[798] | 1 | // Dominique YVON, CEA/DAPNIA/SPP 02/2000
|
---|
| 2 |
|
---|
| 3 | #include <math.h>
|
---|
| 4 | #include <iostream>
|
---|
| 5 | #include <iostream>
|
---|
| 6 | #include <fstream>
|
---|
| 7 | #ifdef __MWERKS__
|
---|
| 8 | #include "mwerksmath.h"
|
---|
| 9 | #include "unixmac.h"
|
---|
| 10 | #endif
|
---|
| 11 | #include "sigcalctools.h"
|
---|
| 12 | #include "lightdipole.h"
|
---|
| 13 |
|
---|
| 14 | //_______________ ici toutes les frequences sont en Hz ___________________________
|
---|
| 15 |
|
---|
| 16 | static SigCalcTool* pSigToolcur;
|
---|
| 17 |
|
---|
| 18 | double SigCalGLFreqFunc1(double freq) {
|
---|
| 19 | double temp1=(pSigToolcur->pLSrc)->spectre(freq);
|
---|
| 20 | double temp2=(pSigToolcur->pLobe)->spectre(freq);
|
---|
| 21 | double temp3=(pSigToolcur->pFilter)->transmission(freq);
|
---|
| 22 |
|
---|
| 23 | return temp1*temp2*temp3;
|
---|
| 24 | }
|
---|
| 25 |
|
---|
| 26 | double SigCalGLFreqFunc2(double freq)
|
---|
| 27 | {
|
---|
| 28 | // Integration function for GLInteg
|
---|
| 29 | double temp1=
|
---|
| 30 | (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq);
|
---|
| 31 | double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq);
|
---|
| 32 | double temp3=(pSigToolcur->pFilter)->transmission(freq);
|
---|
| 33 | return temp1*temp2*temp3;
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar,
|
---|
| 37 | SpectralResponse* pFilt):pLSrc(pLightSrc),pLobe(pLobeNoPolar),pFilter(pFilt)
|
---|
| 38 | {
|
---|
| 39 | SigCalcToolInit();
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | void SigCalcTool::SigCalcToolInit()
|
---|
| 43 | { emptySignal=false;
|
---|
| 44 | // Compute frequency integration boundaries
|
---|
| 45 | cout<< "Initialisation Calctool"<<endl;
|
---|
| 46 | FreqMin=max(pLobe->minFreq(), pFilter->minFreq());
|
---|
| 47 | FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq());
|
---|
| 48 | if(FreqMax<FreqMin) {
|
---|
| 49 | emptySignal=true;
|
---|
| 50 | cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl;
|
---|
| 51 | cerr<< "check consistency of lobes and Filters"<<endl;
|
---|
| 52 | }
|
---|
| 53 | // Computation Options
|
---|
| 54 | if(pLSrc->IsMappedPowerSrc())
|
---|
| 55 | { if(!pLobe->IsFreqSep())
|
---|
| 56 | { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl;
|
---|
| 57 | cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl;
|
---|
| 58 | cerr<<" Program exited"<<endl;
|
---|
| 59 | exit(-1.);
|
---|
| 60 | }
|
---|
| 61 | Option=IsLightMapPowerInband;
|
---|
| 62 | pIntegrale= new GLInteg();
|
---|
| 63 | // Pour eviter un plantage dans ~SigCalcTool
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) {
|
---|
| 67 | Option=AllSeparable;
|
---|
| 68 | pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz.
|
---|
| 69 | pSigToolcur=this;
|
---|
| 70 | pIntegrale->NStep(200); // Integration tres srieuse
|
---|
| 71 | IntegSpectOverFreq=pIntegrale->Value();
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | else
|
---|
| 75 | { Option=NonSeparable;
|
---|
| 76 | pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax);
|
---|
| 77 | pIntegrale->NStep(10); // Pour aller plus vite. Serieux si le filtre est "compact"
|
---|
| 78 | }
|
---|
| 79 | // Computation Resolution
|
---|
| 80 | RAngComp=pLSrc->LSrcResol(); // On integre sur la resolution de la carte
|
---|
| 81 | if(RAngComp==0.)
|
---|
| 82 | { RAngComp=pLobe->lobeResol();
|
---|
| 83 | if(RAngComp==0.)
