1 | #include <math.h>
|
---|
2 | #include "vector3d.h"
|
---|
3 | #include "utilgeom.h"
|
---|
4 | //++
|
---|
5 | // Class Vector3d
|
---|
6 | //
|
---|
7 | // include vector3d.h utilgeom.h longlat.h math.h
|
---|
8 | //
|
---|
9 | //
|
---|
10 | // 3-D geometry.
|
---|
11 | // All computations are made with angles in radians and with spherical
|
---|
12 | // coordinates theta, phi.
|
---|
13 | //
|
---|
14 | // Concerning Euler's angles, the reference is :
|
---|
15 | //
|
---|
16 | // "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley
|
---|
17 | //--
|
---|
18 | //++
|
---|
19 | // Titre Constructors
|
---|
20 | //--
|
---|
21 | //++
|
---|
22 | Vector3d::Vector3d()
|
---|
23 | //
|
---|
24 | //--
|
---|
25 | {
|
---|
26 | Setxyz(1.,0.,0.);
|
---|
27 | }
|
---|
28 | //++
|
---|
29 | Vector3d::Vector3d(double x, double y, double z)
|
---|
30 | //
|
---|
31 | //--
|
---|
32 | {
|
---|
33 | _x=x;
|
---|
34 | _y=y;
|
---|
35 | _z=z;
|
---|
36 | xyz2ThetaPhi();
|
---|
37 | }
|
---|
38 | //++
|
---|
39 | Vector3d::Vector3d(double theta, double phi)
|
---|
40 | //
|
---|
41 | //--
|
---|
42 | {
|
---|
43 | _theta=mod(theta,M_PI); // dans [0;pi]
|
---|
44 | _phi=mod(phi,pi2); // dans [0;2pi]
|
---|
45 | ThetaPhi2xyz();
|
---|
46 | }
|
---|
47 | //++
|
---|
48 | Vector3d::Vector3d(const LongLat& ll)
|
---|
49 | //
|
---|
50 | //--
|
---|
51 | {
|
---|
52 | _theta=ll.Theta(); // dans [0;pi]
|
---|
53 | _phi=ll.Phi(); // dans [0;2pi]
|
---|
54 | ThetaPhi2xyz();
|
---|
55 | }
|
---|
56 | //++
|
---|
57 | Vector3d::Vector3d(const Vector3d& v)
|
---|
58 | //
|
---|
59 | //--
|
---|
60 | {
|
---|
61 | _x=v._x;
|
---|
62 | _y=v._y;
|
---|
63 | _z=v._z;
|
---|
64 | _theta=v._theta;
|
---|
65 | _phi=v._phi;
|
---|
66 | }
|
---|
67 | //++
|
---|
68 | // Titre Public methods
|
---|
69 | //--
|
---|
70 | //++
|
---|
71 | void Vector3d::SetThetaPhi(double theta, double phi)
|
---|
72 | //
|
---|
73 | //--
|
---|
74 | {
|
---|
75 | _theta=mod(theta,M_PI);
|
---|
76 | _phi=mod(phi,pi2);
|
---|
77 | ThetaPhi2xyz();
|
---|
78 | }
|
---|
79 | //++
|
---|
80 | void Vector3d::Setxyz(double x, double y, double z)
|
---|
81 | //
|
---|
82 | //--
|
---|
83 | {
|
---|
84 | _x=x;
|
---|
85 | _y=y;
|
---|
86 | _z=z;
|
---|
87 | xyz2ThetaPhi();
|
---|
88 | }
|
---|
89 | //++
|
---|
90 | void Vector3d::ThetaPhi2xyz()
|
---|
91 | //
|
---|
92 | //--
|
---|
93 | {
|
---|
94 | _x=sin(_theta)*cos(_phi);
|
---|
95 | _y=sin(_theta)*sin(_phi);
|
---|
96 | _z=cos(_theta);
|
---|
97 | }
|
---|
98 | //++
|
---|
99 | void Vector3d::xyz2ThetaPhi()
|
---|
100 | //
|
---|
101 | //--
|
---|
102 | {
|
---|
103 | double norm=this->Norm();
|
---|
104 | if( norm != 0. )
|
---|
105 | {
|
---|
106 | _theta=acos(_z/norm); // dans [0,Pi]
|
---|
107 | if( mod(_theta,M_PI) == 0. ) _phi=0.; // on est sur +-Oz, le vecteur z est en phi=0
|
---|
108 | // else _phi=acos(_x/sin(_theta)/norm)+M_PI*(_y<0);
|
---|
109 | else _phi=scangle(_y/sin(_theta)/norm,_x/sin(_theta)/norm);
