1 | // starmatcher.cc
|
---|
2 | // Eric Aubourg CEA/DAPNIA/SPP novembre 1999
|
---|
3 |
|
---|
4 | #include "starmatcher.h"
|
---|
5 | #include "sststarfinder.h"
|
---|
6 | #include "toimanager.h"
|
---|
7 | #include "archexc.h"
|
---|
8 | #include "archparam.h"
|
---|
9 | #include "gondolageom.h"
|
---|
10 |
|
---|
11 | extern "C" {
|
---|
12 | #include "aa_hadec.h"
|
---|
13 | #define NRANSI
|
---|
14 | #include "nrutil.h"
|
---|
15 |
|
---|
16 | void lfit(float x[], float y[], float sig[], int ndat, float a[], int ia[],
|
---|
17 | int ma, float **covar, float *chisq, void (*funcs)(float, float [], int));
|
---|
18 |
|
---|
19 | void polfunc(float x, float afunc[], int ma);
|
---|
20 | void sinfunc(float x, float afunc[], int ma);
|
---|
21 | }
|
---|
22 |
|
---|
23 | void polfunc(float x, float afunc[], int ma) {
|
---|
24 | afunc[1] = 1;
|
---|
25 | for (int i=2; i<=ma; i++)
|
---|
26 | afunc[i] = afunc[i-1]*x;
|
---|
27 | }
|
---|
28 |
|
---|
29 | void sinfunc(float x, float afunc[], int /*ma*/) {
|
---|
30 | afunc[1] = cos(x);
|
---|
31 | afunc[2] = sin(x);
|
---|
32 | afunc[3] = 1;
|
---|
33 | }
|
---|
34 |
|
---|
35 |
|
---|
36 | float polval(float x, float a[], int ma);
|
---|
37 |
|
---|
38 | float polval(float x, float a[], int ma) {
|
---|
39 | float r = a[ma];
|
---|
40 | for (int i=ma-1; i>0; i--) {
|
---|
41 | r = r*x+a[i];
|
---|
42 | }
|
---|
43 | return r;
|
---|
44 | }
|
---|
45 |
|
---|
46 | #include <stdio.h>
|
---|
47 |
|
---|
48 | #ifdef __DECCXX
|
---|
49 | #define SWAP
|
---|
50 | #endif
|
---|
51 | #if defined(Linux) || defined(linux)
|
---|
52 | #define SWAP
|
---|
53 | #endif
|
---|
54 |
|
---|
55 | typedef unsigned int4 uint_4;
|
---|
56 | typedef unsigned short uint_2;
|
---|
57 |
|
---|
58 | static inline void bswap4(void* p)
|
---|
59 | {
|
---|
60 | uint_4 tmp = *(uint_4*)p;
|
---|
61 | *(uint_4*)p = ((tmp >> 24) & 0x000000FF) |
|
---|
62 | ((tmp >> 8) & 0x0000FF00) |
|
---|
63 | ((tmp & 0x0000FF00) << 8) |
|
---|
64 | ((tmp & 0x000000FF) << 24);
|
---|
65 | }
|
---|
66 |
|
---|
67 | static inline void bswap2(void* p)
|
---|
68 | {
|
---|
69 | uint_2 tmp = *(uint_2*)p;
|
---|
70 | *(uint_2*)p = ((tmp >> 8) & 0x00FF) |
|
---|
71 | ((tmp & 0x00FF) << 8);
|
---|
72 | }
|
---|
73 |
|
---|
74 |
|
---|
75 | #define azimuthPendul "azimuthPendul"
|
---|
76 | #define anglePendul "anglePendul"
|
---|
77 | #define azimuthAxis "azimuthAxis"
|
---|
78 | #define elvAxis "deltaZenith"
|
---|
79 | #define alphaAxis "alphaZenith"
|
---|
80 | #define deltaAxis "deltaZenith"
|
---|
81 | #define azimuthFPC "azimuthFPC"
|
---|
82 | #define elvFPC "elvFPC"
|
---|
83 | #define alphaFPC "alphaFPC"
|
---|
84 | #define deltaFPC "deltaFPC"
|
---|
85 | #define azimuthBolo "azimuthBolo"
|
---|
86 | #define elvBolo "elvBolo"
|
---|
87 | #define alphaBolo "alphaBolo"
|
---|
88 | #define deltaBolo "deltaBolo"
|
---|
89 | #define azimuthSST "azimuthSST"
|
---|
90 | #define elvSST "elvSST"
|
---|
91 | #define alphaSST "alphaSST"
|
---|
92 | #define deltaSST "deltaSST"
|
---|
93 |
|
---|
94 |
|
---|
95 | StarMatcher::StarMatcher() {
|
---|
96 | possibleTOIs.insert(TOI(azimuthSST, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
97 | possibleTOIs.insert(TOI(elvSST, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
98 | possibleTOIs.insert(TOI(alphaSST, TOI::unspec, "interp", "hours","sstmatch"));
|
---|
