|
| 1046 | T_update::update(*const_cast<T_numtype*>(iter.data()),
|
---|
| 1047 | *expr);
|
---|
| 1048 | iter.advance();
|
---|
| 1049 | expr.advance();
|
---|
| 1050 | #ifdef BZ_2D_STENCIL_DEBUG
|
---|
| 1051 | ++count;
|
---|
| 1052 | #endif
|
---|
| 1053 |
|
---|
| 1054 | }
|
---|
| 1055 |
|
---|
| 1056 | // Move back to the top of this column
|
---|
| 1057 | iter.advance(bi-ni);
|
---|
| 1058 | expr.advance(bi-ni);
|
---|
| 1059 |
|
---|
| 1060 | // Move over to the next column
|
---|
| 1061 | iter.loadStride(minorRank);
|
---|
| 1062 | expr.loadStride(minorRank);
|
---|
| 1063 |
|
---|
| 1064 | iter.advance();
|
---|
| 1065 | expr.advance();
|
---|
| 1066 | }
|
---|
| 1067 | }
|
---|
| 1068 | }
|
---|
| 1069 | }
|
---|
| 1070 |
|
---|
| 1071 | #ifdef BZ_2D_STENCIL_DEBUG
|
---|
| 1072 | cout << "BZ_2D_STENCIL_DEBUG: count = " << count << endl;
|
---|
| 1073 | #endif
|
---|
| 1074 |
|
---|
| 1075 | return *this;
|
---|
| 1076 | }
|
---|
| 1077 |
|
---|
| 1078 | #endif // BZ_ARRAY_2D_STENCIL_TILING
|
---|
| 1079 | #endif // BZ_ARRAY_2D_NEW_STENCIL_TILING
|
---|
| 1080 |
|
---|
| 1081 |
|
---|
| 1082 |
|
---|
| 1083 | #ifndef BZ_ARRAY_2D_NEW_STENCIL_TILING
|
---|
| 1084 |
|
---|
| 1085 | #ifdef BZ_ARRAY_2D_STENCIL_TILING
|
---|
| 1086 |
|
---|
| 1087 | template<class T_numtype, int N_rank> template<class T_expr, class T_update>
|
---|
| 1088 | inline Array<T_numtype, N_rank>&
|
---|
| 1089 | Array<T_numtype, N_rank>::evaluateWithTiled2DTraversal(_bz_ArrayExpr<T_expr>
|
---|
| 1090 | expr, T_update)
|
---|
| 1091 | {
|
---|
| 1092 | const int minorRank = ordering(0);
|
---|
| 1093 | const int majorRank = ordering(1);
|
---|
| 1094 |
|
---|
| 1095 | const int blockSize = 16;
|
---|
| 1096 |
|
---|
| 1097 | ArrayIterator<T_numtype, N_rank> iter(*this);
|
---|
| 1098 | iter.push(0);
|
---|
| 1099 | expr.push(0);
|
---|
| 1100 |
|
---|
| 1101 | _bz_bool useUnitStride = iter.isUnitStride(minorRank)
|
---|
| 1102 | && expr.isUnitStride(minorRank);
|
---|
| 1103 |
|
---|
| 1104 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 1105 | int commonStride = expr.suggestStride(minorRank);
|
---|
| 1106 | if (iter.suggestStride(minorRank) > commonStride)
|
---|
| 1107 | commonStride = iter.suggestStride(minorRank);
|
---|
| 1108 | bool useCommonStride = iter.isStride(minorRank,commonStride)
|
---|
| 1109 | && expr.isStride(minorRank,commonStride);
|
---|
| 1110 | #else
|
---|
| 1111 | int commonStride = 1;
|
---|
| 1112 | bool useCommonStride = _bz_false;
|
---|
| 1113 | #endif
|
---|
| 1114 |
|
---|
| 1115 | int maxi = length(majorRank);
|
---|
| 1116 | int maxj = length(minorRank);
|
---|
| 1117 |
|
---|
| 1118 | int bi, bj;
|
---|
| 1119 | for (bi=0; bi < maxi; bi += blockSize)
|
---|
| 1120 | {
|
---|
| 1121 | int ni = bi + blockSize;
|
---|
| 1122 | if (ni > maxi)
|
---|
| 1123 | ni = maxi;
|
---|
| 1124 |
|
---|
| 1125 | for (bj=0; bj < maxj; bj += blockSize)
