| 1 | /* | 
|---|
| 2 | * $Id: eval.cc,v 1.1.1.1 1999-11-26 16:37:06 ansari Exp $ | 
|---|
| 3 | * | 
|---|
| 4 | * $Log: not supported by cvs2svn $ | 
|---|
| 5 | // Revision 1.1.1.1  1999/04/09  17:59:03  ansari | 
|---|
| 6 | // Creation module DPC/Blitz (blitz 0.4) Reza 09/04/99 | 
|---|
| 7 | // | 
|---|
| 8 | * Revision 1.2  1998/03/14 00:04:47  tveldhui | 
|---|
| 9 | * 0.2-alpha-05 | 
|---|
| 10 | * | 
|---|
| 11 | * Revision 1.1  1998/02/25 20:04:01  tveldhui | 
|---|
| 12 | * Initial revision | 
|---|
| 13 | * | 
|---|
| 14 | */ | 
|---|
| 15 |  | 
|---|
| 16 | #ifndef BZ_ARRAYEVAL_CC | 
|---|
| 17 | #define BZ_ARRAYEVAL_CC | 
|---|
| 18 |  | 
|---|
| 19 | #ifndef BZ_ARRAY_H | 
|---|
| 20 | #error <blitz/array/eval.cc> must be included via <blitz/array.h> | 
|---|
| 21 | #endif | 
|---|
| 22 |  | 
|---|
| 23 | BZ_NAMESPACE(blitz) | 
|---|
| 24 |  | 
|---|
| 25 | /* | 
|---|
| 26 | * Assign an expression to an array.  For performance reasons, there are | 
|---|
| 27 | * several traversal mechanisms: | 
|---|
| 28 | * | 
|---|
| 29 | * - Index traversal scans through the destination array in storage order. | 
|---|
| 30 | *   The expression is evaluated using a TinyVector<int,N> operand.  This | 
|---|
| 31 | *   version is used only when there are index placeholders in the expression | 
|---|
| 32 | *   (see <blitz/indexexpr.h>) | 
|---|
| 33 | * - Stack traversal also scans through the destination array in storage | 
|---|
| 34 | *   order.  However, push/pop stack iterators are used. | 
|---|
| 35 | * - Fast traversal follows a Hilbert (or other) space-filling curve to | 
|---|
| 36 | *   improve cache reuse for stencilling operations.  Currently, the | 
|---|
| 37 | *   space filling curves must be generated by calling | 
|---|
| 38 | *   generateFastTraversalOrder(TinyVector<int,N_dimensions>). | 
|---|
| 39 | * - 2D tiled traversal follows a tiled traversal, to improve cache reuse | 
|---|
| 40 | *   for 2D stencils.  Space filling curves have too much overhead to use | 
|---|
| 41 | *   in two-dimensions. | 
|---|
| 42 | * | 
|---|
| 43 | * _bz_tryFastTraversal is a helper class.  Fast traversals are only | 
|---|
| 44 | * attempted if the expression looks like a stencil -- it's at least | 
|---|
| 45 | * three-dimensional, has at least six array operands, and there are | 
|---|
| 46 | * no index placeholders in the expression.  These are all things which | 
|---|
| 47 | * can be checked at compile time, so the if()/else() syntax has been | 
|---|
| 48 | * replaced with this class template. | 
|---|
| 49 | */ | 
|---|
| 50 |  | 
|---|
| 51 | // Fast traversals require <set> from the ISO/ANSI C++ standard library | 
|---|
| 52 | #ifdef BZ_HAVE_STD | 
|---|
| 53 |  | 
|---|
| 54 | template<_bz_bool canTryFastTraversal> | 
|---|
| 55 | struct _bz_tryFastTraversal { | 
|---|
| 56 | template<class T_numtype, int N_rank, class T_expr, class T_update> | 
|---|
| 57 | static _bz_bool tryFast(Array<T_numtype,N_rank>& array, | 
|---|
| 58 | _bz_ArrayExpr<T_expr> expr, T_update) | 
|---|
| 59 | { | 
|---|
| 60 | return _bz_false; | 
|---|
| 61 | } | 
|---|
| 62 | }; | 
|---|
| 63 |  | 
|---|
| 64 | template<> | 
|---|
| 65 | struct _bz_tryFastTraversal<_bz_true> { | 
|---|
| 66 | template<class T_numtype, int N_rank, class T_expr, class T_update> | 
|---|
| 67 | static _bz_bool tryFast(Array<T_numtype,N_rank>& array, | 
|---|
| 68 | _bz_ArrayExpr<T_expr> expr, T_update) | 
|---|
| 69 | { | 
|---|
| 70 | // See if there's an appropriate space filling curve available. | 
|---|
| 71 | // Currently fast traversals use an N-1 dimensional curve.  The | 
|---|
| 72 | // Nth dimension column corresponding to each point on the curve | 
|---|
| 73 | // is traversed in the normal fashion. | 
|---|
| 74 | TraversalOrderCollection<N_rank-1> traversals; | 
|---|
| 75 | TinyVector<int, N_rank - 1> traversalGridSize; | 
|---|
| 76 |  | 
|---|
| 77 | for (int i=0; i < N_rank - 1; ++i) | 
|---|
| 78 | traversalGridSize[i] = array.length(array.ordering(i+1)); | 
|---|
| 79 |  | 
|---|
| 80 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 81 | cout << "traversalGridSize = " << traversalGridSize << endl; | 
|---|
| 82 | cout.flush(); | 
|---|
| 83 | #endif | 
|---|
| 84 |  | 
|---|
| 85 | const TraversalOrder<N_rank-1>* order = | 
|---|
| 86 | traversals.find(traversalGridSize); | 
|---|
| 87 |  | 
|---|
| 88 | if (order) | 
|---|
| 89 | { | 
|---|
| 90 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 91 | cerr << "Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype) | 
|---|
| 92 | << ", " << N_rank << ">: Using stack traversal" << endl; | 
|---|
| 93 | #endif | 
|---|
| 94 | // A curve was available -- use fast traversal. | 
|---|
| 95 | array.evaluateWithFastTraversal(*order, expr, T_update()); | 
|---|
| 96 | return _bz_true; | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | return _bz_false; | 
|---|
| 100 | } | 
|---|
| 101 | }; | 
|---|
| 102 |  | 
|---|
| 103 | #endif // BZ_HAVE_STD | 
|---|
| 104 |  | 
|---|
| 105 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 106 | inline Array<T_numtype, N_rank>& | 
|---|
| 107 | Array<T_numtype, N_rank>::evaluate(_bz_ArrayExpr<T_expr> expr, T_update) | 
|---|
| 108 | { | 
|---|
| 109 | // Check that all arrays have the same shape | 
|---|
| 110 | #ifdef BZ_DEBUG | 
|---|
| 111 | if (!expr.shapeCheck(shape())) | 
|---|
| 112 | { | 
|---|
| 113 | if (assertFailMode == _bz_false) | 
|---|
| 114 | { | 
|---|
| 115 | cerr << "[Blitz++] Shape check failed: Module " << __FILE__ | 
|---|
| 116 | << " line " << __LINE__ << endl | 
|---|
| 117 | << "          Expression: "; | 
|---|
| 118 | prettyPrintFormat format(_bz_true);   // Use terse formatting | 
|---|
| 119 | string str; | 
|---|
| 120 | expr.prettyPrint(str, format); | 
|---|
| 121 | cerr << str << endl ; | 
|---|
| 122 | } | 
|---|
| 123 |  | 
|---|
| 124 | #if 0 | 
|---|
| 125 | // Shape dumping is broken by change to using string for prettyPrint | 
|---|
| 126 | << "          Shapes: " << shape() << " = "; | 
|---|
| 127 | prettyPrintFormat format2; | 
|---|
| 128 | format2.setDumpArrayShapesMode(); | 
|---|
| 129 | expr.prettyPrint(cerr, format2); | 
|---|
| 130 | cerr << endl; | 
|---|
| 131 | #endif | 
|---|
| 132 | BZ_PRE_FAIL; | 
|---|
| 133 | } | 
|---|
| 134 | #endif | 
|---|
| 135 |  | 
|---|
