// starmatcher.cc // Eric Aubourg CEA/DAPNIA/SPP novembre 1999 #include "starmatcher.h" #include "sststarfinder.h" #include "toimanager.h" #include "archexc.h" #include "archparam.h" #include "gondolageom.h" extern "C" { #include "aa_hadec.h" #define NRANSI #include "nrutil.h" void lfit(float x[], float y[], float sig[], int ndat, float a[], int ia[], int ma, float **covar, float *chisq, void (*funcs)(float, float [], int)); void polfunc(float x, float afunc[], int ma); void sinfunc(float x, float afunc[], int ma); } void polfunc(float x, float afunc[], int ma) { afunc[1] = 1; for (int i=2; i<=ma; i++) afunc[i] = afunc[i-1]*x; } void sinfunc(float x, float afunc[], int /*ma*/) { afunc[1] = cos(x); afunc[2] = sin(x); afunc[3] = 1; } float polval(float x, float a[], int ma); float polval(float x, float a[], int ma) { float r = a[ma]; for (int i=ma-1; i>0; i--) { r = r*x+a[i]; } return r; } #include #ifdef __DECCXX #define SWAP #endif #if defined(Linux) || defined(linux) #define SWAP #endif typedef unsigned int4 uint_4; typedef unsigned short uint_2; static inline void bswap4(void* p) { uint_4 tmp = *(uint_4*)p; *(uint_4*)p = ((tmp >> 24) & 0x000000FF) | ((tmp >> 8) & 0x0000FF00) | ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24); } static inline void bswap2(void* p) { uint_2 tmp = *(uint_2*)p; *(uint_2*)p = ((tmp >> 8) & 0x00FF) | ((tmp & 0x00FF) << 8); } #define azimuthPendul "azimuthPendul" #define anglePendul "anglePendul" #define azimuthAxis "azimuthAxis" #define elvAxis "deltaZenith" #define alphaAxis "alphaZenith" #define deltaAxis "deltaZenith" #define azimuthFPC "azimuthFPC" #define elvFPC "elvFPC" #define alphaFPC "alphaFPC" #define deltaFPC "deltaFPC" #define azimuthBolo "azimuthBolo" #define elvBolo "elvBolo" #define alphaBolo "alphaBolo" #define deltaBolo "deltaBolo" #define azimuthSST "azimuthSST" #define elvSST "elvSST" #define alphaSST "alphaSST" #define deltaSST "deltaSST" StarMatcher::StarMatcher() { possibleTOIs.insert(TOI(azimuthSST, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(elvSST, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(alphaSST, TOI::unspec, "interp", "hours","sstmatch")); possibleTOIs.insert(TOI(deltaSST, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(azimuthAxis, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(elvAxis, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(alphaAxis, TOI::unspec, "interp", "hours","sstmatch")); possibleTOIs.insert(TOI(deltaAxis, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(azimuthPendul, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(anglePendul, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(azimuthFPC, TOI::unspec, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(elvFPC, TOI::unspec, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(alphaFPC, TOI::unspec, "interp", "hours", "sstmatch")); possibleTOIs.insert(TOI(deltaFPC, TOI::unspec, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(azimuthBolo, TOI::all, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(elvBolo, TOI::all, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(alphaBolo, TOI::all, "interp", "hours", "sstmatch")); possibleTOIs.insert(TOI(deltaBolo, TOI::all, "interp", "degrees", "sstmatch")); FILE* f; f = fopen("gsc7.dat","r"); if (!f) throw ArchExc("Error opening