1 |
|
---|
2 | #include "manip.h"
|
---|
3 | #include "archeops.h"
|
---|
4 | #include "arcunit.h"
|
---|
5 |
|
---|
6 | /**************************************************************************************/
|
---|
7 | /* */
|
---|
8 | /* programme contenant les conversions en mesure physique */
|
---|
9 | /* */
|
---|
10 | /* */
|
---|
11 | /* */
|
---|
12 | /**************************************************************************************/
|
---|
13 |
|
---|
14 |
|
---|
15 | /* ---------------- block dilution --------------------------------------------- */
|
---|
16 |
|
---|
17 |
|
---|
18 | int voyant_EVO(block_type_dilution* blk) {return((blk->switch_dil&switch_EVO)?0:1);}
|
---|
19 | int voyant_EVF(block_type_dilution* blk) {return((blk->switch_dil&switch_EVF)?0:1);}
|
---|
20 | int commande_EVO(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVO)?0:1);}
|
---|
21 | int commande_EVF(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVF)?0:1);}
|
---|
22 | int commande_EVB(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVB)?0:1);}
|
---|
23 | int commande_EVV(block_type_dilution* blk) {return((blk->switch_dil&vanne_EVV)?0:1);}
|
---|
24 |
|
---|
25 |
|
---|
26 | // les pressions et debits metres des injections de la dilution
|
---|
27 | double pression_entree_3He(block_type_dilution* blk)
|
---|
28 | {return(40. * val_multiplex(blk->ADC_dil[ p_R3]) -1.6);} // 200 bars pour 5V et 1.6 bar d'offset
|
---|
29 |
|
---|
30 | double debit_3He(block_type_dilution* blk)
|
---|
31 | {return(2. * val_multiplex(blk->ADC_dil[ d_3He]) );} // 10 MICRO MOLES pour 5V
|
---|
32 |
|
---|
33 | double pression_sortie_3He(block_type_dilution* blk)
|
---|
34 | {return(20. * val_multiplex(blk->ADC_dil[ p_C3]) );} // 100 bars pour 5V
|
---|
35 |
|
---|
36 | double pression_entree_4He(block_type_dilution* blk)
|
---|
37 | {return(40. * val_multiplex(blk->ADC_dil[ p_R4])) ;} // 200 bars pour 5V
|
---|
38 |
|
---|
39 | double debit_4He(block_type_dilution* blk)
|
---|
40 | {return(8. * val_multiplex(blk->ADC_dil[ d_4He])) ;} // 40 MICRO MOLES pour 5V
|
---|
41 | // ,4. * val_multiplex(blk->ADC_dil[ d_4He]) // 20 MICRO MOLES pour 5V
|
---|
42 |
|
---|
43 | double pression_sortie_4He(block_type_dilution* blk)
|
---|
44 | {return(20. * val_multiplex(blk->ADC_dil[ p_C4]) );} // 100 bars pour 5V
|
---|
45 |
|
---|
46 |
|
---|
47 |
|
---|
48 | double pression_air_vanne(block_type_dilution* blk)
|
---|
49 | {return(20.*val_multiplex(blk->ADC_dil[ p_air]));}
|
---|
50 |
|
---|
51 | double pression_pompe_charbon(block_type_dilution* blk)
|
---|
52 | {return(20.*val_multiplex(blk->ADC_dil[ p_charb]));}
|
---|
53 |
|
---|
54 |
|
---|
55 | double pression_membranne(block_type_dilution* blk)
|
---|
56 | {return(0.2*val_multiplex(blk->ADC_dil[ p_memb]));}
|
---|
57 |
|
---|
58 |
|
---|
59 | double pression_externe(block_type_dilution* blk)
|
---|
60 | {return(0.2*val_multiplex(blk->ADC_dil[ p_haut]));}
|
---|
61 |
|
---|
62 |
|
---|
63 |
|
---|
64 | double tension_pile_10T(block_type_dilution* blk)
|
---|
65 | {return(2.03*val_multiplex(blk->ADC_dil[ p_10T]));}
|
---|
66 |
|
---|
67 | double tension_pile_p18D(block_type_dilution* blk)
|
---|
68 | {return(3.90*val_multiplex(blk->ADC_dil[ p_p18D]));}
|
---|
69 |
|
---|
70 | double tension_pile_m18D(block_type_dilution* blk)
|
---|
71 | {return(3.90*val_multiplex(blk->ADC_dil[ p_m18D]));}
|
---|
72 |
|
---|
73 | double tension_pile_10B(block_type_dilution* blk)
|
---|
74 | {return(2.03*val_multiplex(blk->ADC_dil[ p_10B]));}
|
---|
75 |
|
---|
76 | double tension_pile_p18B(block_type_dilution* blk)
|
---|
77 | {return(3.90*val_multiplex(blk->ADC_dil[ p_p18B]));}
|
---|
78 |
|
---|
79 | double tension_pile_m18B(block_type_dilution* blk)
|
---|
80 | {return(3.90*val_multiplex(blk->ADC_dil[ p_m18B]));}