| 136 | BZPRECHECK(expr.shapeCheck(shape()), | 
|---|
| 137 | "Shape check failed." << endl << "Expression:"); | 
|---|
| 138 |  | 
|---|
| 139 | BZPRECHECK((T_expr::rank == N_rank) || (T_expr::numArrayOperands == 0), | 
|---|
| 140 | "Assigned rank " << T_expr::rank << " expression to rank " | 
|---|
| 141 | << N_rank << " array."); | 
|---|
| 142 |  | 
|---|
| 143 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 144 | cout << "T_expr::numIndexPlaceholders = " << T_expr::numIndexPlaceholders | 
|---|
| 145 | << endl; cout.flush(); | 
|---|
| 146 | #endif | 
|---|
| 147 |  | 
|---|
| 148 | // Tau profiling code.  Provide Tau with a pretty-printed version of | 
|---|
| 149 | // the expression. | 
|---|
| 150 | // NEEDS_WORK-- use a static initializer somehow. | 
|---|
| 151 |  | 
|---|
| 152 | #ifdef BZ_TAU_PROFILING | 
|---|
| 153 | static string exprDescription; | 
|---|
| 154 | if (!exprDescription.length())   // faked static initializer | 
|---|
| 155 | { | 
|---|
| 156 | exprDescription = "A"; | 
|---|
| 157 | prettyPrintFormat format(_bz_true);   // Terse mode on | 
|---|
| 158 | format.nextArrayOperandSymbol(); | 
|---|
| 159 | T_update::prettyPrint(exprDescription); | 
|---|
| 160 | expr.prettyPrint(exprDescription, format); | 
|---|
| 161 | } | 
|---|
| 162 | TAU_PROFILE(" ", exprDescription, TAU_BLITZ); | 
|---|
| 163 | #endif | 
|---|
| 164 |  | 
|---|
| 165 | // Determine which evaluation mechanism to use | 
|---|
| 166 | if (T_expr::numIndexPlaceholders > 0) | 
|---|
| 167 | { | 
|---|
| 168 | // The expression involves index placeholders, so have to | 
|---|
| 169 | // use index traversal rather than stack traversal. | 
|---|
| 170 |  | 
|---|
| 171 | if (N_rank == 1) | 
|---|
| 172 | return evaluateWithIndexTraversal1(expr, T_update()); | 
|---|
| 173 | else | 
|---|
| 174 | return evaluateWithIndexTraversalN(expr, T_update()); | 
|---|
| 175 | } | 
|---|
| 176 | else { | 
|---|
| 177 |  | 
|---|
| 178 | // If this expression looks like an array stencil, then attempt to | 
|---|
| 179 | // use a fast traversal order. | 
|---|
| 180 | // Fast traversals require <set> from the ISO/ANSI C++ standard | 
|---|
| 181 | // library. | 
|---|
| 182 |  | 
|---|
| 183 | #ifdef BZ_HAVE_STD | 
|---|
| 184 |  | 
|---|
| 185 | enum { isStencil = (N_rank >= 3) && (T_expr::numArrayOperands > 6) | 
|---|
| 186 | && (T_expr::numIndexPlaceholders == 0) }; | 
|---|
| 187 |  | 
|---|
| 188 | if (_bz_tryFastTraversal<isStencil>::tryFast(*this, expr, T_update())) | 
|---|
| 189 | return *this; | 
|---|
| 190 |  | 
|---|
| 191 | #endif | 
|---|
| 192 |  | 
|---|
| 193 | #ifdef BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 194 | // Does this look like a 2-dimensional stencil on a largeish | 
|---|
| 195 | // array? | 
|---|
| 196 |  | 
|---|
| 197 | if ((N_rank == 2) && (T_expr::numArrayOperands >= 5)) | 
|---|
| 198 | { | 
|---|
| 199 | // Use a heuristic to determine whether a tiled traversal | 
|---|
| 200 | // is desirable.  First, estimate how much L1 cache is needed | 
|---|
| 201 | // to achieve a high hit rate using the stack traversal. | 
|---|
| 202 | // Try to err on the side of using tiled traversal even when | 
|---|
| 203 | // it isn't strictly needed. | 
|---|
| 204 |  | 
|---|
| 205 | // Assumptions: | 
|---|
| 206 | //    Stencil width 3 | 
|---|
| 207 | //    3 arrays involved in stencil | 
|---|
| 208 | //    Uniform data type in arrays (all T_numtype) | 
|---|
| 209 |  | 
|---|
| 210 | int cacheNeeded = 3 * 3 * sizeof(T_numtype) * length(ordering(0)); | 
|---|
| 211 | if (cacheNeeded > BZ_L1_CACHE_ESTIMATED_SIZE) | 
|---|
| 212 | return evaluateWithTiled2DTraversal(expr, T_update()); | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | #endif | 
|---|
| 216 |  | 
|---|
| 217 | // If fast traversal isn't available or appropriate, then just | 
|---|
| 218 | // do a stack traversal. | 
|---|
| 219 | if (N_rank == 1) | 
|---|
| 220 | return evaluateWithStackTraversal1(expr, T_update()); | 
|---|
| 221 | else | 
|---|
| 222 | return evaluateWithStackTraversalN(expr, T_update()); | 
|---|
| 223 | } | 
|---|
| 224 | } | 
|---|
| 225 |  | 
|---|
| 226 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 227 | inline Array<T_numtype, N_rank>& | 
|---|
| 228 | Array<T_numtype, N_rank>::evaluateWithStackTraversal1(_bz_ArrayExpr<T_expr> | 
|---|
| 229 | expr, T_update) | 
|---|
| 230 | { | 
|---|
| 231 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 232 | BZ_DEBUG_MESSAGE("Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype) | 
|---|
| 233 | << ", " << N_rank << ">: Using stack traversal"); | 
|---|
| 234 | #endif | 
|---|
| 235 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 236 | iter.loadStride(firstRank); | 
|---|
| 237 | expr.loadStride(firstRank); | 
|---|
| 238 |  | 
|---|
| 239 | _bz_bool useUnitStride = iter.isUnitStride(firstRank) | 
|---|
| 240 | && expr.isUnitStride(firstRank); | 
|---|
| 241 |  | 
|---|
| 242 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 243 | int commonStride = expr.suggestStride(firstRank); | 
|---|
| 244 | if (iter.suggestStride(firstRank) > commonStride) | 
|---|
| 245 | commonStride = iter.suggestStride(firstRank); | 
|---|
| 246 | bool useCommonStride = iter.isStride(firstRank,commonStride) | 
|---|
| 247 | && expr.isStride(firstRank,commonStride); | 
|---|
| 248 |  | 
|---|
| 249 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 250 | BZ_DEBUG_MESSAGE("BZ_ARRAY_EXPR_USE_COMMON_STRIDE:" << endl | 
|---|
| 251 | << "    commonStride = " << commonStride << " useCommonStride = " | 
|---|
| 252 | << useCommonStride); | 
|---|
| 253 | #endif | 
|---|
| 254 | #else | 
|---|
| 255 | int commonStride = 1; | 
|---|
| 256 | bool useCommonStride = _bz_false; | 
|---|
| 257 | #endif | 
|---|
| 258 |  | 
|---|
| 259 | const T_numtype * last = iter.data() + length(firstRank) | 
|---|
| 260 | * stride(firstRank); | 
|---|
| 261 |  | 
|---|
| 262 | if (useUnitStride || useCommonStride) | 
|---|
| 263 | { | 
|---|
| 264 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 265 |  | 
|---|
| 266 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 267 | BZ_DEBUG_MESSAGE("BZ_USE_FAST_READ_ARRAY_EXPR with commonStride"); | 
|---|
| 268 | #endif | 
|---|
| 269 | int ubound = length(firstRank) * commonStride; | 
|---|
| 270 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data()); | 