99 | possibleTOIs.insert(TOI(deltaSST, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
100 | possibleTOIs.insert(TOI(azimuthAxis, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
101 | possibleTOIs.insert(TOI(elvAxis, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
102 | possibleTOIs.insert(TOI(alphaAxis, TOI::unspec, "interp", "hours","sstmatch"));
|
---|
103 | possibleTOIs.insert(TOI(deltaAxis, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
104 | possibleTOIs.insert(TOI(azimuthPendul, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
105 | possibleTOIs.insert(TOI(anglePendul, TOI::unspec, "interp", "degrees","sstmatch"));
|
---|
106 | possibleTOIs.insert(TOI(azimuthFPC, TOI::unspec, "interp", "degrees", "sstmatch"));
|
---|
107 | possibleTOIs.insert(TOI(elvFPC, TOI::unspec, "interp", "degrees", "sstmatch"));
|
---|
108 | possibleTOIs.insert(TOI(alphaFPC, TOI::unspec, "interp", "hours", "sstmatch"));
|
---|
109 | possibleTOIs.insert(TOI(deltaFPC, TOI::unspec, "interp", "degrees", "sstmatch"));
|
---|
110 | possibleTOIs.insert(TOI(azimuthBolo, TOI::all, "interp", "degrees", "sstmatch"));
|
---|
111 | possibleTOIs.insert(TOI(elvBolo, TOI::all, "interp", "degrees", "sstmatch"));
|
---|
112 | possibleTOIs.insert(TOI(alphaBolo, TOI::all, "interp", "hours", "sstmatch"));
|
---|
113 | possibleTOIs.insert(TOI(deltaBolo, TOI::all, "interp", "degrees", "sstmatch"));
|
---|
114 |
|
---|
115 | FILE* f;
|
---|
116 |
|
---|
117 | f = fopen("gsc7.dat","r");
|
---|
118 | if (!f) throw ArchExc("Error opening gsc7.dat");
|
---|
119 |
|
---|
120 | int4 n4;
|
---|
121 | fread(&n4, sizeof(int4), 1 , f);
|
---|
122 |
|
---|
123 | #ifdef SWAP
|
---|
124 | bswap4(&n4);
|
---|
125 | #endif
|
---|
126 | nstars = n4;
|
---|
127 |
|
---|
128 | stars = new gscStar[nstars];
|
---|
129 | char* compdata = new char[10*nstars];
|
---|
130 | fread(compdata, 10, nstars, f);
|
---|
131 | fclose(f);
|
---|
132 |
|
---|
133 | for (int i=0; i<nstars; i++) {
|
---|
134 | #ifdef SWAP
|
---|
135 | ((char*)&(stars[i].ra))[0] = compdata[10*i+3];
|
---|
136 | ((char*)&(stars[i].ra))[1] = compdata[10*i+2];
|
---|
137 | ((char*)&(stars[i].ra))[2] = compdata[10*i+1];
|
---|
138 | ((char*)&(stars[i].ra))[3] = compdata[10*i+0];
|
---|
139 | ((char*)&(stars[i].dec))[0] = compdata[10*i+7];
|
---|
140 | ((char*)&(stars[i].dec))[1] = compdata[10*i+6];
|
---|
141 | ((char*)&(stars[i].dec))[2] = compdata[10*i+5];
|
---|
142 | ((char*)&(stars[i].dec))[3] = compdata[10*i+4];
|
---|
143 | ((char*)&(stars[i].mag))[0] = compdata[10*i+9];
|
---|
144 | ((char*)&(stars[i].mag))[1] = compdata[10*i+8];
|
---|
145 | #else
|
---|
146 | ((char*)&(stars[i].ra))[0] = compdata[10*i+0];
|
---|
147 | ((char*)&(stars[i].ra))[1] = compdata[10*i+1];
|
---|
148 | ((char*)&(stars[i].ra))[2] = compdata[10*i+2];
|
---|
149 | ((char*)&(stars[i].ra))[3] = compdata[10*i+3];
|
---|
150 | ((char*)&(stars[i].dec))[0] = compdata[10*i+4];
|
---|
151 | ((char*)&(stars[i].dec))[1] = compdata[10*i+5];
|
---|
152 | ((char*)&(stars[i].dec))[2] = compdata[10*i+6];
|
---|
153 | ((char*)&(stars[i].dec))[3] = compdata[10*i+7];
|
---|
154 | ((char*)&(stars[i].mag))[0] = compdata[10*i+8];
|
---|
155 | ((char*)&(stars[i].mag))[1] = compdata[10*i+9];
|
---|
156 | #endif
|
---|
157 | }
|
---|
158 |
|
---|
159 | delete[] compdata;
|
---|
160 |
|
---|
161 | TOIProducer* prod = TOIManager::findTOIProducer(TOI("sstStarCount"));
|
---|
162 | if (!prod) {
|
---|
