| [394] | 1 | /*
 | 
|---|
 | 2 | ** FFT and FHT routines
 | 
|---|
 | 3 | **  Copyright 1988, 1993; Ron Mayer
 | 
|---|
 | 4 | **  
 | 
|---|
 | 5 | **  fht(fz,n);
 | 
|---|
 | 6 | **      Does a hartley transform of "n" points in the array "fz".
 | 
|---|
 | 7 | **  fft(n,real,imag)
 | 
|---|
 | 8 | **      Does a fourier transform of "n" points of the "real" and
 | 
|---|
 | 9 | **      "imag" arrays.
 | 
|---|
 | 10 | **  ifft(n,real,imag)
 | 
|---|
 | 11 | **      Does an inverse fourier transform of "n" points of the "real"
 | 
|---|
 | 12 | **      and "imag" arrays.
 | 
|---|
 | 13 | **  realfft(n,real)
 | 
|---|
 | 14 | **      Does a real-valued fourier transform of "n" points of the
 | 
|---|
 | 15 | **      "real" array. The real part of the transform ends
 | 
|---|
 | 16 | **      up in the first half of the array and the imaginary part of the
 | 
|---|
 | 17 | **      transform ends up in the second half of the array.
 | 
|---|
 | 18 | **  realifft(n,real)
 | 
|---|
 | 19 | **      The inverse of the realfft() routine above.
 | 
|---|
 | 20 | **      
 | 
|---|
 | 21 | **      
 | 
|---|
 | 22 | ** NOTE: This routine uses at least 2 patented algorithms, and may be
 | 
|---|
 | 23 | **       under the restrictions of a bunch of different organizations.
 | 
|---|
 | 24 | **       Although I wrote it completely myself; it is kind of a derivative
 | 
|---|
 | 25 | **       of a routine I once authored and released under the GPL, so it
 | 
|---|
 | 26 | **       may fall under the free software foundation's restrictions;
 | 
|---|
 | 27 | **       it was worked on as a Stanford Univ project, so they claim
 | 
|---|
 | 28 | **       some rights to it; it was further optimized at work here, so
 | 
|---|
 | 29 | **       I think this company claims parts of it.  The patents are
 | 
|---|
 | 30 | **       held by R. Bracewell (the FHT algorithm) and O. Buneman (the
 | 
|---|
 | 31 | **       trig generator), both at Stanford Univ.
 | 
|---|
 | 32 | **       If it were up to me, I'd say go do whatever you want with it;
 | 
|---|
 | 33 | **       but it would be polite to give credit to the following people
 | 
|---|
 | 34 | **       if you use this anywhere:
 | 
|---|
 | 35 | **           Euler     - probable inventor of the fourier transform.
 | 
|---|
 | 36 | **           Gauss     - probable inventor of the FFT.
 | 
|---|
 | 37 | **           Hartley   - probable inventor of the hartley transform.
 | 
|---|
 | 38 | **           Buneman   - for a really cool trig generator
 | 
|---|
 | 39 | **           Mayer(me) - for authoring this particular version and
 | 
|---|
 | 40 | **                       including all the optimizations in one package.
 | 
|---|
 | 41 | **       Thanks,
 | 
|---|
 | 42 | **       Ron Mayer; mayer@acuson.com
 | 
|---|
 | 43 | **
 | 
|---|
 | 44 | */
 | 
|---|
 | 45 | 
 | 
|---|
 | 46 | #include "mayer_fft.h"
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 | #define GOOD_TRIG
 | 
|---|
 | 49 | #include "trigtbl.h"
 | 
|---|
 | 50 | 
 | 
|---|
 | 51 | char fht_version[] = "Brcwl-Hrtly-Ron-dbld";
 | 
|---|
 | 52 | 
 | 
|---|
