// starmatcher.cc // Eric Aubourg CEA/DAPNIA/SPP novembre 1999 #include "starmatcher.h" #include "sststarfinder.h" #include "toimanager.h" #include "archexc.h" #include "archparam.h" #include "gondolageom.h" #include "polfitclip.h" #define STARDUMP #define TEchan TFin #include extern "C" { #include "aa_hadec.h" #define NRANSI #include "nrutil.h" #ifndef M_PI #define M_PI 3.1415926535 #endif void lfit(double x[], double y[], double sig[], int ndat, double a[], int ia[], int ma, double **covar, double *chisq, void (*funcs)(double, double [], int)); void polfunc(double x, double afunc[], int ma); void sinfunc(double x, double afunc[], int ma); } void polfunc(double x, double afunc[], int ma) { afunc[1] = 1; for (int i=2; i<=ma; i++) afunc[i] = afunc[i-1]*x; } void sinfunc(double x, double afunc[], int /*ma*/) { afunc[1] = cos(x); afunc[2] = sin(x); afunc[3] = 1; } double polval(double x, double a[], int ma); double polval(double x, double a[], int ma) { double r = a[ma]; for (int i=ma-1; i>0; i--) { r = r*x+a[i]; } return r; } #include #ifdef __DECCXX #define SWAP #endif #if defined(Linux) || defined(linux) #define SWAP #endif typedef unsigned int4 uint_4; typedef unsigned short uint_2; static inline void bswap4(void* p) { uint_4 tmp = *(uint_4*)p; *(uint_4*)p = ((tmp >> 24) & 0x000000FF) | ((tmp >> 8) & 0x0000FF00) | ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24); } static inline void bswap2(void* p) { uint_2 tmp = *(uint_2*)p; *(uint_2*)p = ((tmp >> 8) & 0x00FF) | ((tmp & 0x00FF) << 8); } #define azimuthPendul "azimuthPendul" #define anglePendul "anglePendul" #define azimuthAxis "azimuthAxis" #define elvAxis "deltaZenith" #define alphaAxis "alphaZenith" #define deltaAxis "deltaZenith" #define azimuthFPC "azimuthFPC" #define elvFPC "elvFPC" #define alphaFPC "alphaFPC" #define deltaFPC "deltaFPC" #define azimuthBolo "azimuthBolo" #define elvBolo "elvBolo" #define alphaBolo "alphaBolo" #define deltaBolo "deltaBolo" #define azimuthSST "azimuthSST" #define elvSST "elvSST" #define alphaSST "alphaSST" #define deltaSST "deltaSST" StarMatcher::StarMatcher() { possibleTOIs.insert(TOI(azimuthSST, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(elvSST, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(alphaSST, TOI::unspec, "interp", "hours","sstmatch")); possibleTOIs.insert(TOI(deltaSST, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(azimuthAxis, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(elvAxis, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(alphaAxis, TOI::unspec, "interp", "hours","sstmatch")); possibleTOIs.insert(TOI(deltaAxis, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(azimuthPendul, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(anglePendul, TOI::unspec, "interp", "degrees","sstmatch")); possibleTOIs.insert(TOI(azimuthFPC, TOI::unspec, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(elvFPC, TOI::unspec, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(alphaFPC, TOI::unspec, "interp", "hours", "sstmatch")); possibleTOIs.insert(TOI(deltaFPC, TOI::unspec, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(azimuthBolo, TOI::all, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(elvBolo, TOI::all, "interp", "degrees", "sstmatch")); possibleTOIs.insert(TOI(alphaBolo, TOI::all, "interp", "hours", "sstmatch")); possibleTOIs.insert(TOI(deltaBolo, TOI::all, "interp", "degrees", "sstmatch")); FILE* f; f = fopen("gsc7.dat","r"); if (!f) throw ArchExc("Error opening