163 | cerr << "StarMatcher : cannot find producer for sstStarCount" << endl;
|
---|
164 | exit(-1);
|
---|
165 | }
|
---|
166 |
|
---|
167 | SSTStarFinder* sprod = dynamic_cast<SSTStarFinder*>(prod);
|
---|
168 | if (!sprod) {
|
---|
169 | cerr << "StarMatcher : producer for sstStarCount is not a SSTStarFinder" << endl;
|
---|
170 | exit(-1);
|
---|
171 | }
|
---|
172 |
|
---|
173 | lastSeq = 0;
|
---|
174 |
|
---|
175 | sprod->registerProcessor(this);
|
---|
176 |
|
---|
177 | }
|
---|
178 |
|
---|
179 | string StarMatcher::getName() {
|
---|
180 | return("StarMatcher 1.0");
|
---|
181 | }
|
---|
182 |
|
---|
183 | #ifdef STARDUMP
|
---|
184 | static ofstream starstream("stars.dat");
|
---|
185 | static ofstream cstarstream("cstars.dat");
|
---|
186 | static ofstream pendstream("pendul.dat");
|
---|
187 | #endif
|
---|
188 |
|
---|
189 | void StarMatcher::dataFeed(SSTEtoile const& x) {
|
---|
190 | lastStars.push_back(x);
|
---|
191 | }
|
---|
192 |
|
---|
193 | static long lastCleanSave=0;
|
---|
194 |
|
---|
195 | void nrerror(char * error_text) {
|
---|
196 | throw(string(error_text));
|
---|
197 | }
|
---|
198 |
|
---|
199 |
|
---|
200 | void StarMatcher::processStars() {
|
---|
201 |
|
---|
202 | if (lastStars.empty()) return;
|
---|
203 |
|
---|
204 | map<TOI, TOIProducer*> & m = (*neededTOIs.begin()).second;
|
---|
205 | while (!lastStars.empty()) {
|
---|
206 | SSTEtoile lastStar = lastStars.front();
|
---|
207 | lastStars.pop_front();
|
---|
208 |
|
---|
209 | double lat, lon, ts, alpha, delta, az, rspeed;
|
---|
210 |
|
---|
211 | long snstar = (long) lastStar.TEchan;
|
---|
212 |
|
---|
213 | for (map<TOI, TOIProducer*>::iterator i = m.begin(); i != m.end(); i++) {
|
---|
214 | TOI const& inToi = (*i).first;
|
---|
215 | TOIProducer* prod = (*i).second;
|
---|
216 | if (inToi.name == "latitude") lat = prod->getValue(snstar, inToi);
|
---|
217 | if (inToi.name == "longitude") lon = prod->getValue(snstar, inToi);
|
---|
218 | if (inToi.name == "tsid") ts = prod->getValue(snstar, inToi);
|
---|
219 | if (inToi.name == "alphaSST") alpha = prod->getValue(snstar, inToi);
|
---|
220 | if (inToi.name == "deltaSST") delta = prod->getValue(snstar, inToi);
|
---|
221 | if (inToi.name == "azimuthSST") az = prod->getValue(snstar, inToi);
|
---|
222 | if (inToi.name == "rotSpeed") rspeed = prod->getValue(snstar, inToi);
|
---|
223 | }
|
---|
224 |
|
---|
225 | // correct azimuth using fractional value of TEchan
|
---|
226 |
|
---|
227 | az -= rspeed * archParam.acq.perEch * (lastStar.TEchan-snstar);
|
---|
228 |
|
---|
229 | // find all stars +- 2 deg boresight
|
---|
230 | double dist = 2;
|
---|
231 | double dmin = delta - dist; if (dmin<-90) dmin=-90;
|
---|
232 | double dmax = delta + dist; if (dmax> 90) dmax= 90;
|
---|
233 | double amin = alpha - dist / cos(delta * 3.1415926/180) / 15.;
|
---|
234 | if (amin<0) amin += 24;
|
---|
235 | double amax = alpha + dist / cos(delta * 3.1415926/180) / 15.;
|
---|
236 | if (amax>24) amax -= 24;
|
---|
237 |
|
---|
238 | int a,b,c;
|
---|
239 | a=0; c=nstars-1;
|
---|
240 | while (a+1<c) {
|
---|
241 | b = (a+c)/2;
|
---|
242 | if (stars[b].dec < dmin) a=b; else c=b;
|
---|
243 | }
|
---|
244 | int imin = a;
|
---|
245 | a=0; c=nstars;
|
---|
246 | while (a+1<c) {
|
---|
247 | b = (a+c)/2;
|
---|
248 | if (stars[b].dec < dmax) a=b; else c=b;
|
---|
249 | }
|
---|
250 | int imax = c;
|
---|
251 |
|
---|