|---|
| 271 |  | 
|---|
| 272 | if (commonStride == 1) | 
|---|
| 273 | { | 
|---|
| 274 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 275 | for (int i=0; i < ubound; ++i) | 
|---|
| 276 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 277 | #else | 
|---|
| 278 | int n1 = ubound & 3; | 
|---|
| 279 | int i = 0; | 
|---|
| 280 | for (; i < n1; ++i) | 
|---|
| 281 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 282 |  | 
|---|
| 283 | for (; i < ubound; i += 4) | 
|---|
| 284 | { | 
|---|
| 285 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_CSE_AND_ANTIALIAS | 
|---|
| 286 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 287 | T_update::update(data[i+1], expr.fastRead(i+1)); | 
|---|
| 288 | T_update::update(data[i+2], expr.fastRead(i+2)); | 
|---|
| 289 | T_update::update(data[i+3], expr.fastRead(i+3)); | 
|---|
| 290 | #else | 
|---|
| 291 | int t1 = i+1; | 
|---|
| 292 | int t2 = i+2; | 
|---|
| 293 | int t3 = i+3; | 
|---|
| 294 |  | 
|---|
| 295 | _bz_typename T_expr::T_numtype tmp1, tmp2, tmp3, tmp4; | 
|---|
| 296 |  | 
|---|
| 297 | tmp1 = expr.fastRead(i); | 
|---|
| 298 | tmp2 = expr.fastRead(BZ_NO_PROPAGATE(t1)); | 
|---|
| 299 | tmp3 = expr.fastRead(BZ_NO_PROPAGATE(t2)); | 
|---|
| 300 | tmp4 = expr.fastRead(BZ_NO_PROPAGATE(t3)); | 
|---|
| 301 |  | 
|---|
| 302 | T_update::update(data[i], BZ_NO_PROPAGATE(tmp1)); | 
|---|
| 303 | T_update::update(data[BZ_NO_PROPAGATE(t1)], tmp2); | 
|---|
| 304 | T_update::update(data[BZ_NO_PROPAGATE(t2)], tmp3); | 
|---|
| 305 | T_update::update(data[BZ_NO_PROPAGATE(t3)], tmp4); | 
|---|
| 306 | #endif | 
|---|
| 307 | } | 
|---|
| 308 | #endif // BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 309 |  | 
|---|
| 310 | } | 
|---|
| 311 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 312 | else { | 
|---|
| 313 |  | 
|---|
| 314 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 315 | for (int i=0; i < ubound; i += commonStride) | 
|---|
| 316 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 317 | #else | 
|---|
| 318 | int n1 = (length(firstRank) & 3) * commonStride; | 
|---|
| 319 |  | 
|---|
| 320 | int i = 0; | 
|---|
| 321 | for (; i < n1; i += commonStride) | 
|---|
| 322 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 323 |  | 
|---|
| 324 | int strideInc = 4 * commonStride; | 
|---|
| 325 | for (; i < ubound; i += strideInc) | 
|---|
| 326 | { | 
|---|
| 327 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 328 | int i2 = i + commonStride; | 
|---|
| 329 | T_update::update(data[i2], expr.fastRead(i2)); | 
|---|
| 330 | int i3 = i + 2 * commonStride; | 
|---|
| 331 | T_update::update(data[i3], expr.fastRead(i3)); | 
|---|
| 332 | int i4 = i + 3 * commonStride; | 
|---|
| 333 | T_update::update(data[i4], expr.fastRead(i4)); | 
|---|
| 334 | } | 
|---|
| 335 | #endif  // BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 336 | } | 
|---|
| 337 | #endif  // BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 338 |  | 
|---|
| 339 | #else   // ! BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 340 |  | 
|---|
| 341 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 342 | BZ_DEBUG_MESSAGE("Common stride, no fast read"); | 
|---|
| 343 | #endif | 
|---|
| 344 | while (iter.data() != last) | 
|---|
| 345 | { | 
|---|
| 346 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 347 | iter.advance(commonStride); | 
|---|
| 348 | expr.advance(commonStride); | 
|---|
| 349 | } | 
|---|
| 350 | #endif | 
|---|
| 351 | } | 
|---|
| 352 | else { | 
|---|
| 353 | while (iter.data() != last) | 
|---|
| 354 | { | 
|---|
| 355 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 356 | iter.advance(); | 
|---|
| 357 | expr.advance(); | 
|---|
| 358 | } | 
|---|
| 359 | } | 
|---|
| 360 |  | 
|---|
| 361 | return *this; | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 365 | inline Array<T_numtype, N_rank>& | 
|---|
| 366 | Array<T_numtype, N_rank>::evaluateWithStackTraversalN(_bz_ArrayExpr<T_expr> | 
|---|
| 367 | expr, T_update) | 
|---|
| 368 | { | 
|---|
| 369 | /* | 
|---|
| 370 | * A stack traversal replaces the usual nested loops: | 
|---|
| 371 | * | 
|---|
| 372 | * for (int i=A.lbound(firstDim); i <= A.ubound(firstDim); ++i) | 
|---|
| 373 | *   for (int j=A.lbound(secondDim); j <= A.ubound(secondDim); ++j) | 
|---|
| 374 | *     for (int k=A.lbound(thirdDim); k <= A.ubound(thirdDim); ++k) | 
|---|
| 375 | *       A(i,j,k) = 0; | 
|---|
| 376 | * | 
|---|
| 377 | * with a stack data structure.  The stack allows this single | 
|---|
| 378 | * routine to replace any number of nested loops. | 
|---|
| 379 | * | 
|---|
| 380 | * For each dimension (loop), these quantities are needed: | 
|---|
| 381 | * - a pointer to the first element encountered in the loop | 
|---|
| 382 | * - the stride associated with the dimension/loop | 
|---|
| 383 | * - a pointer to the last element encountered in the loop | 
|---|
| 384 | * | 
|---|
| 385 | * The basic idea is that entering each loop is a "push" onto the | 
|---|
| 386 | * stack, and exiting each loop is a "pop".  In practice, this | 
|---|
| 387 | * routine treats accesses the stack in a random-access way, | 
|---|
| 388 | * which confuses the picture a bit.  But conceptually, that's | 
|---|
| 389 | * what is going on. | 
|---|
| 390 | */ | 
|---|
| 391 |  | 
|---|
| 392 | /* | 
|---|
| 393 | * ordering(0) gives the dimension associated with the smallest | 
|---|
| 394 | * stride (usually; the exceptions have to do with subarrays and | 
|---|
| 395 | * are uninteresting).  We call this dimension maxRank; it will | 
|---|
| 396 | * become the innermost "loop". | 
|---|
| 397 | * | 
|---|
| 398 | * Ordering the loops from ordering(N_rank-1) down to | 
|---|
| 399 | * ordering(0) ensures that the largest stride is associated | 
|---|
| 400 | * with the outermost loop, and the smallest stride with the | 
|---|
| 401 | * innermost.  This is critical for good performance on | 
|---|
| 402 | * cached machines. | 
|---|
| 403 | */ | 
|---|
| 404 | const int maxRank = ordering(0); | 
|---|
| 405 | const int secondLastRank = ordering(1); | 
|---|
| 406 |  | 
|---|
| 407 | // Create an iterator for the array receiving the result | 
|---|
| 408 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 409 |  | 
|---|
| 410 | // Set the initial stack configuration by pushing the pointer | 