|
---|
81 |
|
---|
82 | double tension_pile_Ch(block_type_dilution* blk)
|
---|
83 | {return(3.8*val_multiplex(blk->ADC_dil[ p_Ch]));}
|
---|
84 |
|
---|
85 |
|
---|
86 |
|
---|
87 | int switch_pile_5(block_type_dilution* blk)
|
---|
88 | {return((blk->switch_dil&switch_pile_par_5)?1:0);}
|
---|
89 | int switch_pile_15(block_type_dilution* blk)
|
---|
90 | {return((blk->switch_dil&switch_pile_par_15)?1:0);}
|
---|
91 |
|
---|
92 |
|
---|
93 | double temperature_caisson_haut1(block_type_dilution* blk)
|
---|
94 | {return(val_temperature(blk->ADC_dil[ t_h2]));}
|
---|
95 |
|
---|
96 | double temperature_caisson_haut2(block_type_dilution* blk)
|
---|
97 | {return(val_temperature(blk->ADC_dil[ t_h4]));}
|
---|
98 |
|
---|
99 | double temperature_caisson_bas1(block_type_dilution* blk)
|
---|
100 | {return(val_temperature(blk->ADC_dil[ t_b1]));}
|
---|
101 |
|
---|
102 | double temperature_caisson_bas2(block_type_dilution* blk)
|
---|
103 | {return(val_temperature(blk->ADC_dil[ t_b2]));}
|
---|
104 |
|
---|
105 | double temperature_caisson_tube_helium(block_type_dilution* blk)
|
---|
106 | {return(val_temperature(blk->ADC_dil[ t_b3]));}
|
---|
107 |
|
---|
108 | double temperature_caisson_piles(block_type_dilution* blk)
|
---|
109 | {return(val_temperature(blk->ADC_dil[ t_pile]));}
|
---|
110 |
|
---|
111 | double temperature_caisson_driver_moteur(block_type_dilution* blk)
|
---|
112 | {return(val_temperature(blk->ADC_dil[ t_a1]));}
|
---|
113 |
|
---|
114 | double pression_helium_bain(block_type_dilution* blk)
|
---|
115 | {return( 0.2*val_multiplex(blk->ADC_dil[ RP_He]));}
|
---|
116 |
|
---|
117 | double pression_pirani(block_type_dilution* blk)
|
---|
118 | {return(val_multiplex(blk->ADC_dil[ pirani]));}
|
---|
119 |
|
---|
120 |
|
---|
121 |
|
---|
122 | #define c(j,i) (1e-4*(double)param_pt->nom_coef[param_pt->bolo[j].numero_nom_coef].coef[i])
|
---|
123 |
|
---|
124 | // les temperatures sur les cartes modifiées
|
---|
125 |
|
---|
126 | double resistance_service(param_bolo* param_pt, reglage_bolo* reglage_pt, block_type_dilution* blk, int indice_tempe)
|
---|
127 | {
|
---|
128 | double I,V,R;
|
---|
129 | int j,k;
|
---|
130 | def_gains;
|
---|
131 | k=0;
|
---|
132 |
|
---|
133 | for(j=0;(j<nb_max_bolo) && (k<4);j++)
|
---|
134 | {
|
---|
135 | if(param_pt->bolo[j].bolo_code_util==bolo_thermo_simplifie)
|
---|
136 | {
|
---|
137 | if(k==indice_tempe)
|
---|
138 | {
|
---|
139 | I = 1e-3 * (double)dac_V(reglage_pt->bolo[j]) * 2441. / param_pt->bolo[j].bolo_capa; // I en µA
|
---|
140 | V=0.001*bol_micro_volt(blk->temperature[k],(double)param_pt->bolo[j].bolo_gain*gain_ampli(reglage_pt->bolo[j]));
|
---|
141 | if(I>0.0000001) R=V/I; else R=0; // R en
|
---|
142 | return(R);
|
---|
143 | }
|
---|
144 | k++;
|
---|
145 | }
|
---|
146 | }
|
---|
147 | return(0);
|
---|
148 | }
|
---|
149 |
|
---|
150 |
|
---|
151 |
|
---|
152 | double temperature_service(param_bolo* param_pt, reglage_bolo* reglage_pt, block_type_dilution* blk, int indice_tempe)
|
---|
153 | {
|
---|
154 | double I,V,R,T,llR;
|
---|
155 | int j,k;
|
---|
156 | def_gains;
|
---|
157 | k=0;
|
---|
158 |
|
---|
159 | for(j=0;(j<nb_max_bolo) && (k<4);j++)
|
---|
160 | {
|
---|
161 | if(param_pt->bolo[j].bolo_code_util==bolo_thermo_simplifie)
|
---|
162 | {
|
---|
163 | if(k==indice_tempe)
|
---|
164 | {
|
---|
165 | I = 1e-3 * (double)dac_V(reglage_pt->bolo[j]) * 2441. / param_pt->bolo[j].bolo_capa; // I en µA
|
---|
166 | V=0.001*bol_micro_volt(blk->temperature[k],(double)param_pt->bolo[j].bolo_gain*gain_ampli(reglage_pt->bolo[j]));
|
---|
167 | if(I>0.0000001) R=V/I; else R=0; // R en
|
---|
168 | //------ calcul de l'etalonnage en temperature des cartes temperature simplifiées
|
---|
169 | // j=numero de bebo T[k] = R[k+4] en Kelvin
|
---|
170 | if ((R-c(j,6))>1.)