252 | for (int i=imin; i<=imax; i++) {
|
---|
253 | if (stars[i].ra >= amin && stars[i].ra <= amax) {
|
---|
254 | double ha = (ts/3600. - stars[i].ra) * 15. * 3.1415926/180.;
|
---|
255 | double elv, azim;
|
---|
256 | hadec_aa(lat * 3.1415926/180., ha, stars[i].dec * 3.1415926/180.,
|
---|
257 | &elv, &azim);
|
---|
258 | elv *= 180/3.1415926;
|
---|
259 | azim *= 180/3.1415926;
|
---|
260 | if (azim<0) azim += 360;
|
---|
261 |
|
---|
262 | double da = azim-az; if (da>360) da -= 360;
|
---|
263 | if (da < -0.6 || da > 0.4) continue;
|
---|
264 | double elv0 = elv - 1.41/45. * lastStar.NoDiode;
|
---|
265 | if (fabs(elv0-GondolaGeom::elevSST0) > 0.25) continue; // Might be too strong
|
---|
266 |
|
---|
267 | #ifdef STARDUMP
|
---|
268 | starstream << setprecision(10) << lastStar.TEchan << " " <<
|
---|
269 | lastStar.NoDiode << " " <<
|
---|
270 | alpha << " " << delta << " " <<
|
---|
271 | az << " " <<
|
---|
272 | stars[i].ra << " " << stars[i].dec << " " <<
|
---|
273 | elv << " " << azim << " " <<
|
---|
274 | lastStar.InpCurrent << " " << stars[i].mag << "\n";
|
---|
275 | #endif
|
---|
276 |
|
---|
277 | matchStar s;
|
---|
278 | lastSeq++;
|
---|
279 | s.SN = lastStar.TEchan;
|
---|
280 | s.raGSC = stars[i].ra;
|
---|
281 | s.decGSC = stars[i].dec;
|
---|
282 | s.azGSC = azim;
|
---|
283 | s.elvGSC = elv;
|
---|
284 | s.nDiode = lastStar.NoDiode;
|
---|
285 | s.ok = true;
|
---|
286 | s.seq = lastSeq;
|
---|
287 | s.lon = lon;
|
---|
288 | s.lat = lat;
|
---|
289 | s.ts = ts;
|
---|
290 |
|
---|
291 | matchStars.push_back(s);
|
---|
292 | }
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | // new set of matched stars... Clean, and get parameters...
|
---|
297 | // We don't want more than 20 seconds of data
|
---|
298 |
|
---|
299 | if (matchStars.empty()) return;
|
---|
300 |
|
---|
301 |
|
---|
302 | double snEnd = matchStars.back().SN;
|
---|
303 | deque<matchStar>::iterator it;
|
---|
304 | for (it = matchStars.begin(); it!=matchStars.end(); it++) {
|
---|
305 | if ((snEnd - (*it).SN)*archParam.acq.perEch < 20)
|
---|
306 | break;
|
---|
307 | }
|
---|
308 | if (it != matchStars.begin()) {
|
---|
309 | matchStars.erase(matchStars.begin(), it);
|
---|
310 | }
|
---|
311 |
|
---|
312 | // we want to clean on the last 5 seconds of data.
|
---|
313 |
|
---|
314 | int nskip=0;
|
---|
315 | for (it = matchStars.begin(); it!=matchStars.end(); it++) {
|
---|
316 | if ((snEnd - (*it).SN)*archParam.acq.perEch < 7)
|
---|
317 | break;
|
---|
318 | nskip++;
|
---|
319 | }
|
---|
320 |
|
---|
321 | if (matchStars.size()-nskip < 30) return; // pas assez d'etoiles
|
---|
322 |
|
---|
323 | // we remove "bursts" of stars, ie more than 4 stars in the same samplenum
|
---|
324 |
|
---|
325 | long lastSN = 0;
|
---|
326 | deque<matchStar>::iterator lastIt = it;
|
---|
327 | long burstLen = 0;
|
---|
328 | for (deque<matchStar>::iterator it1 = it ; it1!=matchStars.end(); it1++) {
|
---|
329 | matchStar s = (*it1);
|
---|
330 | if ((long) s.SN == lastSN) {
|
---|
331 | burstLen++;
|
---|
332 | continue;
|
---|
333 | }
|
---|
334 | if (burstLen >= 4) {
|
---|
335 | for (deque<matchStar>::iterator it2=lastIt; it2 != it1; it2++) {
|
---|
336 | (*it2).ok=false;
|
---|
337 | }
|
---|
338 | }
|
---|
339 | burstLen = 1;
|
---|
340 | lastIt = it1;
|
---|
341 | lastSN = s.SN;
|
---|
342 | }
|
---|
343 | // we fit the data to a polynomial, with clipping...