gsc7.dat"); int4 n4; fread(&n4, sizeof(int4), 1 , f); #ifdef SWAP bswap4(&n4); #endif nstars = n4; stars = new gscStar[nstars]; char* compdata = new char[10*nstars]; fread(compdata, 10, nstars, f); fclose(f); for (int i=0; i(prod); if (!sprod) { cerr << "StarMatcher : producer for sstStarCount is not a SSTStarFinder" << endl; exit(-1); } lastSeq = 0; sprod->registerProcessor(this); } string StarMatcher::getName() { return("StarMatcher 1.0"); } #ifdef STARDUMP static ofstream starstream("stars.dat"); static ofstream cstarstream("cstars.dat"); static ofstream pendstream("pendul.dat"); #endif static ofstream logstream("starmatch.log"); void StarMatcher::dataFeed(SSTEtoile const& x) { lastStars.push_back(x); } static long lastCleanSave=0; void nrerror(char * error_text) { throw(string(error_text)); } void StarMatcher::processStars() { if (lastStars.empty()) return; map & m = (*neededTOIs.begin()).second; while (!lastStars.empty()) { SSTEtoile lastStar = lastStars.front(); lastStars.pop_front(); double lat, lon, ts, alpha, delta, az, rspeed; long snstar = (long) lastStar.TEchan; for (map::iterator i = m.begin(); i != m.end(); i++) { TOI const& inToi = (*i).first; TOIProducer* prod = (*i).second; if (inToi.name == "latitude") lat = prod->getValue(snstar, inToi); if (inToi.name == "longitude") lon = prod->getValue(snstar, inToi); if (inToi.name == "tsid") ts = prod->getValue(snstar, inToi); if (inToi.name == "alphaSST") alpha = prod->getValue(snstar, inToi); if (inToi.name == "deltaSST") delta = prod->getValue(snstar, inToi); if (inToi.name == "azimuthSST") az = prod->getValue(snstar, inToi); if (inToi.name == "rotSpeed") rspeed = prod->getValue(snstar, inToi); } // correct azimuth using fractional value of TEchan az -= rspeed * archParam.acq.perEch * (lastStar.TEchan-snstar); // find all stars +- 2 deg boresight double dist = 2; double dmin = delta - dist; if (dmin<-90) dmin=-90; double dmax = delta + dist; if (dmax> 90) dmax= 90; double amin = alpha - dist / cos(delta * M_PI/180) / 15.; if (amin<0) amin += 24; double amax = alpha + dist / cos(delta * M_PI/180) / 15.; if (amax>24) amax -= 24; int a,b,c; a=0; c=nstars-1; while (a+1= amin && stars[i].ra <= amax) { double ha = (ts/3600. - stars[i].ra) * 15. * M_PI/180.; double elv, azim; hadec_aa(lat * M_PI/180., ha, stars[i].dec * M_PI/180., &elv, &azim); elv *= 180/M_PI; azim *= 180/M_PI; if (azim<0) azim += 360; double da = azim-az; if (da>360) da -= 360; // if (da < -0.6 || da > 0.4) continue; // appropriate for TEchan if (da < -0.7 || da > 0.3) continue; // appropriate for TFin double elv0 = elv - GondolaGeom::sstPixelHeight * lastStar.NoDiode; if (fabs(elv0-GondolaGeom::elevSST0) > 0.25) continue; // Might be too strong #ifdef STARDUMP starstream << setprecision(10) << lastStar.TEchan << " " << lastStar.NoDiode << " " << alpha << " " << delta << " " << az << " " << stars[i].ra << " " << stars[i].dec << " " << elv << " " << azim << " " << lastStar.InpCurrent << " " << stars[i].mag << "\n"; #endif matchStar s; lastSeq++; s.SN = lastStar.TEchan; s.raGSC = stars[i].ra; s.decGSC = stars[i].dec; s.azGSC = azim; s.elvGSC = elv; s.nDiode = lastStar.NoDiode; s.ok = true; s.seq = lastSeq; s.lon = lon; s.lat = lat; s.ts = ts; matchStars.push_back(s); } } } // new set of matched stars... Clean, and get parameters... // We don't want more than 30 seconds of data if (matchStars.empty()) return; double snEnd = matchStars.back().SN; deque::iterator it; for (it = matchStars.begin(); it!