|---|
| 411 | // to the first element of the array onto the stack N times. | 
|---|
| 412 |  | 
|---|
| 413 | int i; | 
|---|
| 414 | for (i=1; i < N_rank; ++i) | 
|---|
| 415 | { | 
|---|
| 416 | iter.push(i); | 
|---|
| 417 | expr.push(i); | 
|---|
| 418 | } | 
|---|
| 419 |  | 
|---|
| 420 | // Load the strides associated with the innermost loop. | 
|---|
| 421 | iter.loadStride(maxRank); | 
|---|
| 422 | expr.loadStride(maxRank); | 
|---|
| 423 |  | 
|---|
| 424 | /* | 
|---|
| 425 | * Is the stride in the innermost loop equal to 1?  If so, | 
|---|
| 426 | * we might take advantage of this and generate more | 
|---|
| 427 | * efficient code. | 
|---|
| 428 | */ | 
|---|
| 429 | _bz_bool useUnitStride = iter.isUnitStride(maxRank) | 
|---|
| 430 | && expr.isUnitStride(maxRank); | 
|---|
| 431 |  | 
|---|
| 432 | /* | 
|---|
| 433 | * Do all array operands share a common stride in the innermost | 
|---|
| 434 | * loop?  If so, we can generate more efficient code (but only | 
|---|
| 435 | * if this optimization has been enabled). | 
|---|
| 436 | */ | 
|---|
| 437 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 438 | int commonStride = expr.suggestStride(maxRank); | 
|---|
| 439 | if (iter.suggestStride(maxRank) > commonStride) | 
|---|
| 440 | commonStride = iter.suggestStride(maxRank); | 
|---|
| 441 | bool useCommonStride = iter.isStride(maxRank,commonStride) | 
|---|
| 442 | && expr.isStride(maxRank,commonStride); | 
|---|
| 443 |  | 
|---|
| 444 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 445 | BZ_DEBUG_MESSAGE("BZ_ARRAY_EXPR_USE_COMMON_STRIDE" << endl | 
|---|
| 446 | << "commonStride = " << commonStride << " useCommonStride = " | 
|---|
| 447 | << useCommonStride); | 
|---|
| 448 | #endif | 
|---|
| 449 |  | 
|---|
| 450 | #else | 
|---|
| 451 | int commonStride = 1; | 
|---|
| 452 | bool useCommonStride = _bz_false; | 
|---|
| 453 | #endif | 
|---|
| 454 |  | 
|---|
| 455 | /* | 
|---|
| 456 | * The "last" array contains a pointer to the last element | 
|---|
| 457 | * encountered in each "loop". | 
|---|
| 458 | */ | 
|---|
| 459 | const T_numtype* _bz_restrict last[N_rank]; | 
|---|
| 460 |  | 
|---|
| 461 | // Set up the initial state of the "last" array | 
|---|
| 462 | for (i=1; i < N_rank; ++i) | 
|---|
| 463 | last[i] = iter.data() + length(ordering(i)) * stride(ordering(i)); | 
|---|
| 464 |  | 
|---|
| 465 | int lastLength = length(maxRank); | 
|---|
| 466 | int firstNoncollapsedLoop = 1; | 
|---|
| 467 |  | 
|---|
| 468 | #ifdef BZ_COLLAPSE_LOOPS | 
|---|
| 469 |  | 
|---|
| 470 | /* | 
|---|
| 471 | * This bit of code handles collapsing loops.  When possible, | 
|---|
| 472 | * the N nested loops are converted into a single loop (basically, | 
|---|
| 473 | * the N-dimensional array is treated as a long vector). | 
|---|
| 474 | * This is important for cases where the length of the innermost | 
|---|
| 475 | * loop is very small, for example a 100x100x3 array. | 
|---|
| 476 | * If this code can't collapse all the loops into a single loop, | 
|---|
| 477 | * it will collapse as many loops as possible starting from the | 
|---|
| 478 | * innermost and working out. | 
|---|
| 479 | */ | 
|---|
| 480 |  | 
|---|
| 481 | // Collapse loops when possible | 
|---|
| 482 | for (i=1; i < N_rank; ++i) | 
|---|
| 483 | { | 
|---|
| 484 | // Figure out which pair of loops we are considering combining. | 
|---|
| 485 | int outerLoopRank = ordering(i); | 
|---|
| 486 | int innerLoopRank = ordering(i-1); | 
|---|
| 487 |  | 
|---|
| 488 | /* | 
|---|
| 489 | * The canCollapse() routines look at the strides and extents | 
|---|
| 490 | * of the loops, and determine if they can be combined into | 
|---|
| 491 | * one loop. | 
|---|
| 492 | */ | 
|---|
| 493 |  | 
|---|
| 494 | if (canCollapse(outerLoopRank,innerLoopRank) | 
|---|
| 495 | && expr.canCollapse(outerLoopRank,innerLoopRank)) | 
|---|
| 496 | { | 
|---|
| 497 | lastLength *= length(outerLoopRank); | 
|---|
| 498 | firstNoncollapsedLoop = i+1; | 
|---|
| 499 | } | 
|---|
| 500 | } | 
|---|
| 501 | #endif // BZ_COLLAPSE_LOOPS | 
|---|
| 502 |  | 
|---|
| 503 | /* | 
|---|
| 504 | * Now we actually perform the loops.  This while loop contains | 
|---|
| 505 | * two parts: first, the innermost loop is performed.  Then we | 
|---|
| 506 | * exit the loop, and pop our way down the stack until we find | 
|---|
| 507 | * a loop that isn't completed.  We then restart the inner loops | 
|---|
| 508 | * and push them onto the stack. | 
|---|
| 509 | */ | 
|---|
| 510 |  | 
|---|
| 511 | while (true) { | 
|---|
| 512 |  | 
|---|
| 513 | /* | 
|---|
| 514 | * This bit of code handles the innermost loop.  It would look | 
|---|
| 515 | * a lot simpler if it weren't for unit stride and common stride | 
|---|
| 516 | * optimizations; these clutter up the code with multiple versions. | 
|---|
| 517 | */ | 
|---|
| 518 |  | 
|---|
| 519 | if ((useUnitStride) || (useCommonStride)) | 
|---|
| 520 | { | 
|---|
| 521 | T_numtype * _bz_restrict end = const_cast<T_numtype*>(iter.data()) | 
|---|
| 522 | + lastLength; | 
|---|
| 523 |  | 
|---|
| 524 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 525 |  | 
|---|
| 526 | /* | 
|---|
| 527 | * The check for BZ_USE_FAST_READ_ARRAY_EXPR can probably | 
|---|
| 528 | * be taken out.  This was put in place while the unit stride/ | 
|---|
| 529 | * common stride optimizations were being implemented and | 
|---|
| 530 | * tested. | 
|---|
| 531 | */ | 
|---|
| 532 |  | 
|---|
| 533 | // Calculate the end of the innermost loop | 
|---|
| 534 | int ubound = lastLength * commonStride; | 
|---|
| 535 |  | 
|---|
| 536 | /* | 
|---|
| 537 | * This is a real kludge.  I didn't want to have to write | 
|---|
| 538 | * a const and non-const version of ArrayIterator, so I use a | 
|---|
| 539 | * const iterator and cast away const.  This could | 
|---|
| 540 | * probably be avoided with some trick, but the whole routine | 
|---|
| 541 | * is ugly, so why bother. | 
|---|
| 542 | */ | 
|---|
| 543 |  | 
|---|
| 544 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data()); | 
|---|
| 545 |  | 
|---|
| 546 | /* | 
|---|
| 547 | * BZ_NEEDS_WORK-- need to implement optional unrolling. | 
|---|
| 548 | */ | 
|---|
| 549 | if (commonStride == 1) | 
|---|
| 550 | { | 
|---|
| 551 | for (int i=0; i < ubound; ++i) | 