|
---|
344 |
|
---|
345 | float* sn = ::vector(1, matchStars.size());
|
---|
346 | float* elv0 = ::vector(1, matchStars.size());
|
---|
347 | float* azi = ::vector(1, matchStars.size());
|
---|
348 | float* sig = ::vector(1, matchStars.size());
|
---|
349 | float* ae = ::vector(1, 3);
|
---|
350 | float* aa = ::vector(1, 3);
|
---|
351 | int* ia = ivector(1, 3);
|
---|
352 | float** cov = matrix(1, 3, 1, 3);
|
---|
353 | int ndata;
|
---|
354 |
|
---|
355 | long sn0 = matchStars.front().SN;
|
---|
356 | long snmin;
|
---|
357 | long snmax;
|
---|
358 | for (int i=0; i<4; i++) {
|
---|
359 | ndata = 0;
|
---|
360 | snmin = 99999999;
|
---|
361 | snmax = -99999999;
|
---|
362 | for (deque<matchStar>::iterator it1 = it ; it1!=matchStars.end(); it1++) {
|
---|
363 | matchStar s = (*it1);
|
---|
364 | if (!s.ok) continue;
|
---|
365 | double delv, daz;
|
---|
366 | if (i) {
|
---|
367 | delv = polval(s.SN-sn0, ae, 3)-(s.elvGSC - s.nDiode*1.41/45.);
|
---|
368 | daz = polval(s.SN-sn0, aa, 3)- s.azGSC;
|
---|
369 | if (daz>=180) daz -= 360;
|
---|
370 | if (daz<-180) daz += 360;
|
---|
371 | }
|
---|
372 | double dcutelv=0.2;
|
---|
373 | double dcutaz =0.4;
|
---|
374 | if (i>=2) {
|
---|
375 | dcutelv = 0.05;
|
---|
376 | dcutaz = 0.1;
|
---|
377 | }
|
---|
378 | if (i>=3) {
|
---|
379 | dcutelv = 0.02;
|
---|
380 | dcutaz = 0.03;
|
---|
381 | }
|
---|
382 | if (i == 0 || ((fabs(delv)<dcutelv && fabs(daz)<dcutaz) && i<3)) {
|
---|
383 | ndata++;
|
---|
384 | sn [ndata] = s.SN-sn0;
|
---|
385 | elv0[ndata] = s.elvGSC - s.nDiode*1.41/45.;
|
---|
386 | azi [ndata] = s.azGSC; // $CHECK$ ou ajuster difference avec az galcross ?
|
---|
387 | if (ndata>1 && azi[ndata] - azi[ndata-1] > 180) azi[ndata] -= 360;
|
---|
388 | if (ndata>1 && azi[ndata] - azi[ndata-1] < -180) azi[ndata] += 360;
|
---|
389 | sig [ndata] = 0.01;
|
---|
390 | if (s.SN-sn0 > snmax) snmax = s.SN-sn0;
|
---|
391 | if (s.SN-sn0 < snmin) snmin = s.SN-sn0;
|
---|
392 | }
|
---|
393 | if ((fabs(delv)>=dcutelv || fabs(daz)>=dcutaz) && i==3) {
|
---|
394 | (*it1).ok = false;
|
---|
395 | }
|
---|
396 | }
|
---|
397 | if (i==3) break;
|
---|
398 | if (ndata<5) return; // on ne peut rien faire
|
---|
399 | ia[1] = ia[2] = ia[3] = 1;
|
---|
400 | float chi2;
|
---|
401 | try{
|
---|
402 | lfit(sn, elv0, sig, ndata, ae, ia, 3, cov, &chi2, polfunc);
|
---|
403 | lfit(sn, azi, sig, ndata, aa, ia, 3, cov, &chi2, polfunc);
|
---|
404 | } catch(string s) {
|
---|
405 | return;
|
---|
406 | }
|
---|
407 | }
|
---|
408 |
|
---|
409 | for (deque<matchStar>::iterator it1 = it ; it1!=matchStars.end(); it1++) {
|
---|
410 | if ((*it1).ok && (*it1).seq > lastCleanSave) {
|
---|
411 | lastCleanSave = (*it1).seq;
|
---|
412 | #ifdef STARDUMP
|
---|
413 | cstarstream << (*it1).seq << "\n";
|
---|
414 | #endif
|
---|
415 | posInfo info;
|
---|
416 | info.SN = (*it1).SN;
|
---|
417 | info.azStar = (*it1).azGSC;
|
---|
418 | info.elvStar = (*it1).elvGSC;
|
---|
419 | info.diodStar= (*it1).nDiode;
|
---|
420 | info.lon = (*it1).lon;
|
---|
421 | info.lat = (*it1).lat;
|
---|
422 | info.ts = (*it1).ts;
|
---|
423 | posInfos[info.SN] = info;
|
---|
424 | }
|
---|
425 | }
|
---|
426 |
|
---|
427 | // On a des etoiles nettoyees, on va trouver amplitude et phase du
|
---|
428 | // signal en elevation, ce qui va nous donner les deux angles d'Euler
|
---|
429 | // de la pendulation (au premier ordre en theta)
|
---|
430 |
|
---|
431 | // Il faut avoir une periode entiere ou pas loin, sinon on ne peut
|
---|
432 | // rien dire simplement....