gsc7.dat"); int4 n4; fread(&n4, sizeof(int4), 1 , f); #ifdef SWAP bswap4(&n4); #endif nstars = n4; stars = new gscStar[nstars]; char* compdata = new char[10*nstars]; fread(compdata, 10, nstars, f); fclose(f); for (int i=0; i(prod); if (!sprod) { cerr << "StarMatcher : producer for sstStarCount is not a SSTStarFinder" << endl; exit(-1); } lastSeq = 0; sprod->registerProcessor(this); } string StarMatcher::getName() { return("StarMatcher 1.0"); } #ifdef STARDUMP static ofstream starstream("stars.dat"); static ofstream cstarstream("cstars.dat"); static ofstream pendstream("pendul.dat"); #endif void StarMatcher::dataFeed(SSTEtoile const& x) { lastStars.push_back(x); } static long lastCleanSave=0; void nrerror(char * error_text) { throw(string(error_text)); } void StarMatcher::processStars() { if (lastStars.empty()) return; map & m = (*neededTOIs.begin()).second; while (!lastStars.empty()) { SSTEtoile lastStar = lastStars.front(); lastStars.pop_front(); double lat, lon, ts, alpha, delta, az, rspeed; long snstar = (long) lastStar.TEchan; for (map::iterator i = m.begin(); i != m.end(); i++) { TOI const& inToi = (*i).first; TOIProducer* prod = (*i).second; if (inToi.name == "latitude") lat = prod->getValue(snstar, inToi); if (inToi.name == "longitude") lon = prod->getValue(snstar, inToi); if (inToi.name == "tsid") ts = prod->getValue(snstar, inToi); if (inToi.name == "alphaSST") alpha = prod->getValue(snstar, inToi); if (inToi.name == "deltaSST") delta = prod->getValue(snstar, inToi); if (inToi.name == "azimuthSST") az = prod->getValue(snstar, inToi); if (inToi.name == "rotSpeed") rspeed = prod->getValue(snstar, inToi); } // correct azimuth using fractional value of TEchan az -= rspeed * archParam.acq.perEch * (lastStar.TEchan-snstar); // find all stars +- 2 deg boresight double dist = 2; double dmin = delta - dist; if (dmin<-90) dmin=-90; double dmax = delta + dist; if (dmax> 90) dmax= 90; double amin = alpha - dist / cos(delta * 3.1415926/180) / 15.; if (amin<0) amin += 24; double amax = alpha + dist / cos(delta * 3.1415926/180) / 15.; if (amax>24) amax -= 24; int a,b,c; a=0; c=nstars-1; while (a+1= amin && stars[i].ra <= amax) { double ha = (ts/3600. - stars[i].ra) * 15. * 3.1415926/180.; double elv, azim; hadec_aa(lat * 3.1415926/180., ha, stars[i].dec * 3.1415926/180., &elv, &azim); elv *= 180/3.1415926; azim *= 180/3.1415926; if (azim<0) azim += 360; double da = azim-az; if (da>360) da -= 360; if (da < -0.6 || da > 0.4) continue; double elv0 = elv - 1.41/45. * lastStar.NoDiode; if (fabs(elv0-GondolaGeom::elevSST0) > 0.25) continue; // Might be too strong #ifdef STARDUMP starstream << setprecision(10) << lastStar.TEchan << " " << lastStar.NoDiode << " " << alpha << " " << delta << " " << az << " " << stars[i].ra << " " << stars[i].dec << " " << elv << " " << azim << " " << lastStar.InpCurrent << " " << stars[i].mag << "\n"; #endif matchStar s; lastSeq++; s.SN = lastStar.TEchan; s.raGSC = stars[i].ra; s.decGSC = stars[i].dec; s.azGSC = azim; s.elvGSC = elv; s.nDiode = lastStar.NoDiode; s.ok = true; s.seq = lastSeq; s.lon = lon; s.lat = lat; s.ts = ts; matchStars.push_back(s); } } } // new set of matched stars... Clean, and get parameters... // We don't want more than 20 seconds of data if (matchStars.empty()) return; double snEnd = matchStars.back().SN; deque::iterator it; for (it = matchStars.begin(); it!