|---|
| 552 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 553 | } | 
|---|
| 554 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 555 | else { | 
|---|
| 556 | for (int i=0; i < ubound; i += commonStride) | 
|---|
| 557 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 558 | } | 
|---|
| 559 | #endif | 
|---|
| 560 | /* | 
|---|
| 561 | * Tidy up for the fact that we haven't actually been | 
|---|
| 562 | * incrementing the iterators in the innermost loop, by | 
|---|
| 563 | * faking it afterward. | 
|---|
| 564 | */ | 
|---|
| 565 | iter.advance(lastLength * commonStride); | 
|---|
| 566 | expr.advance(lastLength * commonStride); | 
|---|
| 567 | #else | 
|---|
| 568 | // !BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 569 | // This bit of code not really needed; should remove at some | 
|---|
| 570 | // point, along with the test for BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 571 |  | 
|---|
| 572 | while (iter.data() != end) | 
|---|
| 573 | { | 
|---|
| 574 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 575 | iter.advance(commonStride); | 
|---|
| 576 | expr.advance(commonStride); | 
|---|
| 577 | } | 
|---|
| 578 | #endif | 
|---|
| 579 | } | 
|---|
| 580 | else { | 
|---|
| 581 | /* | 
|---|
| 582 | * We don't have a unit stride or common stride in the innermost | 
|---|
| 583 | * loop.  This is going to hurt performance.  Luckily 95% of | 
|---|
| 584 | * the time, we hit the cases above. | 
|---|
| 585 | */ | 
|---|
| 586 | T_numtype * _bz_restrict end = const_cast<T_numtype*>(iter.data()) | 
|---|
| 587 | + lastLength * stride(maxRank); | 
|---|
| 588 |  | 
|---|
| 589 | while (iter.data() != end) | 
|---|
| 590 | { | 
|---|
| 591 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 592 | iter.advance(); | 
|---|
| 593 | expr.advance(); | 
|---|
| 594 | } | 
|---|
| 595 | } | 
|---|
| 596 |  | 
|---|
| 597 |  | 
|---|
| 598 | /* | 
|---|
| 599 | * We just finished the innermost loop.  Now we pop our way down | 
|---|
| 600 | * the stack, until we hit a loop that hasn't completed yet. | 
|---|
| 601 | */ | 
|---|
| 602 | int j = firstNoncollapsedLoop; | 
|---|
| 603 | for (; j < N_rank; ++j) | 
|---|
| 604 | { | 
|---|
| 605 | // Get the next loop | 
|---|
| 606 | int r = ordering(j); | 
|---|
| 607 |  | 
|---|
| 608 | // Pop-- this restores the data pointers to the first element | 
|---|
| 609 | // encountered in the loop. | 
|---|
| 610 | iter.pop(j); | 
|---|
| 611 | expr.pop(j); | 
|---|
| 612 |  | 
|---|
| 613 | // Load the stride associated with this loop, and increment | 
|---|
| 614 | // once. | 
|---|
| 615 | iter.loadStride(r); | 
|---|
| 616 | expr.loadStride(r); | 
|---|
| 617 | iter.advance(); | 
|---|
| 618 | expr.advance(); | 
|---|
| 619 |  | 
|---|
| 620 | // If we aren't at the end of this loop, then stop popping. | 
|---|
| 621 | if (iter.data() != last[j]) | 
|---|
| 622 | break; | 
|---|
| 623 | } | 
|---|
| 624 |  | 
|---|
| 625 | // Are we completely done? | 
|---|
| 626 | if (j == N_rank) | 
|---|
| 627 | break; | 
|---|
| 628 |  | 
|---|
| 629 | // No, so push all the inner loops back onto the stack. | 
|---|
| 630 | for (; j >= firstNoncollapsedLoop; --j) | 
|---|
| 631 | { | 
|---|
| 632 | int r2 = ordering(j-1); | 
|---|
| 633 | iter.push(j); | 
|---|
| 634 | expr.push(j); | 
|---|
| 635 | last[j-1] = iter.data() + length(r2) * stride(r2); | 
|---|
| 636 | } | 
|---|
| 637 |  | 
|---|
| 638 | // Load the stride for the innermost loop again. | 
|---|
| 639 | iter.loadStride(maxRank); | 
|---|
| 640 | expr.loadStride(maxRank); | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | return *this; | 
|---|
| 644 | } | 
|---|
| 645 |  | 
|---|
| 646 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 647 | inline Array<T_numtype, N_rank>& | 
|---|
| 648 | Array<T_numtype, N_rank>::evaluateWithIndexTraversal1(_bz_ArrayExpr<T_expr> | 
|---|
| 649 | expr, T_update) | 
|---|
| 650 | { | 
|---|
| 651 | TinyVector<int,N_rank> index; | 
|---|
| 652 |  | 
|---|
| 653 | if (stride(firstRank) == 1) | 
|---|
| 654 | { | 
|---|
| 655 | T_numtype * _bz_restrict iter = data_; | 
|---|
| 656 | int last = ubound(firstRank); | 
|---|
| 657 |  | 
|---|
| 658 | for (index[0] = lbound(firstRank); index[0] <= last; | 
|---|
| 659 | ++index[0]) | 
|---|
| 660 | { | 
|---|
| 661 | iter[index[0]] = expr(index); | 
|---|
| 662 | } | 
|---|
| 663 | } | 
|---|
| 664 | else { | 
|---|
| 665 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 666 | iter.loadStride(0); | 
|---|
| 667 | int last = ubound(firstRank); | 
|---|
| 668 |  | 
|---|
| 669 | for (index[0] = lbound(firstRank); index[0] <= last; | 
|---|
| 670 | ++index[0]) | 
|---|
| 671 | { | 
|---|
| 672 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 673 | expr(index)); | 
|---|
| 674 | iter.advance(); | 
|---|
| 675 | } | 
|---|
| 676 | } | 
|---|
| 677 |  | 
|---|
| 678 | return *this; | 
|---|
| 679 | } | 
|---|
| 680 |  | 
|---|
| 681 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 682 | inline Array<T_numtype, N_rank>& | 
|---|
| 683 | Array<T_numtype, N_rank>::evaluateWithIndexTraversalN(_bz_ArrayExpr<T_expr> | 
|---|
| 684 | expr, T_update) | 
|---|
| 685 | { | 
|---|
| 686 | // Do a stack-type traversal for the destination array and use | 
|---|
| 687 | // index traversal for the source expression | 
|---|
| 688 |  | 
|---|
| 689 | const int maxRank = ordering(0); | 
|---|
| 690 | const int secondLastRank = ordering(1); | 
|---|
| 691 |  | 
|---|
| 692 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 693 | cout << "Index traversal: N_rank = " << N_rank << endl; | 
|---|
| 694 | cout << "maxRank = " << maxRank << " secondLastRank = " << secondLastRank | 
|---|
| 695 | << endl; | 
|---|
| 696 | cout.flush(); | 
|---|
| 697 | #endif | 
|---|
| 698 |  | 
|---|
| 699 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 700 | for (int i=1; i < N_rank; ++i) | 
|---|
| 701 | iter.push(ordering(i)); | 
|---|
| 702 |  | 
|---|
| 703 | iter.loadStride(maxRank); | 
|---|
| 704 |  | 
|---|
| 705 | TinyVector<int,N_rank> index, last; | 
|---|
| 706 |  | 
|---|
| 707 | index = storage_.base(); | 
|---|
| 708 | last = storage_.base() + length_; | 
|---|
| 709 |  | 
|---|
| 710 | int lastLength = length(maxRank); | 
|---|
| 711 |  | 
|---|
| 712 | while (true) { | 
|---|
| 713 |  | 
|---|