|
---|
| 1126 | {
|
---|
| 1127 | int nj = bj + blockSize;
|
---|
| 1128 | if (nj > maxj)
|
---|
| 1129 | nj = maxj;
|
---|
| 1130 |
|
---|
| 1131 | // Move to the beginning of the array
|
---|
| 1132 | iter.pop(0);
|
---|
| 1133 | expr.pop(0);
|
---|
| 1134 |
|
---|
| 1135 | // Move to the beginning of the tile (bi,bj)
|
---|
| 1136 | iter.loadStride(majorRank);
|
---|
| 1137 | iter.advance(bi);
|
---|
| 1138 | iter.loadStride(minorRank);
|
---|
| 1139 | iter.advance(bj);
|
---|
| 1140 |
|
---|
| 1141 | expr.loadStride(majorRank);
|
---|
| 1142 | expr.advance(bi);
|
---|
| 1143 | expr.loadStride(minorRank);
|
---|
| 1144 | expr.advance(bj);
|
---|
| 1145 |
|
---|
| 1146 | // Loop through tile rows
|
---|
| 1147 | for (int i=bi; i < ni; ++i)
|
---|
| 1148 | {
|
---|
| 1149 | // Save the beginning of this tile row
|
---|
| 1150 | iter.push(1);
|
---|
| 1151 | expr.push(1);
|
---|
| 1152 |
|
---|
| 1153 | // Load the minor stride
|
---|
| 1154 | iter.loadStride(minorRank);
|
---|
| 1155 | expr.loadStride(minorRank);
|
---|
| 1156 |
|
---|
| 1157 | if (useUnitStride)
|
---|
| 1158 | {
|
---|
| 1159 | T_numtype* _bz_restrict data = const_cast<T_numtype*>
|
---|
| 1160 | (iter.data());
|
---|
| 1161 |
|
---|
| 1162 | int ubound = (nj-bj);
|
---|
| 1163 | for (int j=0; j < ubound; ++j)
|
---|
| 1164 | T_update::update(data[j], expr.fastRead(j));
|
---|
| 1165 | }
|
---|
| 1166 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE
|
---|
| 1167 | else if (useCommonStride)
|
---|
| 1168 | {
|
---|
| 1169 | int ubound = (nj-bj) * commonStride;
|
---|
| 1170 | T_numtype* _bz_restrict data = const_cast<T_numtype*>
|
---|
| 1171 | (iter.data());
|
---|
| 1172 |
|
---|
| 1173 | for (int j=0; j < ubound; j += commonStride)
|
---|
| 1174 | T_update::update(data[j], expr.fastRead(j));
|
---|
| 1175 | }
|
---|
| 1176 | #endif
|
---|
| 1177 | else {
|
---|
| 1178 | for (int j=bj; j < nj; ++j)
|
---|
| 1179 | {
|
---|
| 1180 | // Loop through current row elements
|
---|
| 1181 | T_update::update(*const_cast<T_numtype*>(iter.data()),
|
---|
| 1182 | *expr);
|
---|
| 1183 | iter.advance();
|
---|
| 1184 | expr.advance();
|
---|
| 1185 | }
|
---|
| 1186 | }
|
---|
| 1187 |
|
---|
| 1188 | // Move back to the beginning of the tile row, then
|
---|
| 1189 | // move to the next row
|
---|
| 1190 | iter.pop(1);
|
---|
| 1191 | iter.loadStride(majorRank);
|
---|
| 1192 | iter.advance(1);
|
---|
| 1193 |
|
---|
| 1194 | expr.pop(1);
|
---|
| 1195 | expr.loadStride(majorRank);
|
---|
| 1196 | expr.advance(1);
|
---|
| 1197 | }
|
---|
| 1198 | }
|
---|
| 1199 | }
|
---|
| 1200 |
|
---|
| 1201 | return *this;
|
---|
| 1202 | }
|
---|
| 1203 | #endif // BZ_ARRAY_2D_STENCIL_TILING
|
---|
| 1204 | #endif // BZ_ARRAY_2D_NEW_STENCIL_TILING
|
---|
| 1205 |
|
---|
| 1206 | BZ_NAMESPACE_END
|
---|
| 1207 |
|
---|
| 1208 | #endif // BZ_ARRAYEVAL_CC
|
---|
| 1209 |
|
---|