=matchStars.end(); it++) { if ((snEnd - (*it).SN)*archParam.acq.perEch < 20) break; } if (it != matchStars.begin()) { matchStars.erase(matchStars.begin(), it); } // we want to clean on the last 5 seconds of data. int nskip=0; for (it = matchStars.begin(); it!=matchStars.end(); it++) { if ((snEnd - (*it).SN)*archParam.acq.perEch < 7) break; nskip++; } if (matchStars.size()-nskip < 30) return; // pas assez d'etoiles // we remove "bursts" of stars, ie more than 4 stars in the same samplenum long lastSN = 0; deque::iterator lastIt = it; long burstLen = 0; for (deque::iterator it1 = it ; it1!=matchStars.end(); it1++) { matchStar s = (*it1); if ((long) s.SN == lastSN) { burstLen++; continue; } if (burstLen >= 4) { for (deque::iterator it2=lastIt; it2 != it1; it2++) { (*it2).ok=false; } } burstLen = 1; lastIt = it1; lastSN = s.SN; } // we fit the data to a polynomial, with clipping... float* sn = ::vector(1, matchStars.size()); float* elv0 = ::vector(1, matchStars.size()); float* azi = ::vector(1, matchStars.size()); float* sig = ::vector(1, matchStars.size()); float* ae = ::vector(1, 3); float* aa = ::vector(1, 3); int* ia = ivector(1, 3); float** cov = matrix(1, 3, 1, 3); int ndata; long sn0 = matchStars.front().SN; long snmin; long snmax; for (int i=0; i<4; i++) { ndata = 0; snmin = 99999999; snmax = -99999999; for (deque::iterator it1 = it ; it1!=matchStars.end(); it1++) { matchStar s = (*it1); if (!s.ok) continue; double delv, daz; if (i) { delv = polval(s.SN-sn0, ae, 3)-(s.elvGSC - s.nDiode*1.41/45.); daz = polval(s.SN-sn0, aa, 3)- s.azGSC; if (daz>=180) daz -= 360; if (daz<-180) daz += 360; } double dcutelv=0.2; double dcutaz =0.4; if (i>=2) { dcutelv = 0.05; dcutaz = 0.1; } if (i>=3) { dcutelv = 0.02; dcutaz = 0.03; } if (i == 0 || ((fabs(delv)1 && azi[ndata] - azi[ndata-1] > 180) azi[ndata] -= 360; if (ndata>1 && azi[ndata] - azi[ndata-1] < -180) azi[ndata] += 360; sig [ndata] = 0.01; if (s.SN-sn0 > snmax) snmax = s.SN-sn0; if (s.SN-sn0 < snmin) snmin = s.SN-sn0; } if ((fabs(delv)>=dcutelv || fabs(daz)>=dcutaz) && i==3) { (*it1).ok = false; } } if (i==3) break; if (ndata<5) return; // on ne peut rien faire ia[1] = ia[2] = ia[3] = 1; float chi2; try{ lfit(sn, elv0, sig, ndata, ae, ia, 3, cov, &chi2, polfunc); lfit(sn, azi, sig, ndata, aa, ia, 3, cov, &chi2, polfunc); } catch(string s) { return; } } for (deque::iterator it1 = it ; it1!=matchStars.end(); it1++) { if ((*it1).ok && (*it1).seq > lastCleanSave) { lastCleanSave = (*it1).seq; #ifdef STARDUMP cstarstream << (*it1).seq << "\n"; #endif posInfo info; info.SN = (*it1).SN; info.azStar = (*it1).azGSC; info.elvStar = (*it1).elvGSC; info.diodStar= (*it1).nDiode; info.lon = (*it1).lon; info.lat = (*it1).lat; info.ts = (*it1).ts; posInfos[info.SN] = info; } } // On a des etoiles nettoyees, on va trouver amplitude et phase du // signal en elevation, ce qui va nous donner les deux angles d'Euler // de la pendulation (au premier ordre en theta) // Il faut avoir une periode entiere ou pas loin, sinon on ne peut // rien dire simplement.... it = matchStars.end(); it--; if ((((*it).SN) - (*matchStars.begin()).SN)*archParam.acq.perEch < 17) return; long snmid = (((*it).SN) + (*matchStars.begin()).SN)/2; ndata=0; for (deque::iterator it1 = matchStars.begin() ; it1!=matchStars.end(); it1++) { if (!