| 714 | for (index[maxRank] = base(maxRank); | 
|---|
| 715 | index[maxRank] < last[maxRank]; | 
|---|
| 716 | ++index[maxRank]) | 
|---|
| 717 | { | 
|---|
| 718 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 719 | #if 0 | 
|---|
| 720 | cout << "(" << index[0] << "," << index[1] << ") " << endl; | 
|---|
| 721 | cout.flush(); | 
|---|
| 722 | #endif | 
|---|
| 723 | #endif | 
|---|
| 724 |  | 
|---|
| 725 | T_update::update(*const_cast<T_numtype*>(iter.data()), expr(index)); | 
|---|
| 726 | iter.advance(); | 
|---|
| 727 | } | 
|---|
| 728 |  | 
|---|
| 729 | int j = 1; | 
|---|
| 730 | for (; j < N_rank; ++j) | 
|---|
| 731 | { | 
|---|
| 732 | iter.pop(ordering(j)); | 
|---|
| 733 | iter.loadStride(ordering(j)); | 
|---|
| 734 | iter.advance(); | 
|---|
| 735 |  | 
|---|
| 736 | index[ordering(j-1)] = base(ordering(j-1)); | 
|---|
| 737 | ++index[ordering(j)]; | 
|---|
| 738 | if (index[ordering(j)] != last[ordering(j)]) | 
|---|
| 739 | break; | 
|---|
| 740 | } | 
|---|
| 741 |  | 
|---|
| 742 | if (j == N_rank) | 
|---|
| 743 | break; | 
|---|
| 744 |  | 
|---|
| 745 | for (; j > 0; --j) | 
|---|
| 746 | { | 
|---|
| 747 | iter.push(ordering(j)); | 
|---|
| 748 | } | 
|---|
| 749 | iter.loadStride(maxRank); | 
|---|
| 750 | } | 
|---|
| 751 |  | 
|---|
| 752 | return *this; | 
|---|
| 753 | } | 
|---|
| 754 |  | 
|---|
| 755 | // Fast traversals require <set> from the ISO/ANSI C++ standard library | 
|---|
| 756 |  | 
|---|
| 757 | #ifdef BZ_HAVE_STD | 
|---|
| 758 |  | 
|---|
| 759 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 760 | inline Array<T_numtype, N_rank>& | 
|---|
| 761 | Array<T_numtype, N_rank>::evaluateWithFastTraversal( | 
|---|
| 762 | const TraversalOrder<N_rank - 1>& order, _bz_ArrayExpr<T_expr> expr, | 
|---|
| 763 | T_update) | 
|---|
| 764 | { | 
|---|
| 765 | const int maxRank = ordering(0); | 
|---|
| 766 | const int secondLastRank = ordering(1); | 
|---|
| 767 |  | 
|---|
| 768 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 769 | cerr << "maxRank = " << maxRank << " secondLastRank = " << secondLastRank | 
|---|
| 770 | << endl; | 
|---|
| 771 | #endif | 
|---|
| 772 |  | 
|---|
| 773 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 774 | iter.push(0); | 
|---|
| 775 | expr.push(0); | 
|---|
| 776 |  | 
|---|
| 777 | _bz_bool useUnitStride = iter.isUnitStride(maxRank) | 
|---|
| 778 | && expr.isUnitStride(maxRank); | 
|---|
| 779 |  | 
|---|
| 780 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 781 | int commonStride = expr.suggestStride(maxRank); | 
|---|
| 782 | if (iter.suggestStride(maxRank) > commonStride) | 
|---|
| 783 | commonStride = iter.suggestStride(maxRank); | 
|---|
| 784 | bool useCommonStride = iter.isStride(maxRank,commonStride) | 
|---|
| 785 | && expr.isStride(maxRank,commonStride); | 
|---|
| 786 | #else | 
|---|
| 787 | int commonStride = 1; | 
|---|
| 788 | bool useCommonStride = _bz_false; | 
|---|
| 789 | #endif | 
|---|
| 790 |  | 
|---|
| 791 | int lastLength = length(maxRank); | 
|---|
| 792 |  | 
|---|
| 793 | for (int i=0; i < order.length(); ++i) | 
|---|
| 794 | { | 
|---|
| 795 | iter.pop(0); | 
|---|
| 796 | expr.pop(0); | 
|---|
| 797 |  | 
|---|
| 798 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 799 | cerr << "Traversing: " << order[i] << endl; | 
|---|
| 800 | #endif | 
|---|
| 801 | // Position the iterator at the start of the next column | 
|---|
| 802 | for (int j=1; j < N_rank; ++j) | 
|---|
| 803 | { | 
|---|
| 804 | iter.loadStride(ordering(j)); | 
|---|
| 805 | expr.loadStride(ordering(j)); | 
|---|
| 806 |  | 
|---|
| 807 | int offset = order[i][j-1]; | 
|---|
| 808 | iter.advance(offset); | 
|---|
| 809 | expr.advance(offset); | 
|---|
| 810 | } | 
|---|
| 811 |  | 
|---|
| 812 | iter.loadStride(maxRank); | 
|---|
| 813 | expr.loadStride(maxRank); | 
|---|
| 814 |  | 
|---|
| 815 | // Evaluate the expression along the column | 
|---|
| 816 |  | 
|---|
| 817 | if ((useUnitStride) || (useCommonStride)) | 
|---|
| 818 | { | 
|---|
| 819 | T_numtype* _bz_restrict last = const_cast<T_numtype*>(iter.data()) | 
|---|
| 820 | + lastLength * commonStride; | 
|---|
| 821 |  | 
|---|
| 822 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 823 | int ubound = lastLength * commonStride; | 
|---|
| 824 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data()); | 
|---|
| 825 |  | 
|---|
| 826 | if (commonStride == 1) | 
|---|
| 827 | { | 
|---|
| 828 | #ifndef BZ_ARRAY_FAST_TRAVERSAL_UNROLL | 
|---|
| 829 | for (int i=0; i < ubound; ++i) | 
|---|
| 830 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 831 | #else | 
|---|
| 832 | int n1 = ubound & 3; | 
|---|
| 833 | int i=0; | 
|---|
| 834 | for (; i < n1; ++i) | 
|---|
| 835 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 836 |  | 
|---|
| 837 | for (; i < ubound; i += 4) | 
|---|
| 838 | { | 
|---|
| 839 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 840 | T_update::update(data[i+1], expr.fastRead(i+1)); | 
|---|
| 841 | T_update::update(data[i+2], expr.fastRead(i+2)); | 
|---|
| 842 | T_update::update(data[i+3], expr.fastRead(i+3)); | 
|---|
| 843 | } | 
|---|
| 844 | #endif  // BZ_ARRAY_FAST_TRAVERSAL_UNROLL | 
|---|
| 845 | } | 
|---|
| 846 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 847 | else { | 
|---|
| 848 | for (int i=0; i < ubound; i += commonStride) | 
|---|
| 849 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 850 | } | 
|---|
| 851 | #endif // BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 852 |  | 
|---|
| 853 | iter.advance(lastLength * commonStride); | 
|---|
| 854 | expr.advance(lastLength * commonStride); | 
|---|
| 855 | #else   // ! BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 856 | while (iter.data() != last) | 
|---|
| 857 | { | 
|---|
| 858 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 859 | iter.advance(commonStride); | 
|---|
| 860 | expr.advance(commonStride); | 
|---|
| 861 | } | 
|---|
| 862 | #endif  // BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 863 |  | 
|---|
| 864 | } | 
|---|
| 865 | else { | 
|---|
| 866 | // No common stride | 
|---|
| 867 |  | 
|---|
| 868 | T_numtype* _bz_restrict last = const_cast<T_numtype*>(iter.data()) | 
|---|
| 869 | + lastLength * stride(maxRank); | 
|---|
| 870 |  | 
|---|
| 871 | while (iter.data() != last) | 
|---|
| 872 | { | 
|---|