|
---|
110 | }
|
---|
111 | else // vecteur nul
|
---|
112 | {
|
---|
113 | _theta=0.;
|
---|
114 | _phi=0.;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | //++
|
---|
118 | Vector3d& Vector3d::Normalize()
|
---|
119 | //
|
---|
120 | //--
|
---|
121 | {
|
---|
122 | double norm=this->Norm();
|
---|
123 | if( norm != 0. ) (*this)/=norm;
|
---|
124 | else cerr << "Division par zero" << endl;
|
---|
125 | return *this;
|
---|
126 | }
|
---|
127 | //++
|
---|
128 | double Vector3d::Norm() const
|
---|
129 | //
|
---|
130 | //--
|
---|
131 | {
|
---|
132 | return sqrt(_x*_x+_y*_y+_z*_z);
|
---|
133 | }
|
---|
134 | //++
|
---|
135 | double Vector3d::Psc(const Vector3d& v) const
|
---|
136 | //
|
---|
137 | // dot product
|
---|
138 | //--
|
---|
139 | {
|
---|
140 | return _x*v._x+_y*v._y+_z*v._z;
|
---|
141 | }
|
---|
142 | //++
|
---|
143 | double Vector3d::SepAngle(const Vector3d& v) const
|
---|
144 | //
|
---|
145 | // angular gap between 2 vectors in [0,Pi]
|
---|
146 | //--
|
---|
147 | {
|
---|
148 | double n1=this->Norm();
|
---|
149 | double n2=v.Norm();
|
---|
150 | double ret;
|
---|
151 | if( n1!=0. && n2!=0. ) ret=acos((this->Psc(v))/n1/n2);
|
---|
152 | else
|
---|
153 | {
|
---|
154 | cerr << "Division par zero" << endl;
|
---|
155 | ret=0.;
|
---|
156 | }
|
---|
157 | return ret;
|
---|
158 | }
|
---|
159 | //++
|
---|
160 | Vector3d Vector3d::Vect(const Vector3d& v) const
|
---|
161 | //
|
---|
162 | // vector product
|
---|
163 | //--
|
---|
164 | {
|
---|
165 | double xo=_y*v._z-_z*v._y;
|
---|
166 | double yo=_z*v._x-_x*v._z;
|
---|
167 | double zo=_x*v._y-_y*v._x;
|
---|
168 | return Vector3d(xo,yo,zo);
|
---|
169 | }
|
---|
170 | //++
|
---|
171 | Vector3d Vector3d::VperpPhi() const
|
---|
172 | //
|
---|
173 | // perpendicular vector, with equal phi
|
---|
174 | //--
|
---|
175 | {
|
---|
176 | double theta;
|
---|
177 | if( _theta != pi_over_2 ) theta=_theta+(0.5-(_theta>pi_over_2))*M_PI; // on tourne theta de +-pi/2
|
---|
178 | else theta=0.;
|
---|
179 | return Vector3d(theta,_phi);
|
---|
180 | }
|
---|
181 | //++
|
---|
182 | Vector3d Vector3d::VperpTheta() const
|
---|
183 | //
|
---|
184 | // perpendicular vector with equal theta
|
---|
185 | //--
|
---|
186 | {
|
---|
187 | double phi=mod(_phi+pi_over_2,pi2); // on tourne phi de pi/2
|
---|
188 | return Vector3d(_theta,phi);
|
---|
189 | }
|
---|
190 |
|
---|
191 | Vector3d Vector3d::EPhi() const
|
---|
192 | {
|
---|
193 | Vector3d temp;
|
---|
194 | if ( fabs(_z) == 1. ) // si on est en +- Oz
|
---|
195 | {
|
---|
196 | temp=Vector3d(1.,0.,0.);
|
---|
197 | }
|
---|
198 | else
|
---|
199 | {
|
---|
200 | Vector3d k(0,0,-1);
|
---|
201 | temp=this->Vect(k);
|
---|
202 | temp.Normalize();
|
---|
203 | }
|
---|
204 | return temp;
|
---|
205 | }
|
---|
206 | //++
|
---|
207 | Vector3d Vector3d::ETheta() const
|
---|
208 | //
|
---|
209 | //--
|
---|
210 | {
|
---|
211 | Vector3d temp=this->Vect(EPhi());