|
---|
433 |
|
---|
434 | it = matchStars.end(); it--;
|
---|
435 | if ((((*it).SN) - (*matchStars.begin()).SN)*archParam.acq.perEch < 17) return;
|
---|
436 |
|
---|
437 | long snmid = (((*it).SN) + (*matchStars.begin()).SN)/2;
|
---|
438 |
|
---|
439 | ndata=0;
|
---|
440 |
|
---|
441 | for (deque<matchStar>::iterator it1 = matchStars.begin() ; it1!=matchStars.end(); it1++) {
|
---|
442 | if (!(*it1).ok) continue;
|
---|
443 | ndata++;
|
---|
444 | azi[ndata] = (*it1).azGSC * 3.1415926/180;
|
---|
445 | elv0[ndata] = (*it1).elvGSC - (*it1).nDiode*1.41/45.;
|
---|
446 | sig[ndata] = 0.01;
|
---|
447 | }
|
---|
448 | ia[1] = ia[2] = 1;
|
---|
449 | ia[3] = 0;
|
---|
450 | aa[3] = GondolaGeom::elevSST0;// do not fit elv0
|
---|
451 |
|
---|
452 | if (ndata<5) return;
|
---|
453 | float chi2;
|
---|
454 | try {
|
---|
455 | lfit(azi, elv0, sig, ndata, aa, ia, 3, cov, &chi2, sinfunc);
|
---|
456 | } catch(string s) {
|
---|
457 | return;
|
---|
458 | }
|
---|
459 |
|
---|
460 | double c = aa[1];
|
---|
461 | double s = aa[2];
|
---|
462 |
|
---|
463 | // Get rid of bad fits. The cuts are rather ad hoc
|
---|
464 |
|
---|
465 | //if (aa[3] < 39.64 || aa[3] > 39.68) return;
|
---|
466 | if (chi2/ndata > 4) return;
|
---|
467 | if (cov[1][1] > 0.0001) return;
|
---|
468 | if (cov[2][2] > 0.0001) return;
|
---|
469 |
|
---|
470 | double ampl = sqrt(c*c+s*s);
|
---|
471 | double phase = atan2(c,s)/(3.1415926/180);
|
---|
472 |
|
---|
473 | #ifdef STARDUMP
|
---|
474 | pendstream << snmid << " " << ampl << " " << phase << " " << ndata << " " << chi2/ndata <<
|
---|
475 | " " << cov[1][1] << " " << cov[2][2] << '\n';
|
---|
476 | #endif
|
---|
477 |
|
---|
478 | pendulInfo info;
|
---|
479 | info.SN = snmid;
|
---|
480 | info.azPendul = phase;
|
---|
481 | info.angPendul = ampl;
|
---|
482 | pendulInfos[info.SN] = info;
|
---|
483 |
|
---|
484 | /*
|
---|
485 | double snum = (matchStars.front().SN + matchStars.back().SN)/2-sn0;
|
---|
486 | if (snmin > snum || snmax < snum) return;
|
---|
487 | double elsst = polval(snum, ae, 3);
|
---|
488 | double azsst = polval(snum, aa, 3);
|
---|
489 |
|
---|
490 | if (azsst > 360) azsst -= 360;
|
---|
491 | if (azsst < 0 ) azsst += 360;
|
---|
492 | */
|
---|
493 |
|
---|
494 | // for (set<TOI>::iterator i = producedTOIs.begin(); i!=producedTOIs.end(); i++) {
|
---|
495 | // if ((*i).name == "azimuthSST") computedValue((*i), snum+sn0, azsst);
|
---|
496 | // if ((*i).name == "elvSST") computedValue((*i), snum+sn0, elsst);
|
---|
497 | // }
|
---|
498 |
|
---|
499 | free_vector(sn, 1, matchStars.size());
|
---|
500 | free_vector(elv0, 1, matchStars.size());
|
---|
501 | free_vector(azi, 1, matchStars.size());
|
---|
502 | free_vector(sig, 1, matchStars.size());
|
---|
503 | free_vector(ae, 1, 3);
|
---|
504 | free_vector(aa, 1, 3);
|
---|
505 | free_ivector(ia, 1, matchStars.size());
|
---|
506 | free_matrix(cov, 1, 3, 1, 3);
|
---|
507 | }
|
---|
508 |
|
---|
509 | int StarMatcher::getPendulInfo(double sampleNum, pendulInfo& info) {
|
---|
510 | map<double, pendulInfo>::iterator i = pendulInfos.lower_bound(sampleNum);
|
---|
511 | if (i == pendulInfos.begin() && (*i).second.SN >= sampleNum) return -1;
|
---|
512 | if (i == pendulInfos.end() && (*i).second.SN <= sampleNum) return -1;
|
---|
513 |
|
---|
514 | if ((*i).second.SN > sampleNum) i--;