|
---|
171 | {if((log(R-c(j,6))-c(j,0))>0.001) llR= log(log(R-c(j,6))-c(j,0)) ; else llR=0;
|
---|
172 | // printf("\nk=%d j=%d R=%g c2=%g c3=%g llR=%g",k,j,R[k],c(j,2),c(j,3),llR);
|
---|
173 | }
|
---|
174 | else llR=0;
|
---|
175 | T = exp( c(j,1) + c(j,2)* llR + c(j,3)* llR* llR + c(j,4)* llR* llR* llR + c(j,5)* llR* llR* llR* llR) ;
|
---|
176 | if(T>9999) T=9999;
|
---|
177 | return(T);
|
---|
178 | }
|
---|
179 | k++;
|
---|
180 | }
|
---|
181 | }
|
---|
182 | return(0);
|
---|
183 | }
|
---|
184 |
|
---|
185 | #undef c
|
---|
186 |
|
---|
187 |
|
---|
188 |
|
---|
189 | /********** coefficients pour les mesures bolo **********************************/
|
---|
190 | /* toutes les puissances en pW */
|
---|
191 | /* -1- loi de reponse thermique des bolos avec R en ohms et T en Kelvin */
|
---|
192 | /* */
|
---|
193 | /* T = coef2 * ( ln ( R / coef1) ** ( -1 / coef0 ) */
|
---|
194 | /* */
|
---|
195 | /* -2- fuite thermique du bolo coef 3,4 */
|
---|
196 | /* */
|
---|
197 | /* Ptot = coef3 * ( (10*Tb) ** coef4 - (10*Tcryo) ** coef4 ) */
|
---|
198 | /* */
|
---|
199 | /* -3- calcul empirique de Pciel et de tau coef 5,6 */
|
---|
200 | /* */
|
---|
201 | /* Pciel = coef5 - Pelec coef5= I * Ai (tables xavier) */
|
---|
202 | /* tau = - ln ( 1 + Pciel / coef6 ) coef6= I * Bi (tables xavier) */
|
---|
203 | /* */
|
---|
204 | /* Pour les thermometres 1 à 4 (germanium et carbone Allan-Bradley) */
|
---|
205 | /* les coefficients sont utilisés differemment, ils permettent de convertir */
|
---|
206 | /* R vers T ( c(6) est un offset sur la mesure de R par rapport aux mesures 4 fils)*/
|
---|
207 | /* llR= log(log(R - c(6))-c(0)) */
|
---|
208 | /* T = exp(c(1) + c(2)* llR + c(3)* llR* llR + c(4)* llR* llR* llR + */
|
---|
209 | /* c(5)* llR* llR* llR* llR) */
|
---|
210 | /* */
|
---|
211 | /* version vol Trapani */
|
---|
212 | /* on corrige le biais de temperature coef2=1.1 old, coef3=old/1.1^coef4 */
|
---|
213 | /* */
|
---|
214 | /* */
|
---|
215 | /* */
|
---|
216 | /* */
|
---|
217 | /* */
|
---|
218 | /****************************************************************************************/
|
---|
219 |
|
---|
220 |
|
---|
221 |
|
---|
222 |
|
---|
223 | /* ------------------------------------ corps des fonctions ------------------------------ */
|
---|
224 | /* -------------------------------------------------------------------------------------------- */
|
---|
225 |
|
---|
226 |
|
---|
227 |
|
---|
228 |
|
---|
229 | double DAC_muV (param_bolo* param_pt, reglage_bolo* reglage_pt, int indice_bolo)
|
---|
230 | {
|
---|
231 | double div,car;
|
---|
232 | car= (double)dac_V(reglage_pt->bolo[indice_bolo]) ;
|
---|
233 | div=(double)param_pt->bolo[indice_bolo].bolo_diviseur;
|
---|