|
---|
212 | temp.Normalize();
|
---|
213 | return temp;
|
---|
214 | }
|
---|
215 |
|
---|
216 | //++
|
---|
217 | Vector3d Vector3d::Euler(double phi, double theta, double psi) const
|
---|
218 | //
|
---|
219 | // Euler's rotations
|
---|
220 | //--
|
---|
221 | {
|
---|
222 | double cpsi=cos(psi);
|
---|
223 | double ctheta=cos(theta);
|
---|
224 | double cphi=cos(phi);
|
---|
225 | double spsi=sin(psi);
|
---|
226 | double stheta=sin(theta);
|
---|
227 | double sphi=sin(phi);
|
---|
228 | double xnew=(cpsi*cphi-ctheta*sphi*spsi)*_x
|
---|
229 | +(cpsi*sphi+ctheta*cphi*spsi)*_y
|
---|
230 | +spsi*stheta*_z;
|
---|
231 | double ynew=(-spsi*cphi-ctheta*sphi*cpsi)*_x
|
---|
232 | +(-spsi*sphi+ctheta*cphi*cpsi)*_y
|
---|
233 | +cpsi*stheta*_z;
|
---|
234 | double znew=stheta*sphi*_x-stheta*cphi*_y+ctheta*_z;
|
---|
235 | return Vector3d(xnew,ynew,znew);
|
---|
236 | }
|
---|
237 | //++
|
---|
238 | Vector3d Vector3d::InvEuler(double phi, double theta, double psi) const
|
---|
239 | //
|
---|
240 | // inverse rotation
|
---|
241 | //--
|
---|
242 | {
|
---|
243 | double cpsi=cos(psi);
|
---|
244 | double ctheta=cos(theta);
|
---|
245 | double cphi=cos(phi);
|
---|
246 | double spsi=sin(psi);
|
---|
247 | double stheta=sin(theta);
|
---|
248 | double sphi=sin(phi);
|
---|
249 | double xnew=(cpsi*cphi-ctheta*sphi*spsi)*_x
|
---|
250 | -(spsi*cphi+ctheta*sphi*cpsi)*_y
|
---|
251 | +sphi*stheta*_z;
|
---|
252 | double ynew=(cpsi*sphi+ctheta*cphi*spsi)*_x
|
---|
253 | +(-spsi*sphi+ctheta*cphi*cpsi)*_y
|
---|
254 | -cphi*stheta*_z;
|
---|
255 | double znew=stheta*spsi*_x+stheta*cpsi*_y+ctheta*_z;
|
---|
256 | return Vector3d(xnew,ynew,znew);
|
---|
257 | }
|
---|
258 | //++
|
---|
259 | Vector3d Vector3d::Rotate(const Vector3d& omega, double phi)
|
---|
260 | //
|
---|
261 | // rotation of angle phi around an axis omega (Maxwell's rule)
|
---|
262 | //--
|
---|
263 | {
|
---|
264 | Vector3d rotationaxis=omega;
|
---|
265 | rotationaxis.Normalize();
|
---|
266 | double n=this->Psc(rotationaxis);
|
---|
267 | Vector3d myself=*this;
|
---|
268 | Vector3d rotate=n*rotationaxis+(myself-n*rotationaxis)*cos(phi)-(myself^rotationaxis)*sin(phi);
|
---|
269 | return rotate;
|
---|
270 | }
|
---|
271 | //++
|
---|
272 | void Vector3d::Print(ostream& os) const
|
---|
273 | //
|
---|
274 | //--
|
---|
275 | {
|
---|
276 | os << "Vector3: (X,Y,Z)= (" << _x << ", " << _y << ", " << _z
|
---|
277 | << ") --- Theta,Phi= " << _theta << ", " << _phi << "\n"
|
---|
278 | << "Norme = " << this->Norm() << endl;
|
---|
279 | }
|
---|
280 | //++
|
---|
281 | // Titre Operators
|
---|
282 | //--
|
---|
283 | //++
|
---|
284 | Vector3d& Vector3d::operator += (const Vector3d& v)
|
---|
285 | //
|
---|
286 | //--
|
---|
287 | {
|
---|
288 | *this=*this+v;
|
---|
289 | return *this;
|
---|
290 | }
|
---|
291 | //++
|
---|
292 | Vector3d& Vector3d::operator -= (const Vector3d& v)
|
---|
293 | //
|
---|
294 | //--
|
---|
295 | {
|