|
---|
515 | pendulInfo inf1 = (*i).second;
|
---|
516 | i++;
|
---|
517 | pendulInfo inf2 = (*i).second;
|
---|
518 |
|
---|
519 | info.SN = sampleNum;
|
---|
520 | if (inf2.azPendul - inf1.azPendul > 180) inf2.azPendul -= 360;
|
---|
521 | if (inf2.azPendul - inf1.azPendul < -180) inf2.azPendul += 360;
|
---|
522 | info.azPendul = inf1.azPendul + (inf2.azPendul - inf1.azPendul) * (sampleNum - inf1.SN) / (inf2.SN - inf1.SN);
|
---|
523 | if (info.azPendul<0) info.azPendul += 360;
|
---|
524 | if (info.azPendul>360) info.azPendul += 360;
|
---|
525 | info.angPendul = inf1.angPendul + (inf2.angPendul - inf1.angPendul) * (sampleNum - inf1.SN) / (inf2.SN - inf1.SN);
|
---|
526 | return 0;
|
---|
527 | }
|
---|
528 |
|
---|
529 |
|
---|
530 | double StarMatcher::getValue(long sampleNum, TOI const& toi) {
|
---|
531 | processStars();
|
---|
532 |
|
---|
533 | // 1. Interpoler la valeur de pendulation
|
---|
534 | // 2. Interpoler la position en azimuth avec les etoiles encadrant
|
---|
535 |
|
---|
536 | pendulInfo pendul;
|
---|
537 | int rc = getPendulInfo(sampleNum, pendul);
|
---|
538 | if (rc) return -99999;
|
---|
539 | if (toi.name == azimuthPendul) return pendul.azPendul;
|
---|
540 | if (toi.name == anglePendul) return pendul.angPendul;
|
---|
541 |
|
---|
542 | // find nearest matched star
|
---|
543 | map<double, posInfo>::iterator i = posInfos.lower_bound(sampleNum);
|
---|
544 | if (i == posInfos.begin() && (*i).second.SN >= sampleNum) return -1;
|
---|
545 | if (i == posInfos.end() && (*i).second.SN <= sampleNum) return -1;
|
---|
546 | if ((*i).second.SN > sampleNum) i--;
|
---|
547 |
|
---|
548 | GondolaGeom geom;
|
---|
549 | geom.setEarthPos((*i).second.lon,(*i).second.lat);
|
---|
550 | geom.setTSid((*i).second.ts);
|
---|
551 |
|
---|
552 | for (map<double, posInfo>::iterator it=i; it != posInfos.end(); it++) {
|
---|
553 | posInfo s = (*it).second;
|
---|
554 | double delsn = s.SN - sampleNum;
|
---|
555 | if (delsn * archParam.acq.perEch > 1) break;
|
---|
556 | geom.addStar(delsn, s.azStar, s.elvStar, s.diodStar);
|
---|
557 | }
|
---|
558 |
|
---|
559 | if (i != posInfos.begin()) i--;
|
---|
560 | for (map<double, posInfo>::iterator it=i; it != posInfos.begin(); it--) {
|
---|
561 | posInfo s = (*it).second;
|
---|
562 | double delsn = s.SN - sampleNum;
|
---|
563 | if (-delsn * archParam.acq.perEch > 1) break;
|
---|
564 | geom.addStar(delsn, s.azStar, s.elvStar, s.diodStar);
|
---|
565 | }
|
---|
566 |
|
---|
567 | geom.solveStars();
|
---|
568 |
|
---|
569 | if (toi.name == azimuthAxis) return geom.getAzimutAxis();
|
---|
570 | if (toi.name == elvAxis) return geom.getElvAxis();
|
---|
571 | if (toi.name == alphaAxis) return geom.getAlphaAxis();
|
---|
572 | if (toi.name == deltaAxis) return geom.getDeltaAxis();
|
---|
573 |
|
---|
574 | if (toi.name == azimuthSST) return geom.getAzimutSST();
|
---|
575 | if (toi.name == elvSST) return geom.getElvSST();
|
---|
576 | if (toi.name == alphaSST) return geom.getAlphaSST();
|
---|
577 | if (toi.name == deltaSST) return geom.getDeltaSST();
|
---|
578 |
|
---|
579 | if (toi.name == azimuthFPC) return geom.getAzimutCenter();
|
---|
580 | if (toi.name == elvFPC) return geom.getElvCenter();
|
---|
581 | if (toi.name == alphaFPC) return geom.getAlphaCenter();
|
---|
582 | if (toi.name == deltaFPC) return geom.getDeltaCenter();