 | 53 | #define SQRT2_2   0.70710678118654752440084436210484
 | 
|---|
 | 54 | #define SQRT2   2*0.70710678118654752440084436210484
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 | void fht(REAL *fz,int n)
 | 
|---|
 | 57 | {
 | 
|---|
 | 58 |  REAL a,b;
 | 
|---|
 | 59 |  REAL c1,s1,s2,c2,s3,c3,s4,c4;
 | 
|---|
 | 60 |  REAL f0,g0,f1,g1,f2,g2,f3,g3;
 | 
|---|
 | 61 |  int i,k,k1,k2,k3,k4,kx;
 | 
|---|
 | 62 |  REAL *fi,*fn,*gi;
 | 
|---|
 | 63 |  TRIG_VARS;
 | 
|---|
 | 64 | 
 | 
|---|
 | 65 |  for (k1=1,k2=0;k1<n;k1++)
 | 
|---|
 | 66 |     {
 | 
|---|
 | 67 |      REAL a;
 | 
|---|
 | 68 |      for (k=n>>1; (!((k2^=k)&k)); k>>=1);
 | 
|---|
 | 69 |      if (k1>k2)
 | 
|---|
 | 70 |         {
 | 
|---|
 | 71 |              a=fz[k1];fz[k1]=fz[k2];fz[k2]=a;
 | 
|---|
 | 72 |         }
 | 
|---|
 | 73 |     }
 | 
|---|
 | 74 |  for ( k=0 ; (1<<k)<n ; k++ );
 | 
|---|
 | 75 |  k  &= 1;
 | 
|---|
 | 76 |  if (k==0)
 | 
|---|
 | 77 |     {
 | 
|---|
 | 78 |          for (fi=fz,fn=fz+n;fi<fn;fi+=4)
 | 
|---|
 | 79 |             {
 | 
|---|
 | 80 |              REAL f0,f1,f2,f3;
 | 
|---|
 | 81 |              f1     = fi[0 ]-fi[1 ];
 | 
|---|
 | 82 |              f0     = fi[0 ]+fi[1 ];
 | 
|---|
 | 83 |              f3     = fi[2 ]-fi[3 ];
 | 
|---|
 | 84 |              f2     = fi[2 ]+fi[3 ];
 | 
|---|
 | 85 |              fi[2 ] = (f0-f2);  
 | 
|---|
 | 86 |              fi[0 ] = (f0+f2);
 | 
|---|
 | 87 |              fi[3 ] = (f1-f3);  
 | 
|---|
 | 88 |              fi[1 ] = (f1+f3);
 | 
|---|
 | 89 |             }
 | 
|---|
 | 90 |     }
 | 
|---|
 | 91 |  else
 | 
|---|
 | 92 |     {
 | 
|---|
 | 93 |          for (fi=fz,fn=fz+n,gi=fi+1;fi<fn;fi+=8,gi+=8)
 | 
|---|
 | 94 |             {
 | 
|---|
 | 95 |              REAL s1,c1,s2,c2,s3,c3,s4,c4,g0,f0,f1,g1,f2,g2,f3,g3;
 | 
|---|
 | 96 |              c1     = fi[0 ] - gi[0 ];
 | 
|---|
 | 97 |              s1     = fi[0 ] + gi[0 ];
 | 
|---|
 | 98 |              c2     = fi[2 ] - gi[2 ];
 | 
|---|
 | 99 |              s2     = fi[2 ] + gi[2 ];
 | 
|---|
 | 100 |              c3     = fi[4 ] - gi[4 ];
 | 
|---|
 | 101 |              s3     = fi[4 ] + gi[4 ];
 | 
|---|
 | 102 |              c4     = fi[6 ] - gi[6 ];
 | 
|---|
 | 103 |              s4     = fi[6 ] + gi[6 ];
 | 
|---|
 | 104 |              f1     = (s1 - s2);        
 | 
|---|
 | 105 |              f0     = (s1 + s2);
 | 
|---|
 | 106 |              g1     = (c1 - c2);        
 | 
|---|
 | 107 |              g0     = (c1 + c2);
 | 
|---|
 | 108 |              f3     = (s3 - s4);        
 | 
|---|
 | 109 |              f2     = (s3 + s4);
 | 
|---|
 | 110 |              g3     = SQRT2*c4;         
 | 
|---|
 | 111 |              g2     = SQRT2*c3;
 | 
|---|
 | 112 |              fi[4 ] = f0 - f2;
 | 
|---|
 | 113 |              fi[0 ] = f0 + f2;
 | 
|---|
 | 114 |              fi[6 ] = f1 - f3;
 | 
|---|
 | 115 |              fi[2 ] = f1 + f3;
 | 
|---|
 | 116 |              gi[4 ] = g0 - g2;
 | 
|---|
 | 117 |              gi[0 ] = g0 + g2;
 | 
|---|
 | 118 |              gi[6 ] = g1 - g3;
 | 
|---|
 | 119 |              gi[2 ] = g1 + g3;
 | 
|---|
 | 120 |             }