---|
296 | *this=*this-v;
|
---|
297 | return *this;
|
---|
298 | }
|
---|
299 | //++
|
---|
300 | Vector3d& Vector3d::operator += (double d)
|
---|
301 | //
|
---|
302 | //--
|
---|
303 | {
|
---|
304 | Setxyz(_x+d,_y+d,_z+d);
|
---|
305 | return *this;
|
---|
306 | }
|
---|
307 | //++
|
---|
308 | Vector3d& Vector3d::operator /= (double d)
|
---|
309 | //
|
---|
310 | //--
|
---|
311 | {
|
---|
312 | if( d != 0. ) Setxyz(_x/d,_y/d,_z/d);
|
---|
313 | else cerr << "Division par zero." << endl;
|
---|
314 | return *this;
|
---|
315 | }
|
---|
316 | //++
|
---|
317 | Vector3d& Vector3d::operator *= (double d)
|
---|
318 | //
|
---|
319 | //--
|
---|
320 | {
|
---|
321 | Setxyz(_x*d,_y*d,_z*d);
|
---|
322 | return *this;
|
---|
323 | }
|
---|
324 | //++
|
---|
325 | Vector3d Vector3d::operator ^ (const Vector3d& v) const
|
---|
326 | //
|
---|
327 | // vector product
|
---|
328 | //--
|
---|
329 | {
|
---|
330 | return this->Vect(v);
|
---|
331 | }
|
---|
332 | //++
|
---|
333 | Vector3d Vector3d::operator + (double d) const
|
---|
334 | //
|
---|
335 | //--
|
---|
336 | {
|
---|
337 | return Vector3d(_x+d,_y+d,_z+d);
|
---|
338 | }
|
---|
339 | //++
|
---|
340 | Vector3d Vector3d::operator + (const Vector3d& v) const
|
---|
341 | //
|
---|
342 | //--
|
---|
343 | {
|
---|
344 | return Vector3d(_x+v._x,_y+v._y,_z+v._z);
|
---|
345 | }
|
---|
346 | //++
|
---|
347 | Vector3d Vector3d::operator - (double d) const
|
---|
348 | //
|
---|
349 | //--
|
---|
350 | {
|
---|
351 | return *this+(-d);
|
---|
352 | }
|
---|
353 | //++
|
---|
354 | Vector3d Vector3d::operator - (const Vector3d& v) const
|
---|
355 | //
|
---|
356 | //--
|
---|
357 | {
|
---|
358 | return *this+(v*(-1.));
|
---|
359 | }
|
---|
360 | //++
|
---|
361 | Vector3d Vector3d::operator * (double d) const
|
---|
362 | //
|
---|
363 | //--
|
---|
364 | {
|
---|
365 | return Vector3d(d*_x,d*_y,d*_z);
|
---|
366 | }
|
---|
367 | //++
|
---|
368 | double Vector3d::operator * (const Vector3d& v) const
|
---|
369 | //
|
---|
370 | // dot product
|
---|
371 | //--
|
---|
372 | {
|
---|
373 | return this->Psc(v);
|
---|
374 | }
|
---|
375 | //++
|
---|
376 | Vector3d Vector3d::operator / (double d) const
|
---|
377 | //
|
---|
378 | //--
|
---|
379 | {
|
---|
380 | Vector3d ret=*this;
|
---|
381 | if( d != 0. ) ret/=d;
|
---|
382 | else cerr << "Division par zero." << endl;
|
---|
383 | return ret;
|
---|
384 | }
|
---|
385 | //++
|
---|
386 | Vector3d& Vector3d::operator = (const Vector3d& v)
|
---|
387 | //
|
---|
388 | //--
|
---|
389 | {
|
---|
390 | if( this != &v )
|
---|
391 | {
|
---|
392 | _x=v._x;
|
---|
393 | _y=v._y;
|
---|
394 | _z=v._z;
|
---|
395 | _theta=v._theta;
|
---|
396 | _phi=v._phi;
|
---|
397 | }
|
---|
398 | return *this;
|
---|
399 | }
|
---|
400 | //++
|
---|
401 | bool Vector3d::operator == (const Vector3d& v)
|
---|
402 | //
|
---|
403 | //--
|
---|
404 | {
|
---|
405 | return (this==&v);
|
---|
406 | }
|
---|
407 |
|
---|