=matchStars.end(); it++) { if ((snEnd - (*it).SN)*archParam.acq.perEch < 30 || (*it).seq > lastCleanSave) break; } if (it != matchStars.begin()) { it--; } if (it != matchStars.begin()) { matchStars.erase(matchStars.begin(), it); } // we want to clean on the last 5 seconds of data. int nskip=0; for (it = matchStars.begin(); it!=matchStars.end(); it++) { if ((snEnd - (*it).SN)*archParam.acq.perEch < 5) break; nskip++; } if (matchStars.size()-nskip < 30) return; // pas assez d'etoiles // we remove "bursts" of stars, ie more than 4 stars in the same samplenum double lastSN = 0; deque::iterator lastIt = it; long burstLen = 0; for (deque::iterator it1 = it ; it1!=matchStars.end(); it1++) { matchStar s = (*it1); if ((long) s.SN == lastSN) { burstLen++; continue; } if (burstLen >= 4) { for (deque::iterator it2=lastIt; it2 != it1; it2++) { //if ((*it2).ok) // logstream << " kill " << (*it2).seq << " " << setprecision(11) << (*it2).SN << " burst" << '\n'; (*it2).ok=false; } } burstLen = 1; lastIt = it1; lastSN = s.SN; } // we fit the data to a polynomial, with clipping... //double* sn = ::dvector(1, matchStars.size()); double* elv0 = ::dvector(1, matchStars.size()); double* azi = ::dvector(1, matchStars.size()); double* sig = ::dvector(1, matchStars.size()); //double* ae = ::dvector(1, 3); double* aa = ::dvector(1, 3); int* ia = ivector(1, 3); double** cov = matrix(1, 3, 1, 3); int ndata; //long sn0 = matchStars.front().SN; double sn0 = (*it).SN; PolFitClip2 fitElvAz(matchStars.size(), 2); fitElvAz.setClip(0.1,0,2,3); ndata = 0; double oldAz = -1; for (deque::iterator it1 = it ; it1!=matchStars.end(); it1++) { matchStar s1 = (*it1); if (!s1.ok) continue; double az = s1.azGSC; if (ndata > 0 && az - oldAz > 180) az -= 360; if (ndata > 0 && az - oldAz < -180) az += 360; fitElvAz.addData(s1.SN-sn0, s1.elvGSC - s1.nDiode*GondolaGeom::sstPixelHeight, az); oldAz = az; ndata++; } double celv[3], caz[3]; if (fitElvAz.doFit(celv,caz)) return; //if (fitElvAz.doFit()) return; //logstream << "*** Fit sig=" << fitElvAz.getSigmaY() << " " << fitElvAz.getSigmaZ() // << " n =" << fitElvAz.getNData() << " " << fitElvAz.getNDataUsed() // << " SN :" << fitElvAz.getXMin() + sn0 << " - " << fitElvAz.getXMax() + sn0 << '\n'; //logstream << " sn0 = " << sn0 << "; snmin =" << fitElvAz.getXMin() + sn0 << "; snmax =" // << fitElvAz.getXMax() + sn0 << '\n'; //logstream << " fitelv[x_] := " << celv[2] << " x^2 + " << celv[1] << " x + " << celv[0] << '\n'; //logstream << " fitaz[x_] := " << caz[2] << " x^2 + " << caz[1] << " x + " << caz[0] << '\n'; //if (fitElvAz.getSigmaY() > 0.05 || fitElvAz.getSigmaZ() > 0.05) return; if (fitElvAz.getNDataUsed() < 5 || (double)fitElvAz.getNDataUsed()/fitElvAz.getNData() < .5) return; double dcutElv = fitElvAz.getSigmaY()*3; double dcutAz = fitElvAz.getSigmaZ()*3; if (dcutElv < 0.05) dcutElv = 0.05; if (dcutAz < 0.05) dcutAz = 0.05; // don't kill borders of fit.... //if (matchStars.end() - it > 6) // for (deque::iterator it1 = it+3 ; it1!=matchStars.end()-3; it1++) { for (deque::iterator it1 = it ; it1!=matchStars.end(); it1++) { matchStar sss = (*it1); if (!sss.ok) continue; if (fabs(fitElvAz.valueY(sss.SN-sn0)- (sss.elvGSC - sss.nDiode*GondolaGeom::sstPixelHeight)) > dcutElv) { (*it1).ok = false; //logstream << " kill " << sss.seq << " " << setprecision(11) << sss.SN << " " // << fitElvAz.valueY(sss.SN-sn0)-(sss.elvGSC - sss.nDiode*1.41/45.) << '\n'; continue; } double daz = fitElvAz.valueZ(sss.SN-sn0) - sss.azGSC; if (daz>=180) daz -= 360; if (daz<-180) daz += 360; if (fabs(daz) > dcutAz) (*it1).ok = false; if (!