| 873 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 874 | iter.advance(); | 
|---|
| 875 | expr.advance(); | 
|---|
| 876 | } | 
|---|
| 877 | } | 
|---|
| 878 | } | 
|---|
| 879 |  | 
|---|
| 880 | return *this; | 
|---|
| 881 | } | 
|---|
| 882 | #endif // BZ_HAVE_STD | 
|---|
| 883 |  | 
|---|
| 884 | #ifdef BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 885 |  | 
|---|
| 886 | #ifdef BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 887 |  | 
|---|
| 888 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 889 | inline Array<T_numtype, N_rank>& | 
|---|
| 890 | Array<T_numtype, N_rank>::evaluateWithTiled2DTraversal(_bz_ArrayExpr<T_expr> | 
|---|
| 891 | expr, T_update) | 
|---|
| 892 | { | 
|---|
| 893 | const int minorRank = ordering(0); | 
|---|
| 894 | const int majorRank = ordering(1); | 
|---|
| 895 |  | 
|---|
| 896 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 897 | iter.push(0); | 
|---|
| 898 | expr.push(0); | 
|---|
| 899 |  | 
|---|
| 900 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 901 | int count = 0; | 
|---|
| 902 | #endif | 
|---|
| 903 |  | 
|---|
| 904 | _bz_bool useUnitStride = iter.isUnitStride(minorRank) | 
|---|
| 905 | && expr.isUnitStride(minorRank); | 
|---|
| 906 |  | 
|---|
| 907 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 908 | int commonStride = expr.suggestStride(minorRank); | 
|---|
| 909 | if (iter.suggestStride(minorRank) > commonStride) | 
|---|
| 910 | commonStride = iter.suggestStride(minorRank); | 
|---|
| 911 | bool useCommonStride = iter.isStride(minorRank,commonStride) | 
|---|
| 912 | && expr.isStride(minorRank,commonStride); | 
|---|
| 913 | #else | 
|---|
| 914 | int commonStride = 1; | 
|---|
| 915 | bool useCommonStride = _bz_false; | 
|---|
| 916 | #endif | 
|---|
| 917 |  | 
|---|
| 918 | // Determine if a common major stride exists | 
|---|
| 919 | int commonMajorStride = expr.suggestStride(majorRank); | 
|---|
| 920 | if (iter.suggestStride(majorRank) > commonMajorStride) | 
|---|
| 921 | commonMajorStride = iter.suggestStride(majorRank); | 
|---|
| 922 | bool haveCommonMajorStride = iter.isStride(majorRank,commonMajorStride) | 
|---|
| 923 | && expr.isStride(majorRank,commonMajorStride); | 
|---|
| 924 |  | 
|---|
| 925 |  | 
|---|
| 926 | int maxi = length(majorRank); | 
|---|
| 927 | int maxj = length(minorRank); | 
|---|
| 928 |  | 
|---|
| 929 | const int tileHeight = 16, tileWidth = 3; | 
|---|
| 930 |  | 
|---|
| 931 | int bi, bj; | 
|---|
| 932 | for (bi=0; bi < maxi; bi += tileHeight) | 
|---|
| 933 | { | 
|---|
| 934 | int ni = bi + tileHeight; | 
|---|
| 935 | if (ni > maxi) | 
|---|
| 936 | ni = maxi; | 
|---|
| 937 |  | 
|---|
| 938 | // Move back to the beginning of the array | 
|---|
| 939 | iter.pop(0); | 
|---|
| 940 | expr.pop(0); | 
|---|
| 941 |  | 
|---|
| 942 | // Move to the start of this tile row | 
|---|
| 943 | iter.loadStride(majorRank); | 
|---|
| 944 | iter.advance(bi); | 
|---|
| 945 | expr.loadStride(majorRank); | 
|---|
| 946 | expr.advance(bi); | 
|---|
| 947 |  | 
|---|
| 948 | // Save this position | 
|---|
| 949 | iter.push(1); | 
|---|
| 950 | expr.push(1); | 
|---|
| 951 |  | 
|---|
| 952 | for (bj=0; bj < maxj; bj += tileWidth) | 
|---|
| 953 | { | 
|---|
| 954 | // Move to the beginning of the tile row | 
|---|
| 955 | iter.pop(1); | 
|---|
| 956 | expr.pop(1); | 
|---|
| 957 |  | 
|---|
| 958 | // Move to the top of the current tile (bi,bj) | 
|---|
| 959 | iter.loadStride(minorRank); | 
|---|
| 960 | iter.advance(bj); | 
|---|
| 961 | expr.loadStride(minorRank); | 
|---|
| 962 | expr.advance(bj); | 
|---|
| 963 |  | 
|---|
| 964 | if (bj + tileWidth <= maxj) | 
|---|
| 965 | { | 
|---|
| 966 | // Strip mining | 
|---|
| 967 |  | 
|---|
| 968 | if ((useUnitStride) && (haveCommonMajorStride)) | 
|---|
| 969 | { | 
|---|
| 970 | int offset = 0; | 
|---|
| 971 | T_numtype* _bz_restrict data = const_cast<T_numtype*> | 
|---|
| 972 | (iter.data()); | 
|---|
| 973 |  | 
|---|
| 974 | for (int i=bi; i < ni; ++i) | 
|---|
| 975 | { | 
|---|
| 976 | _bz_typename T_expr::T_numtype tmp1, tmp2, tmp3; | 
|---|
| 977 |  | 
|---|
| 978 | // Common subexpression elimination -- compilers | 
|---|
| 979 | // won't necessarily do this on their own. | 
|---|
| 980 | int t1 = offset+1; | 
|---|
| 981 | int t2 = offset+2; | 
|---|
| 982 |  | 
|---|
| 983 | tmp1 = expr.fastRead(offset); | 
|---|
| 984 | tmp2 = expr.fastRead(t1); | 
|---|
| 985 | tmp3 = expr.fastRead(t2); | 
|---|
| 986 |  | 
|---|
| 987 | T_update::update(data[0], tmp1); | 
|---|
| 988 | T_update::update(data[1], tmp2); | 
|---|
| 989 | T_update::update(data[2], tmp3); | 
|---|
| 990 |  | 
|---|
| 991 | offset += commonMajorStride; | 
|---|
| 992 | data += commonMajorStride; | 
|---|
| 993 |  | 
|---|
| 994 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 995 | count += 3; | 
|---|
| 996 | #endif | 
|---|
| 997 | } | 
|---|
| 998 | } | 
|---|
| 999 | else { | 
|---|
| 1000 |  | 
|---|
| 1001 | for (int i=bi; i < ni; ++i) | 
|---|
| 1002 | { | 
|---|
| 1003 | iter.loadStride(minorRank); | 
|---|
| 1004 | expr.loadStride(minorRank); | 
|---|
| 1005 |  | 
|---|
| 1006 | // Loop through current row elements | 
|---|
| 1007 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1008 | *expr); | 
|---|
| 1009 | iter.advance(); | 
|---|
| 1010 | expr.advance(); | 
|---|
| 1011 |  | 
|---|
| 1012 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1013 | *expr); | 
|---|
| 1014 | iter.advance(); | 
|---|
| 1015 | expr.advance(); | 
|---|
| 1016 |  | 
|---|
| 1017 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1018 | *expr); | 
|---|
| 1019 | iter.advance(-2); | 
|---|
| 1020 | expr.advance(-2); | 
|---|
| 1021 |  | 
|---|
| 1022 | iter.loadStride(majorRank); | 
|---|
| 1023 | expr.loadStride(majorRank); | 
|---|
| 1024 | iter.advance(); | 
|---|
| 1025 | expr.advance(); | 
|---|
| 1026 |  | 
|---|
| 1027 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 1028 | count += 3; | 
|---|
| 1029 | #endif | 
|---|
| 1030 |  | 
|---|
| 1031 | } | 
|---|
| 1032 | } | 
|---|
| 1033 | } | 
|---|
| 1034 | else { | 
|---|
| 1035 |  | 
|---|
| 1036 | // This code handles partial tiles at the bottom of the | 
|---|
| 1037 | // array. | 
|---|
| 1038 |  | 
|---|
| 1039 | for (int j=bj; j < maxj; ++j) | 
|---|
| 1040 | { | 
|---|
| 1041 | iter.loadStride(majorRank); | 