|
---|
583 |
|
---|
584 | if (toi.name == azimuthBolo) return geom.getAzimutBolo(toi.index);
|
---|
585 | if (toi.name == elvBolo) return geom.getElvBolo(toi.index);
|
---|
586 | if (toi.name == alphaBolo) return geom.getAlphaBolo(toi.index);
|
---|
587 | if (toi.name == deltaBolo) return geom.getDeltaBolo(toi.index);
|
---|
588 |
|
---|
589 | return -99999;
|
---|
590 | }
|
---|
591 |
|
---|
592 | bool StarMatcher::canGetValue(long sampleNum, TOI const& /*toi*/) {
|
---|
593 | processStars();
|
---|
594 |
|
---|
595 | map<double, pendulInfo>::iterator i = pendulInfos.begin();
|
---|
596 | if (i == pendulInfos.end()) return false;
|
---|
597 | if (sampleNum < (*i).second.SN) return false;
|
---|
598 | i = pendulInfos.end(); i--;
|
---|
599 | if (sampleNum > (*i).second.SN) return false;
|
---|
600 |
|
---|
601 | return true;
|
---|
602 | }
|
---|
603 |
|
---|
604 | bool StarMatcher::canGetValueLater(long sampleNum, TOI const& /*toi*/) {
|
---|
605 | processStars();
|
---|
606 |
|
---|
607 | map<double, pendulInfo>::iterator i = pendulInfos.end();
|
---|
608 | if (i == pendulInfos.begin()) return true;
|
---|
609 | i--;
|
---|
610 | return (sampleNum > (*i).second.SN);
|
---|
611 | }
|
---|
612 |
|
---|
613 |
|
---|
614 |
|
---|
615 | set<TOI> StarMatcher::reqTOIFor(TOI const&) {
|
---|
616 | set<TOI> t;
|
---|
617 | t.insert(TOI("latitude", TOI::unspec, "interp"));
|
---|
618 | t.insert(TOI("longitude", TOI::unspec, "interp"));
|
---|
619 | t.insert(TOI("tsid", TOI::unspec));
|
---|
620 | t.insert(TOI("alphaSST", TOI::unspec, "galcross0"));
|
---|
621 | t.insert(TOI("deltaSST", TOI::unspec, "galcross0"));
|
---|
622 | t.insert(TOI("azimuthSST",TOI::unspec, "galcross0"));
|
---|
623 | t.insert(TOI("elvSST", TOI::unspec, "galcross0"));
|
---|
624 | t.insert(TOI("rotSpeed", TOI::unspec, "galcross0"));
|
---|
625 | return t;
|
---|
626 | }
|
---|
627 |
|
---|
628 | void StarMatcher::propagateLowBound(TOI const& toi, long sampleNum) {
|
---|
629 | map<double, posInfo>::iterator i = posInfos.begin();
|
---|
630 | while (i != posInfos.end() && (*i).first < sampleNum) i++;
|
---|
631 | if (i != posInfos.begin()) {
|
---|
632 | i--;
|
---|
633 | posInfos.erase(posInfos.begin(), i);
|
---|
634 | }
|
---|
635 |
|
---|
636 | map<double, pendulInfo>::iterator j = pendulInfos.begin();
|
---|
637 | while (j != pendulInfos.end() && (*j).first < sampleNum) j++;
|
---|
638 | if (j != pendulInfos.begin()) {
|
---|
639 | j--;
|
---|
640 | pendulInfos.erase(pendulInfos.begin(), j);
|
---|
641 | }
|
---|
642 |
|
---|
643 | TOIDerivProducer::propagateLowBound(toi, sampleNum);
|
---|
644 | }
|
---|
645 |
|
---|
646 |
|
---|
647 | // 1. processStars seulement quand au moins 10 etoiles nouvelles
|
---|
648 | // 2. Nettoyer avec fit parabolique sur les 5 dernieres seconde de donnees
|
---|
649 | // 3. Garder periodeRotation secondes de donnees nettoyees
|
---|
650 | // 4. TF ordre 0 sur ces donnees, amplitude et phase -> theta et phi pendulation,
|
---|
651 | // elevationSST = elv-theta Sin[azimut-phi]
|
---|
652 | // azimutSST = azimut+theta Cos[azimut-phi] Tan[elv] (+ OFFSET GALCROSS)
|
---|
653 | // le signal le plus propre est l'elevation -> fit dessus, puis
|
---|
654 | // correction azimut SST a partir seconde equation, sans utiliser azimut galcross
|
---|
655 |
|
---|
656 |
|
---|