(*it1).ok) { //logstream << " kill " << sss.seq << " " << setprecision(11) << sss.SN << " " // << fitElvAz.valueY(sss.SN-sn0)-(sss.elvGSC - sss.nDiode*1.41/45.) << " " // << daz << '\n'; } } bool gotNewStars = false; for (deque::iterator it1 = matchStars.begin() ; it1!=it; it1++) { if ((*it1).ok && (*it1).seq > lastCleanSave) { gotNewStars = true; lastCleanSave = (*it1).seq; #ifdef STARDUMP cstarstream << (*it1).seq << "\n"; #endif posInfo info; info.SN = (*it1).SN; info.azStar = (*it1).azGSC; info.elvStar = (*it1).elvGSC; info.diodStar= (*it1).nDiode; info.lon = (*it1).lon; info.lat = (*it1).lat; info.ts = (*it1).ts; posInfos[info.SN] = info; } } if (!gotNewStars) return; // On a des etoiles nettoyees, on va trouver amplitude et phase du // signal en elevation, ce qui va nous donner les deux angles d'Euler // de la pendulation (au premier ordre en theta) // Il faut avoir une periode entiere ou pas loin, sinon on ne peut // rien dire simplement.... -> we want to run on the last 18 seconds of // data before the last fully cleaned star (it). deque::iterator itstart; for (itstart = matchStars.begin(); itstart != it; itstart++) { if (((*it).SN - (*itstart).SN)*archParam.acq.perEch < 19) break; } if (((*it).SN - (*itstart).SN)*archParam.acq.perEch < 15) return; // it = matchStars.end(); it--; // if (((*it).SN - matchStars.front().SN)*archParam.acq.perEch < 17) return; // $CHECK$ utiliser plutot le SN moyen/median de tous les points effectivement utilises. double snmid = ((*it).SN + (*itstart).SN)/2; ndata=0; double snmean = 0; logstream << "PendFit : " << setprecision(11) << (*itstart).SN << '-' << (*it).SN << " " << setprecision(4) << ((*it).SN - (*itstart).SN)*archParam.acq.perEch << " " ; for (deque::iterator it1 = itstart ; it1!=it; it1++) { matchStar st = *it1; if (!st.ok) continue; ndata++; snmean += st.SN; azi[ndata] = st.azGSC * M_PI/180; elv0[ndata] = st.elvGSC - st.nDiode*GondolaGeom::sstPixelHeight; sig[ndata] = 0.01; } if (ndata) snmean /= ndata; ia[1] = ia[2] = 1; ia[3] = 0; aa[3] = GondolaGeom::elevSST0;// do not fit elv0 if (ndata<5) return; double chi2; try { lfit(azi, elv0, sig, ndata, aa, ia, 3, cov, &chi2, sinfunc); } catch(string st) { return; } double cc = aa[1]; double ss = aa[2]; logstream << setprecision(11) << snmean << setprecision(4) << " cs=" << cc << " " << ss << " chi2r=" << chi2/ndata << " cov " << cov[1][1] << " " << cov[2][2] << '\n'; // Get rid of bad fits. The cuts are rather ad hoc //if (aa[3] < 39.64 || aa[3] > 39.68) return; if (chi2/ndata > 9) return; if (cov[1][1] > 0.0001) return; if (cov[2][2] > 0.0001) return; double ampl = sqrt(cc*cc+ss*ss); double phase = atan2(cc,ss)/(M_PI/180); pendulInfo info; info.SN = snmean; info.azPendul = 180-phase; if (info.azPendul > 360) info.azPendul -= 360; if (info.azPendul < 0) info.azPendul += 360; info.angPendul = ampl; pendulInfos[info.SN] = info; #ifdef STARDUMP pendstream << setprecision(11) << snmean << " " << setprecision(4) << ampl << " " << info.azPendul << " " << ndata << " " << chi2/ndata << " " << cov[1][1] << " " << cov[2][2] << '\n'; #endif /* double snum = (matchStars.front().SN + matchStars.back().SN)/2-sn0; if (snmin > snum || snmax < snum) return; double elsst = polval(snum, ae, 3); double azsst = polval(snum, aa, 3); if (azsst > 360) azsst -= 360; if (azsst < 0 ) azsst += 360; */ // for (set::iterator i = producedTOIs.begin(); i!