(*it1).ok) continue; ndata++; azi[ndata] = (*it1).azGSC * 3.1415926/180; elv0[ndata] = (*it1).elvGSC - (*it1).nDiode*1.41/45.; sig[ndata] = 0.01; } ia[1] = ia[2] = 1; ia[3] = 0; aa[3] = GondolaGeom::elevSST0;// do not fit elv0 if (ndata<5) return; float chi2; try { lfit(azi, elv0, sig, ndata, aa, ia, 3, cov, &chi2, sinfunc); } catch(string s) { return; } double c = aa[1]; double s = aa[2]; // Get rid of bad fits. The cuts are rather ad hoc //if (aa[3] < 39.64 || aa[3] > 39.68) return; if (chi2/ndata > 4) return; if (cov[1][1] > 0.0001) return; if (cov[2][2] > 0.0001) return; double ampl = sqrt(c*c+s*s); double phase = atan2(c,s)/(3.1415926/180); #ifdef STARDUMP pendstream << snmid << " " << ampl << " " << phase << " " << ndata << " " << chi2/ndata << " " << cov[1][1] << " " << cov[2][2] << '\n'; #endif pendulInfo info; info.SN = snmid; info.azPendul = phase; info.angPendul = ampl; pendulInfos[info.SN] = info; /* double snum = (matchStars.front().SN + matchStars.back().SN)/2-sn0; if (snmin > snum || snmax < snum) return; double elsst = polval(snum, ae, 3); double azsst = polval(snum, aa, 3); if (azsst > 360) azsst -= 360; if (azsst < 0 ) azsst += 360; */ // for (set::iterator i = producedTOIs.begin(); i!=producedTOIs.end(); i++) { // if ((*i).name == "azimuthSST") computedValue((*i), snum+sn0, azsst); // if ((*i).name == "elvSST") computedValue((*i), snum+sn0, elsst); // } free_vector(sn, 1, matchStars.size()); free_vector(elv0, 1, matchStars.size()); free_vector(azi, 1, matchStars.size()); free_vector(sig, 1, matchStars.size()); free_vector(ae, 1, 3); free_vector(aa, 1, 3); free_ivector(ia, 1, matchStars.size()); free_matrix(cov, 1, 3, 1, 3); } int StarMatcher::getPendulInfo(double sampleNum, pendulInfo& info) { map::iterator i = pendulInfos.lower_bound(sampleNum); if (i == pendulInfos.begin() && (*i).second.SN >= sampleNum) return -1; if (i == pendulInfos.end() && (*i).second.SN <= sampleNum) return -1; if ((*i).second.SN > sampleNum) i--; pendulInfo inf1 = (*i).second; i++; pendulInfo inf2 = (*i).second; info.SN = sampleNum; if (inf2.azPendul - inf1.azPendul > 180) inf2.azPendul -= 360; if (inf2.azPendul - inf1.azPendul < -180) inf2.azPendul += 360; info.azPendul = inf1.azPendul + (inf2.azPendul - inf1.azPendul) * (sampleNum - inf1.SN) / (inf2.SN - inf1.SN); if (info.azPendul<0) info.azPendul += 360; if (info.azPendul>360) info.azPendul += 360; info.angPendul = inf1.angPendul + (inf2.angPendul - inf1.angPendul) * (sampleNum - inf1.SN) / (inf2.SN - inf1.SN); return 0; } double StarMatcher::getValue(long sampleNum, TOI const& toi) { processStars(); // 1. Interpoler la valeur de pendulation // 2. Interpoler la position en azimuth avec les etoiles encadrant pendulInfo pendul; int rc = getPendulInfo(sampleNum, pendul); if (rc) return -99999; if (toi.name == azimuthPendul) return pendul.azPendul; if (toi.name == anglePendul) return pendul.angPendul; // find nearest matched star map::iterator i = posInfos.lower_bound(sampleNum); if (i == posInfos.begin() && (*i).second.SN >= sampleNum) return -1; if (i == posInfos.end() && (*i).second.SN <= sampleNum) return -1; if ((*i).second.SN > sampleNum) i--; GondolaGeom geom; geom.setEarthPos((*i).second.lon,(*i).second.lat); geom.setTSid((*i).second.ts); for (map::iterator it=i; it != posInfos.end(); it++) { posInfo s = (*it).second; double delsn = s.SN - sampleNum; if (delsn * archParam.acq.perEch > 1) break; geom.addStar(delsn, s.azStar, s.elvStar, s.diodStar); } if (i != posInfos.begin()) i--; for (map::iterator it=i; it != posInfos.begin(); it--) { posInfo s = (*it).second; double delsn = s.SN - sampleNum; if (-delsn * archParam.acq.perEch > 1) break; geom.addStar(delsn, s.azStar, s.elvStar, s.diodStar); } geom.solveStars(); if (toi.name == azimuthAxis) return geom.getAzimutAxis(); if (toi.name == elvAxis) return geom.getElvAxis(); if (toi.name == alphaAxis) return geom.getAlphaAxis(); if (toi.name == deltaAxis) return geom.getDeltaAxis(); if (toi.name == azimuthSST) return geom.getAzimutSST(); if (toi.name == elvSST) return geom.getElvSST(); if (toi.name == alphaSST) return geom.getAlphaSST(); if (toi.name == deltaSST) return geom.getDeltaSST(); if (toi.name == azimuthFPC) return geom.getAzimutCenter(); if (toi.name == elvFPC) return geom.getElvCenter(); if (toi.name == alphaFPC) return geom.getAlphaCenter(); if (toi.name == deltaFPC) return geom.getDeltaCenter(); if (toi.name == azimuthBolo) return geom.getAzimutBolo(toi.index); if (toi.name == elvBolo) return geom.getElvBolo(toi.index); if (toi.name == alphaBolo) return geom.getAlphaBolo(toi.index); if (toi.name == deltaBolo) return geom.getDeltaBolo(toi.index); return -99999; } bool StarMatcher::canGetValue(long sampleNum, TOI const& /*toi*/) { processStars(); map::iterator i = pendulInfos.begin(); if (i == pendulInfos.end()) return false; if (sampleNum < (*i).second.SN) return false; i = pendulInfos.end(); i--; if (sampleNum > (*i).second.SN) return false; return true; } bool StarMatcher::canGetValueLater(long sampleNum, TOI const& /*toi*/) { processStars(); map::iterator i = pendulInfos.end(); if (i == pendulInfos.begin()) return true; i--; return (sampleNum > (*i).second.SN); } set StarMatcher::reqTOIFor(TOI const&) { set t; t.insert(TOI("latitude", TOI::unspec, "interp")); t.insert(TOI("longitude", TOI::unspec, "interp")); t.insert(TOI("tsid", TOI::unspec)); t.insert(TOI("alphaSST", TOI::unspec, "galcross0")); t.insert(TOI("deltaSST", TOI::unspec, "galcross0")); t.insert(TOI("azimuthSST",TOI::unspec, "galcross0")); t.insert(TOI("elvSST", TOI::unspec, "galcross0")); t.insert(TOI("rotSpeed", TOI::unspec, "galcross0")); return t; } void StarMatcher::propagateLowBound(TOI const& toi, long sampleNum) { map::iterator i = posInfos.begin(); while (i != posInfos.end() && (*i).first < sampleNum) i++; if (i != posInfos.begin()) { i--; posInfos.erase(posInfos.begin(), i); } map::iterator j = pendulInfos.begin(); while (j != pendulInfos.end() && (*j).first < sampleNum) j++; if (j != pendulInfos.begin()) { j--; pendulInfos.erase(pendulInfos.begin(), j); } TOIDerivProducer::propagateLowBound(toi, sampleNum); } // 1. processStars seulement quand au moins 10 etoiles nouvelles // 2. Nettoyer avec fit parabolique sur les 5 dernieres seconde de donnees // 3. Garder periodeRotation secondes de donnees nettoyees // 4. TF ordre 0 sur ces donnees, amplitude et phase -> theta et phi pendulation, // elevationSST = elv-theta Sin[azimut-phi] // azimutSST = azimut+theta Cos[azimut-phi] Tan[elv] (+ OFFSET GALCROSS) // le signal le plus propre est l'elevation -> fit dessus, puis // correction azimut SST a partir seconde equation, sans utiliser azimut galcross