|---|
| 1042 | expr.loadStride(majorRank); | 
|---|
| 1043 |  | 
|---|
| 1044 | for (int i=bi; i < ni; ++i) | 
|---|
| 1045 | { | 
|---|
| 1046 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1047 | *expr); | 
|---|
| 1048 | iter.advance(); | 
|---|
| 1049 | expr.advance(); | 
|---|
| 1050 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 1051 | ++count; | 
|---|
| 1052 | #endif | 
|---|
| 1053 |  | 
|---|
| 1054 | } | 
|---|
| 1055 |  | 
|---|
| 1056 | // Move back to the top of this column | 
|---|
| 1057 | iter.advance(bi-ni); | 
|---|
| 1058 | expr.advance(bi-ni); | 
|---|
| 1059 |  | 
|---|
| 1060 | // Move over to the next column | 
|---|
| 1061 | iter.loadStride(minorRank); | 
|---|
| 1062 | expr.loadStride(minorRank); | 
|---|
| 1063 |  | 
|---|
| 1064 | iter.advance(); | 
|---|
| 1065 | expr.advance(); | 
|---|
| 1066 | } | 
|---|
| 1067 | } | 
|---|
| 1068 | } | 
|---|
| 1069 | } | 
|---|
| 1070 |  | 
|---|
| 1071 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 1072 | cout << "BZ_2D_STENCIL_DEBUG: count = " << count << endl; | 
|---|
| 1073 | #endif | 
|---|
| 1074 |  | 
|---|
| 1075 | return *this; | 
|---|
| 1076 | } | 
|---|
| 1077 |  | 
|---|
| 1078 | #endif // BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 1079 | #endif // BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 1080 |  | 
|---|
| 1081 |  | 
|---|
| 1082 |  | 
|---|
| 1083 | #ifndef BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 1084 |  | 
|---|
| 1085 | #ifdef BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 1086 |  | 
|---|
| 1087 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 1088 | inline Array<T_numtype, N_rank>& | 
|---|
| 1089 | Array<T_numtype, N_rank>::evaluateWithTiled2DTraversal(_bz_ArrayExpr<T_expr> | 
|---|
| 1090 | expr, T_update) | 
|---|
| 1091 | { | 
|---|
| 1092 | const int minorRank = ordering(0); | 
|---|
| 1093 | const int majorRank = ordering(1); | 
|---|
| 1094 |  | 
|---|
| 1095 | const int blockSize = 16; | 
|---|
| 1096 |  | 
|---|
| 1097 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 1098 | iter.push(0); | 
|---|
| 1099 | expr.push(0); | 
|---|
| 1100 |  | 
|---|
| 1101 | _bz_bool useUnitStride = iter.isUnitStride(minorRank) | 
|---|
| 1102 | && expr.isUnitStride(minorRank); | 
|---|
| 1103 |  | 
|---|
| 1104 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 1105 | int commonStride = expr.suggestStride(minorRank); | 
|---|
| 1106 | if (iter.suggestStride(minorRank) > commonStride) | 
|---|
| 1107 | commonStride = iter.suggestStride(minorRank); | 
|---|
| 1108 | bool useCommonStride = iter.isStride(minorRank,commonStride) | 
|---|
| 1109 | && expr.isStride(minorRank,commonStride); | 
|---|
| 1110 | #else | 
|---|
| 1111 | int commonStride = 1; | 
|---|
| 1112 | bool useCommonStride = _bz_false; | 
|---|
| 1113 | #endif | 
|---|
| 1114 |  | 
|---|
| 1115 | int maxi = length(majorRank); | 
|---|
| 1116 | int maxj = length(minorRank); | 
|---|
| 1117 |  | 
|---|
| 1118 | int bi, bj; | 
|---|
| 1119 | for (bi=0; bi < maxi; bi += blockSize) | 
|---|
| 1120 | { | 
|---|
| 1121 | int ni = bi + blockSize; | 
|---|
| 1122 | if (ni > maxi) | 
|---|
| 1123 | ni = maxi; | 
|---|
| 1124 |  | 
|---|
| 1125 | for (bj=0; bj < maxj; bj += blockSize) | 
|---|
| 1126 | { | 
|---|
| 1127 | int nj = bj + blockSize; | 
|---|
| 1128 | if (nj > maxj) | 
|---|
| 1129 | nj = maxj; | 
|---|
| 1130 |  | 
|---|
| 1131 | // Move to the beginning of the array | 
|---|
| 1132 | iter.pop(0); | 
|---|
| 1133 | expr.pop(0); | 
|---|
| 1134 |  | 
|---|
| 1135 | // Move to the beginning of the tile (bi,bj) | 
|---|
| 1136 | iter.loadStride(majorRank); | 
|---|
| 1137 | iter.advance(bi); | 
|---|
| 1138 | iter.loadStride(minorRank); | 
|---|
| 1139 | iter.advance(bj); | 
|---|
| 1140 |  | 
|---|
| 1141 | expr.loadStride(majorRank); | 
|---|
| 1142 | expr.advance(bi); | 
|---|
| 1143 | expr.loadStride(minorRank); | 
|---|
| 1144 | expr.advance(bj); | 
|---|
| 1145 |  | 
|---|
| 1146 | // Loop through tile rows | 
|---|
| 1147 | for (int i=bi; i < ni; ++i) | 
|---|
| 1148 | { | 
|---|
| 1149 | // Save the beginning of this tile row | 
|---|
| 1150 | iter.push(1); | 
|---|
| 1151 | expr.push(1); | 
|---|
| 1152 |  | 
|---|
| 1153 | // Load the minor stride | 
|---|
| 1154 | iter.loadStride(minorRank); | 
|---|
| 1155 | expr.loadStride(minorRank); | 
|---|
| 1156 |  | 
|---|
| 1157 | if (useUnitStride) | 
|---|
| 1158 | { | 
|---|
| 1159 | T_numtype* _bz_restrict data = const_cast<T_numtype*> | 
|---|
| 1160 | (iter.data()); | 
|---|
| 1161 |  | 
|---|
| 1162 | int ubound = (nj-bj); | 
|---|
| 1163 | for (int j=0; j < ubound; ++j) | 
|---|
| 1164 | T_update::update(data[j], expr.fastRead(j)); | 
|---|
| 1165 | } | 
|---|
| 1166 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 1167 | else if (useCommonStride) | 
|---|
| 1168 | { | 
|---|
| 1169 | int ubound = (nj-bj) * commonStride; | 
|---|
| 1170 | T_numtype* _bz_restrict data = const_cast<T_numtype*> | 
|---|
| 1171 | (iter.data()); | 
|---|
| 1172 |  | 
|---|
| 1173 | for (int j=0; j < ubound; j += commonStride) | 
|---|
| 1174 | T_update::update(data[j], expr.fastRead(j)); | 
|---|
| 1175 | } | 
|---|
| 1176 | #endif | 
|---|
| 1177 | else { | 
|---|
| 1178 | for (int j=bj; j < nj; ++j) | 
|---|
| 1179 | { | 
|---|
| 1180 | // Loop through current row elements | 
|---|
| 1181 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1182 | *expr); | 
|---|
| 1183 | iter.advance(); | 
|---|
| 1184 | expr.advance(); | 
|---|
| 1185 | } | 
|---|
| 1186 | } | 
|---|
| 1187 |  | 
|---|
| 1188 | // Move back to the beginning of the tile row, then | 
|---|
| 1189 | // move to the next row | 
|---|
| 1190 | iter.pop(1); | 
|---|
| 1191 | iter.loadStride(majorRank); | 
|---|
| 1192 | iter.advance(1); | 
|---|
| 1193 |  | 
|---|
| 1194 | expr.pop(1); | 
|---|
| 1195 | expr.loadStride(majorRank); | 
|---|
| 1196 | expr.advance(1); | 
|---|
| 1197 | } | 
|---|
| 1198 | } | 
|---|
| 1199 | } | 
|---|
| 1200 |  | 
|---|
| 1201 | return *this; | 
|---|
| 1202 | } | 
|---|
| 1203 | #endif // BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 1204 | #endif // BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 1205 |  | 
|---|
| 1206 | BZ_NAMESPACE_END | 
|---|
| 1207 |  | 
|---|
| 1208 | #endif // BZ_ARRAYEVAL_CC | 
|---|
| 1209 |  | 
|---|