=producedTOIs.end(); i++) { // if ((*i).name == "azimuthSST") computedValue((*i), snum+sn0, azsst); // if ((*i).name == "elvSST") computedValue((*i), snum+sn0, elsst); // } //free_vector(sn, 1, matchStars.size()); free_vector(elv0, 1, matchStars.size()); free_vector(azi, 1, matchStars.size()); free_vector(sig, 1, matchStars.size()); //free_vector(ae, 1, 3); free_vector(aa, 1, 3); free_ivector(ia, 1, matchStars.size()); free_matrix(cov, 1, 3, 1, 3); } // $CHECK$ do a polynomial fit with several points... int StarMatcher::getPendulInfo(double sampleNum, pendulInfo& info) { static double lastSN = -1; static pendulInfo lastPendul; if (sampleNum == lastSN) { info = lastPendul; return 0; } PolFitClip2 fitPendul(30,2); map::iterator i = pendulInfos.lower_bound(sampleNum); if (i == pendulInfos.begin() && (*i).second.SN >= sampleNum) return -1; if (i == pendulInfos.end()) return -1; map::iterator last = pendulInfos.end(); if (last == pendulInfos.begin()) return -1; last--; if (i == last && (*i).second.SN <= sampleNum) return -1; if ((*i).second.SN > sampleNum) i--; // i just before us... //$CHECK$ reject if too large a gap... if (sampleNum - (*i).second.SN > 1000) return -1; last = i; last++; if ((*last).second.SN - sampleNum > 1000) return -1; int nn=0; double aziprev=0, azicur=0, azi0=0; for (map::iterator ii=i; ii != pendulInfos.begin(); ii--) { pendulInfo inf1 = (*ii).second; if (fabs(inf1.SN - sampleNum) > 1000) continue; aziprev = azicur; azicur = inf1.azPendul; nn++; if (nn==1) azi0 = azicur; if (nn>1 && azicur - aziprev > 180) azicur -= 360; if (nn>1 && azicur - aziprev < -180) azicur += 360; fitPendul.addData(inf1.SN, inf1.angPendul, azicur); if (nn>=5) break; } azicur = azi0; if (i != pendulInfos.end()) i++; for (map::iterator ii=i; ii != pendulInfos.end(); ii++) { pendulInfo inf1 = (*ii).second; if (fabs(inf1.SN - sampleNum) > 1000) continue; aziprev = azicur; azicur = inf1.azPendul; nn++; if (nn>1 && azicur - aziprev > 180) azicur -= 360; if (nn>1 && azicur - aziprev < -180) azicur += 360; fitPendul.addData(inf1.SN, inf1.angPendul, azicur); if (nn>=10) break; } if (fitPendul.doFit()) return -1; info.SN = sampleNum; info.azPendul = fitPendul.valueZ(sampleNum); if (info.azPendul > 360) info.azPendul -= 360; if (info.azPendul < 0) info.azPendul += 360; info.angPendul = fitPendul.valueY(sampleNum); lastSN = sampleNum; lastPendul = info; return 0; } double StarMatcher::getValue(long sampleNum, TOI const& toi) { processStars(); // 1. Interpoler la valeur de pendulation // 2. Interpoler la position en azimuth avec les etoiles encadrant pendulInfo pendul; int rc = getPendulInfo(sampleNum, pendul); if (rc) return -99999; if (toi.name == azimuthPendul) return pendul.azPendul; if (toi.name == anglePendul) return pendul.angPendul; // find nearest matched star map::iterator i = posInfos.lower_bound(sampleNum); if (i == posInfos.begin() && (*i).second.SN >= sampleNum) return -1; if (i == posInfos.end() && (*i).second.SN <= sampleNum) return -1; if ((*i).second.SN > sampleNum) i--; // $CHECK$ if time spent here, can keep a GondolaGeom object for several // samples... GondolaGeom geom; geom.setEarthPos((*i).second.lon,(*i).second.lat); geom.setTSid((*i).second.ts); geom.setPendulation(pendul.azPendul, pendul.angPendul); int ns=0; for (map::iterator it=i; it != posInfos.end(); it++) { posInfo s = (*it).second; double delsn = s.SN - sampleNum; ns++; //if (delsn * archParam.acq.perEch > 1 && ns > 4) break; if (delsn * archParam.acq.perEch > 