 | 
|---|
 | 121 |     }
 | 
|---|
 | 122 |  if (n<16) return;
 | 
|---|
 | 123 | 
 | 
|---|
 | 124 |  do
 | 
|---|
 | 125 |     {
 | 
|---|
 | 126 |      REAL s1,c1;
 | 
|---|
 | 127 |      k  += 2;
 | 
|---|
 | 128 |      k1  = 1  << k;
 | 
|---|
 | 129 |      k2  = k1 << 1;
 | 
|---|
 | 130 |      k4  = k2 << 1;
 | 
|---|
 | 131 |      k3  = k2 + k1;
 | 
|---|
 | 132 |      kx  = k1 >> 1;
 | 
|---|
 | 133 |          fi  = fz;
 | 
|---|
 | 134 |          gi  = fi + kx;
 | 
|---|
 | 135 |          fn  = fz + n;
 | 
|---|
 | 136 |          do
 | 
|---|
 | 137 |             {
 | 
|---|
 | 138 |              REAL g0,f0,f1,g1,f2,g2,f3,g3;
 | 
|---|
 | 139 |              f1      = fi[0 ] - fi[k1];
 | 
|---|
 | 140 |              f0      = fi[0 ] + fi[k1];
 | 
|---|
 | 141 |              f3      = fi[k2] - fi[k3];
 | 
|---|
 | 142 |              f2      = fi[k2] + fi[k3];
 | 
|---|
 | 143 |              fi[k2]  = f0         - f2;
 | 
|---|
 | 144 |              fi[0 ]  = f0         + f2;
 | 
|---|
 | 145 |              fi[k3]  = f1         - f3;
 | 
|---|
 | 146 |              fi[k1]  = f1         + f3;
 | 
|---|
 | 147 |              g1      = gi[0 ] - gi[k1];
 | 
|---|
 | 148 |              g0      = gi[0 ] + gi[k1];
 | 
|---|
 | 149 |              g3      = SQRT2  * gi[k3];
 | 
|---|
 | 150 |              g2      = SQRT2  * gi[k2];
 | 
|---|
 | 151 |              gi[k2]  = g0         - g2;
 | 
|---|
 | 152 |              gi[0 ]  = g0         + g2;
 | 
|---|
 | 153 |              gi[k3]  = g1         - g3;
 | 
|---|
 | 154 |              gi[k1]  = g1         + g3;
 | 
|---|
 | 155 |              gi     += k4;
 | 
|---|
 | 156 |              fi     += k4;
 | 
|---|
 | 157 |             } while (fi<fn);
 | 
|---|
 | 158 |      TRIG_INIT(k,c1,s1);
 | 
|---|
 | 159 |      for (i=1;i<kx;i++)
 | 
|---|
 | 160 |         {
 | 
|---|
 | 161 |          REAL c2,s2;
 | 
|---|
 | 162 |          TRIG_NEXT(k,c1,s1);
 | 
|---|
 | 163 |          c2 = c1*c1 - s1*s1;
 | 
|---|
 | 164 |          s2 = 2*(c1*s1);
 | 
|---|
 | 165 |              fn = fz + n;
 | 
|---|
 | 166 |              fi = fz +i;
 | 
|---|
 | 167 |              gi = fz +k1-i;
 | 
|---|
 | 168 |              do
 | 
|---|
 | 169 |                 {
 | 
|---|
 | 170 |                  REAL a,b,g0,f0,f1,g1,f2,g2,f3,g3;
 | 
|---|
 | 171 |                  b       = s2*fi[k1] - c2*gi[k1];
 | 
|---|
 | 172 |                  a       = c2*fi[k1] + s2*gi[k1];
 | 
|---|
 | 173 |                  f1      = fi[0 ]    - a;
 | 
|---|
 | 174 |                  f0      = fi[0 ]    + a;
 | 
|---|
 | 175 |                  g1      = gi[0 ]    - b;
 | 
|---|
 | 176 |                  g0      = gi[0 ]    + b;
 | 
|---|
 | 177 |                  b       = s2*fi[k3] - c2*gi[k3];
 | 
|---|
 | 178 |                  a       = c2*fi[k3] + s2*gi[k3];
 | 
|---|
 | 179 |                  f3      = fi[k2]    - a;
 | 
|---|
 | 180 |                  f2      = fi[k2]    + a;
 | 
|---|
 | 181 |                  g3      = gi[k2]    - b;
 | 
|---|
 | 182 |                  g2      = gi[k2]    + b;
 | 
|---|
 | 183 |                  b       = s1*f2     - c1*g3;
 | 