234 | if(div) return (car *2441. / div );
|
---|
235 | else return(0);
|
---|
236 | }
|
---|
237 |
|
---|
238 |
|
---|
239 |
|
---|
240 | double DAC_muA (param_bolo* param_pt, reglage_bolo* reglage_pt, int indice_bolo)
|
---|
241 | {
|
---|
242 | double capa,tri;
|
---|
243 | tri= (double)dac_I(reglage_pt->bolo[indice_bolo]) ;
|
---|
244 | capa=((param_pt->bolo[indice_bolo].bolo_bebo==10)?0.000868 * (double)param_pt->bolo[indice_bolo].bolo_capa:0.001 * (double)param_pt->bolo[indice_bolo].bolo_capa);
|
---|
245 | /* capa en pF */
|
---|
246 | return (tri * capa / (4096. * 22. * 20.) );
|
---|
247 | }
|
---|
248 |
|
---|
249 |
|
---|
250 | double bolo_muV (param_bolo* param_pt, reglage_bolo* reglage_pt, int valbrut,int indice_bolo)
|
---|
251 | {
|
---|
252 | double x;
|
---|
253 | int nb_coups;
|
---|
254 | int aa;
|
---|
255 | def_gains
|
---|
256 |
|
---|
257 | nb_coups= reglage_pt->horloge.nb_mesures/2 - reglage_pt->horloge.temp_mort;
|
---|
258 |
|
---|
259 | aa = (nb_coups<<14) + (nb_coups*190) ;
|
---|
260 | x=((double)((valbrut-aa)<<1))/(double)nb_coups;
|
---|
261 | x= bol_micro_volt(x,(double)param_pt->bolo[indice_bolo].bolo_gain*gain_ampli(reglage_pt->bolo[indice_bolo]));
|
---|
262 | return(x);
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 |
|
---|
267 |
|
---|
268 | #define c(i) (1e-4*(double)param_pt->nom_coef[param_pt->bolo[indice_bolo].numero_nom_coef].coef[i])
|
---|
269 |
|
---|
270 | double bolo_temp (param_bolo* param_pt, reglage_bolo* reglage_pt, double R,int indice_bolo)
|
---|
271 | {
|
---|
272 | double a,T;
|
---|
273 | a=1; if( (R>0) && (c(1) >0.01) ) a= log ( R / c(1) );
|
---|
274 | T=0; if( (a>0) && (c(0)>0.01) ) T= c(2) * pow( a , -1 / c(0) );
|
---|
275 | return(T);
|
---|
276 | }
|
---|
277 |
|
---|
278 | #undef c
|
---|
279 |
|
---|
280 |
|
---|
281 |
|
---|
282 |
|
---|
283 | /* ------------------------------------------------------------- */
|
---|
284 |
|
---|
285 |
|
---|
286 | unsigned int4 val_long(char x)
|
---|
287 | {
|
---|
288 | unsigned long a,xl;
|
---|
289 | char aa;
|
---|
290 | aa=x-2;
|
---|
291 | a=aa;
|
---|
292 | if(x<3) xl=x; else xl=((a&1) + 2)<<(a>>1);
|
---|
293 | return(xl);
|
---|
294 | }
|
---|
295 |
|
---|
296 |
|
---|
297 | double val_double(char x)
|
---|
298 | {
|
---|
299 | unsigned long a,xl;
|
---|
300 | if(x<0) x=-x; a=x; if(!a) xl=0; else xl=((a&1) + 2)<<(a>>1);
|
---|
301 | if(x>0) return(1e-4*(double)xl); else return(-1e-4*(double)xl);
|
---|
302 | }
|
---|
303 |
|
---|
304 | int new_val_dac(int a,char code)
|
---|
305 | {
|
---|
306 | if(code&0x80) a=(code&0x7f) <<5 ;
|
---|
307 | else {
|
---|
308 | if(code&0x40) a+=code&0x3f;
|
---|
309 | else a-=code&0x3f;
|
---|
310 | }
|
---|
311 | return(a);
|
---|
312 | }
|
---|
313 |
|
---|