5) break; geom.addStar(delsn, s.azStar, s.elvStar, s.diodStar); } if (i != posInfos.begin()) i--; ns = 0; for (map::iterator it=i; it != posInfos.begin(); it--) { posInfo s = (*it).second; double delsn = s.SN - sampleNum; ns++; //if (-delsn * archParam.acq.perEch > 1 && ns > 4) break; if (-delsn * archParam.acq.perEch > 5) break; geom.addStar(delsn, s.azStar, s.elvStar, s.diodStar); } if (geom.solveStars()) return -99999; if (toi.name == azimuthAxis) return geom.getAzimutAxis(); if (toi.name == elvAxis) return geom.getElvAxis(); if (toi.name == alphaAxis) return geom.getAlphaAxis(); if (toi.name == deltaAxis) return geom.getDeltaAxis(); if (toi.name == azimuthSST) return geom.getAzimutSST(); if (toi.name == elvSST) return geom.getElvSST(); if (toi.name == alphaSST) return geom.getAlphaSST(); if (toi.name == deltaSST) return geom.getDeltaSST(); if (toi.name == azimuthFPC) return geom.getAzimutCenter(); if (toi.name == elvFPC) return geom.getElvCenter(); if (toi.name == alphaFPC) return geom.getAlphaCenter(); if (toi.name == deltaFPC) return geom.getDeltaCenter(); if (toi.name == azimuthBolo) return geom.getAzimutBolo(toi.index); if (toi.name == elvBolo) return geom.getElvBolo(toi.index); if (toi.name == alphaBolo) return geom.getAlphaBolo(toi.index); if (toi.name == deltaBolo) return geom.getDeltaBolo(toi.index); return -99999; } bool StarMatcher::canGetValue(long sampleNum, TOI const& /*toi*/) { processStars(); map::iterator i = pendulInfos.begin(); if (i == pendulInfos.end()) return false; if (sampleNum < (*i).second.SN) return false; i = pendulInfos.end(); i--; if (sampleNum > (*i).second.SN) return false; return true; } bool StarMatcher::canGetValueLater(long sampleNum, TOI const& /*toi*/) { processStars(); map::iterator i = pendulInfos.end(); if (i == pendulInfos.begin()) return true; i--; return (sampleNum+4000> (*i).second.SN); } set StarMatcher::reqTOIFor(TOI const&) { set t; t.insert(TOI("latitude", TOI::unspec, "interp")); t.insert(TOI("longitude", TOI::unspec, "interp")); t.insert(TOI("tsid", TOI::unspec)); t.insert(TOI("alphaSST", TOI::unspec, "galcross0")); t.insert(TOI("deltaSST", TOI::unspec, "galcross0")); t.insert(TOI("azimuthSST",TOI::unspec, "galcross0")); t.insert(TOI("elvSST", TOI::unspec, "galcross0")); t.insert(TOI("rotSpeed", TOI::unspec, "galcross0")); return t; } void StarMatcher::propagateLowBound(TOI const& toi, long sampleNum) { // we want to keep some past information to interpolate... // keep 1000 sampleNums (easier than a number of posinfos...) sampleNum -= 4000; map::iterator i = posInfos.begin(); while (i != posInfos.end() && (*i).first < sampleNum) i++; if (i != posInfos.begin()) { i--; posInfos.erase(posInfos.begin(), i); } map::iterator j = pendulInfos.begin(); while (j != pendulInfos.end() && (*j).first < sampleNum) j++; if (j != pendulInfos.begin()) { j--; pendulInfos.erase(pendulInfos.begin(), j); } TOIDerivProducer::propagateLowBound(toi, sampleNum); } // 1. processStars seulement quand au moins 10 etoiles nouvelles // 2. Nettoyer avec fit parabolique sur les 5 dernieres seconde de donnees // 3. Garder periodeRotation secondes de donnees nettoyees // 4. TF ordre 0 sur ces donnees, amplitude et phase -> theta et phi pendulation, // elevationSST = elv-theta Sin[azimut-phi] // azimutSST = azimut+theta Cos[azimut-phi] Tan[elv] (+ OFFSET GALCROSS) // le signal le plus propre est l'elevation -> fit dessus, puis // correction azimut SST a partir seconde equation, sans utiliser azimut galcross