|---|
 | 184 |                  a       = c1*f2     + s1*g3;
 | 
|---|
 | 185 |                  fi[k2]  = f0        - a;
 | 
|---|
 | 186 |                  fi[0 ]  = f0        + a;
 | 
|---|
 | 187 |                  gi[k3]  = g1        - b;
 | 
|---|
 | 188 |                  gi[k1]  = g1        + b;
 | 
|---|
 | 189 |                  b       = c1*g2     - s1*f3;
 | 
|---|
 | 190 |                  a       = s1*g2     + c1*f3;
 | 
|---|
 | 191 |                  gi[k2]  = g0        - a;
 | 
|---|
 | 192 |                  gi[0 ]  = g0        + a;
 | 
|---|
 | 193 |                  fi[k3]  = f1        - b;
 | 
|---|
 | 194 |                  fi[k1]  = f1        + b;
 | 
|---|
 | 195 |                  gi     += k4;
 | 
|---|
 | 196 |                  fi     += k4;
 | 
|---|
 | 197 |                 } while (fi<fn);
 | 
|---|
 | 198 |         }
 | 
|---|
 | 199 |      TRIG_RESET(k,c1,s1);
 | 
|---|
 | 200 |     } while (k4<n);
 | 
|---|
 | 201 | }
 | 
|---|
 | 202 | 
 | 
|---|
 | 203 | 
 | 
|---|
 | 204 | void ifft(int n, double *real, double *imag)
 | 
|---|
 | 205 | {
 | 
|---|
 | 206 |  double a,b,c,d;
 | 
|---|
 | 207 |  double q,r,s,t;
 | 
|---|
 | 208 |  int i,j,k;
 | 
|---|
 | 209 |  fht(real,n);
 | 
|---|
 | 210 |  fht(imag,n);
 | 
|---|
 | 211 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
 | 212 |   a = real[i]; b = real[j];  q=a+b; r=a-b;
 | 
|---|
 | 213 |   c = imag[i]; d = imag[j];  s=c+d; t=c-d;
 | 
|---|
 | 214 |   imag[i] = (s+r)*0.5;  imag[j] = (s-r)*0.5;
 | 
|---|
 | 215 |   real[i] = (q-t)*0.5;  real[j] = (q+t)*0.5;
 | 
|---|
 | 216 |  }
 | 
|---|
 | 217 | }
 | 
|---|
 | 218 | 
 | 
|---|
 | 219 | void realfft(int n, double *real)
 | 
|---|
 | 220 | {
 | 
|---|
 | 221 |  double a,b,c,d;
 | 
|---|
 | 222 |  int i,j,k;
 | 
|---|
 | 223 |  fht(real,n);
 | 
|---|
 | 224 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
 | 225 |   a = real[i];
 | 
|---|
 | 226 |   b = real[j];
 | 
|---|
 | 227 |   real[j] = (a-b)*0.5;
 | 
|---|
 | 228 |   real[i] = (a+b)*0.5;
 | 
|---|
 | 229 |  }
 | 
|---|
 | 230 | }
 | 
|---|
 | 231 | 
 | 
|---|
 | 232 | void fft(int n, double *real,double *imag)
 | 
|---|
 | 233 | {
 | 
|---|
 | 234 |  double a,b,c,d;
 | 
|---|
 | 235 |  double q,r,s,t;
 | 
|---|
 | 236 |  int i,j,k;
 | 
|---|
 | 237 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
 | 238 |   a = real[i]; b = real[j];  q=a+b; r=a-b;
 | 
|---|
 | 239 |   c = imag[i]; d = imag[j];  s=c+d; t=c-d;
 | 
|---|
 | 240 |   real[i] = (q+t)*.5; real[j] = (q-t)*.5;
 | 
|---|
 | 241 |   imag[i] = (s-r)*.5; imag[j] = (s+r)*.5;
 | 
|---|
 | 242 |  }
 | 
|---|
 | 243 |  fht(real,n);
 | 
|---|
 | 244 |  fht(imag,n);
 | 
|---|
 | 245 | }
 | 
|---|
 | 246 | 
 | 
|---|
 | 247 | void realifft(int n,double *real)
 | 
|---|
 | 248 | {
 | 
|---|
 | 249 |  double a,b,c,d;
 | 
|---|
 | 250 |  int i,j,k;
 | 
|---|
 | 251 |  for (i=1,j=n-1,k=n/2;i<k;i++,j--) {
 | 
|---|
 | 252 |   a = real[i];
 | 
|---|
 | 253 |   b = real[j];
 | 
|---|
 | 254 |   real[j] = (a-b);
 | 
|---|
 | 255 |   real[i] = (a+b);
 | 
|---|
 | 256 |  }
 | 
|---|
 | 257 |  fht(real,n);
 | 
|---|
 | 258 | }
 | 
|---|