#define ARCUNIT_H /*======================================================================*/ /* */ /* arcunit.h : conversion en mesure physique */ /* */ /*======================================================================*/ /* ---------------------------- prototypes des fonctions ------------------------------ */ /* -------------------------------------------------------------------------------------------- */ double bolo_muV (param_bolo* param_pt, reglage_bolo* reglage_pt, int valbrut,int indice_bolo); double bolo_temp (param_bolo* param_pt, reglage_bolo* reglage_pt, double R,int indice_bolo); double DAC_muV (param_bolo* param_pt, reglage_bolo* reglage_pt, int indice_bolo); double DAC_muA (param_bolo* param_pt, reglage_bolo* reglage_pt, int indice_bolo); int voyant_EVO(block_type_dilution* blk); int voyant_EVF(block_type_dilution* blk); int commande_EVO(block_type_dilution* blk); int commande_EVF(block_type_dilution* blk); int commande_EVB(block_type_dilution* blk); int commande_EVV(block_type_dilution* blk); double pression_entree_3He(block_type_dilution* blk); double debit_3He(block_type_dilution* blk) ; double pression_sortie_3He(block_type_dilution* blk) ; double pression_entree_4He(block_type_dilution* blk) ; double debit_4He(block_type_dilution* blk) ; double pression_sortie_4He(block_type_dilution* blk) ; double pression_air_vanne(block_type_dilution* blk) ; double pression_pompe_charbon(block_type_dilution* blk); double pression_membranne(block_type_dilution* blk) ; double pression_externe(block_type_dilution* blk) ; double tension_pile_10T(block_type_dilution* blk) ; double tension_pile_p18D(block_type_dilution* blk) ; double tension_pile_m18D(block_type_dilution* blk) ; double tension_pile_10B(block_type_dilution* blk) ; double tension_pile_p18B(block_type_dilution* blk) ; double tension_pile_m18B(block_type_dilution* blk) ; double tension_pile_Ch(block_type_dilution* blk) ; int switch_pile_5(block_type_dilution* blk) ; int switch_pile_15(block_type_dilution* blk) ; double temperature_caisson_haut1(block_type_dilution* blk) ; double temperature_caisson_haut2(block_type_dilution* blk) ; double temperature_caisson_bas1(block_type_dilution* blk) ; double temperature_caisson_bas2(block_type_dilution* blk) ; double temperature_caisson_tube_helium(block_type_dilution* blk) ; double temperature_caisson_piles(block_type_dilution* blk) ; double temperature_caisson_driver_moteur(block_type_dilution* blk) ; double pression_helium_bain(block_type_dilution* blk) ; double pression_pirani(block_type_dilution* blk) ; /* cette fonction transforme un char (sur 8 bit) en double avec une echelle logarythmique */ /* elle est en particulier utilisée pour calculer les coef de la regul */ double val_double(char x); /* cette fonction transforme un char (sur 8 bit) en entier int4 (echelle logarythmique) */ /* elle est en particulier utilisée pour fixer le courant sur les bolometres */ unsigned int4 val_long(char x); int new_val_dac(int a,char code); /* ---------------------------- define utilise pour les calculs ------------------------------ */ #define bol_micro_volt(val,gain) ((1e7*(double)val)/(65536.*gain)) /* avec gain = (double)parametr.bolo[bolo].bolo_gain*gain_ampli(reglage.bolo[bolo]) */ /* gains 0 .. 15 pour MLPA /// gain 16..19 pour BEBO /// gain 20..22 pour BEDIF */ #define def_gains double gains_reels[32]={1,2,4,8,10,20,40,80,100,200,400,800,1000,2000,4000,8000,0.5,2.5,10,50,0.93,3.777,18.974}; /* gain bediff 10->9.3 40->37.77 200->189.74 */ #define gain_ampli(aa) gains_reels[gainbrut(aa)] #define bit_piles_5V 1 #define bit_piles_15V 2 #define bit_piles_auto 4 /* signification des bit lus dans switch_dil */ #define switch_EVF 0x00000080 /* contact fin de course vanne fermee */ #define switch_EVO 0x00000040 /* contact fin de course vanne ouverte */ /* les bit suivants sont envoyés par telecommande et relus dans switch_dil */ #define switch_helium 0x00200000 /* 13: commande sond niveau helium */ #define switch_pile_par_5 0x00100000 /* 12: mise en parallele des piles pour le 5V */ #define switch_pile_par_15 0x00080000 /* 11: mise en parallele des piles pour le 15V */ #define vanne_EVB 0x00008000 /* 7: commande vanne brooks */ #define vanne_EVO 0x00010000 /* 8: commande vanne EVO */ #define vanne_EVV 0x00020000 /* 9: commande vanne EVV */ #define vanne_EVF 0x00040000 /* 10: commande vanne EVF */ #define chauffage1 0x00004000 /* 6: chauffage 1 */ #define chauffage2 0x00002000 /* 5: chauffage 1 */ #define chauffage3 0x00001000 /* 4: chauffage 1 */ #define chauffage4 0x00000800 /* 3: chauffage 1 */ #define chauffage5 0x00000400 /* 2: chauffage 1 */ #define chauffage6 0x00000200 /* 1: chauffage 1 */ #define chauffage7 0x00000100 /* 0: chauffage 7 */ #ifndef ARCUNIT_H enum{nbit_chauffage7,nbit_chauffage6,nbit_chauffage5,nbit_chauffage4,nbit_chauffage3 ,nbit_chauffage2,nbit_chauffage1,nbit_vanne_EVB,nbit_vanne_EVO ,nbit_vanne_EVV,nbit_vanne_EVF,nbit_switch_pile_par_15,nbit_switch_pile_par_5,nbit_switch_helium}; /* position des mesures sur les multiplexeurs */ /* J10A -> temperatures basses t_b1 t_b2,t_b3 t_b4 36 37 41 35 */ /* J10B -> temperatures basses t_a1 t_a2,t_a3 t_a4 38 11 34 28 */ /* J1?? -> temperatures hautes t_h1 t_h2,t_h3 t_h4 */ enum{ /* multiplex11..18:*/ t_a2 ,mul12_ ,p_haut ,p_memb ,t_h1 ,t_h4 ,t_h3 ,t_h2 /* multiplex21..28:*/, mul21_ ,mul22 ,p_charb,p_R4 ,mul25_ ,p_C3 ,p_R3 ,t_a4 /* multiplex31..38:*/, mul31_ ,p_C4 ,p_air ,t_a3 ,t_b4 ,t_b1 ,t_b2 ,t_a1 /* multiplex41..48:*/, t_b3 ,d_4He ,RP_He ,t_pile ,d_3He ,j_he3 ,j_he7 ,j_he4 /* multiplex51..58:*/, j_he5 ,j_he1 ,j_he8 ,j_he2 ,j_he6 ,pirani ,mul57 ,mul58 /* multiplex61..68:*/, p_m18B ,p_10B ,p_m18D ,mul64 ,p_p18B ,p_10T ,p_Ch ,p_p18D }; /* reste libres : mul 12 - 21 - 22 - 25 - 31 - 44 - 57 - 58 - 64 */ /* T_A1 EST AUSSI LE DRIVER DU MOTEUR DE PIVOT */ #endif #define val_multiplex(qq) (0.0003052*(double)((qq)-0x8000)) #define val_temperature(qq) ((val_multiplex(qq)<0.2)?-99:((1146.3/(val_multiplex(qq)-0.1)) - 245.13))