|
---|
| 84 | { cerr<<" Bizarre un lobe de resolution nulle?"<<endl;
|
---|
| 85 | RAngComp= 5.e-4; // Radians
|
---|
| 86 | // On prend la resolution nominale de Planck
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 | if(RAngComp<pLobe->lobeResol())
|
---|
| 90 | { cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl;
|
---|
| 91 | cerr<<" Not healthy: Ckeck consistency"<<endl;
|
---|
| 92 | }
|
---|
| 93 | cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl;
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | double SigCalcTool::compPixel(double theta,double phi) {
|
---|
| 97 | UnitVector VP(theta,phi);
|
---|
| 98 | UnitVector VYbidon=VP.VperpPhi();
|
---|
| 99 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
| 100 | return compPixel(VP,VYbidon);
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){
|
---|
| 104 | double returnRes=0.;
|
---|
| 105 | VPointe=VP;
|
---|
| 106 | VY=VdirectY;
|
---|
| 107 | VX=VY^VP;
|
---|
| 108 | if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere
|
---|
| 109 | return returnRes;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 |
|
---|
| 113 | double SigCalcTool::calcPowerDens() const{
|
---|
| 114 | // Compute the power integrated on frequency dependance, (Lobe and LightSource)
|
---|
| 115 | pSigToolcur=(SigCalcTool*) this;
|
---|
| 116 | double returnRes;
|
---|
| 117 | double poidlobe;
|
---|
| 118 | double Puiss;
|
---|
| 119 | switch (Option)
|
---|
| 120 | {
|
---|
| 121 | case AllSeparable:
|
---|
| 122 | {
|
---|
| 123 | poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY); // ss dimensions
|
---|
| 124 | /*
|
---|
| 125 | if (poidlobe>.1)
|
---|
| 126 | { cout<<poidlobe<<endl;
|
---|
| 127 | }
|
---|
| 128 | */
|
---|
| 129 |
|
---|
| 130 | Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
|
---|
| 131 | // W m-2 st-1 Hz-1
|
---|
| 132 | returnRes=Puiss * poidlobe * IntegSpectOverFreq; // W / m2 / st
|
---|
| 133 | return returnRes;
|
---|
| 134 | }
|
---|
| 135 | case IsLightMapPowerInband:
|
---|
| 136 | {
|
---|
| 137 | // cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl;
|
---|
| 138 | poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);
|
---|
| 139 | Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
|
---|
| 140 | returnRes=Puiss * poidlobe;
|
---|
| 141 | return returnRes;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | default:
|
---|
| 145 | { // Cas NonSeparable
|
---|
| 146 | // Integration over at coordinates
|
---|
| 147 | returnRes=pIntegrale->Value();
|
---|
| 148 | return returnRes;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 |
|
---|
| 155 | #define NBStepCircleMin (12)
|
---|
| 156 |
|
---|
| 157 | double SigCalcTool::powerInteg() {
|
---|
| 158 | // compute power on detector
|
---|
| 159 |
|
---|
| 160 | double powerInteg=0.;
|
---|
| 161 | // Sum of the incominig power on detector.
|
---|
| 162 | UnitVector VPoin;
|
---|
| 163 | // VPointe Boresigth du telescope microonde
|
---|
| 164 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
|
---|
| 165 | // VCur, vecteur courant du calcul.
|
---|
| 166 | // double thetaCur, phiCur; // Coordinates of VCur
|
---|
| 167 | // Units is radian
|
---|
| 168 |
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | //------Initialisation of Lobe integration------------------------------------------
|
---|
| 172 | double angShift=0.; // Angular distance from VPoin
|
---|
| 173 | double angShiftLimit; // On calcule jusqu'a angShiftLimit de VPoin
|
---|
| 174 |
|
---|
| 175 | if(pLSrc->IsQPtSrc())
|
---|
| 176 | { double ang1=pLSrc->getAngSize()+pLobe->AngleMax();
|
---|
| 177 | VPoin=pLobe->VecShift(VPointe, VY);
|
---|
| 178 | if (ang1>=M_PI) { } //rien
|
---|
| 179 | else
|
---|
| 180 | { double cosinus=VPoin*pLSrc->GetVSrcCenter();
|
---|
| 181 | if (cosinus<cos(ang1)) return 0.;
|
---|
| 182 | //C'est le cas ou la source est trop loin de la direction pointe
|
---|
| 183 | }
|
---|
| 184 | // Maintenant on intgre
|
---|
| 185 | angShiftLimit=ang1;
|
---|
| 186 | }
|
---|
| 187 | else
|
---|
| 188 | {
|
---|
| 189 | VPoin=pLobe->VecShift(VPointe, VY);
|
---|
| 190 | angShiftLimit=pLobe->AngleMax();
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | // On va tourner autour de VPoin
|
---|
| 194 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
| 195 | UnitVector VPerp;
|
---|
| 196 | VPerp=VPoin.VperpPhi();
|
---|
| 197 |
|
---|
| 198 | double dAngShift=AngResComp(0.)*1.1;
|
---|
| 199 | // AngleSteps are not necessarily constant.
|
---|
| 200 | // factor 1.1 to raise ambiguities in nearby pixel integration
|
---|
| 201 | double lastAngShiftMax;
|
---|
| 202 | // Needed to compute accurately solid angle values
|
---|
| 203 |
|
---|
| 204 | VCur=VPoin;
|
---|
| 205 |
|
---|
| 206 | powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.);
|
---|
| 207 | lastAngShiftMax= dAngShift/2.;
|
---|
| 208 |
|
---|
| 209 | long NbPasOneCircle;
|
---|
| 210 | long CircleNumber=0; // no du cercle en cour:
|
---|
| 211 | // Gestion des dcalages pour un echantillonnage en quinconce
|
---|
| 212 | double solidAngStepCircle;
|
---|
| 213 | float stepAngCircle;
|
---|
| 214 |
|
---|
| 215 | ///---------- Lobe integration-----------------------------------------
|
---|
| 216 | // generate vectors around VPoin at angular distance angShift.
|
---|
| 217 | // Compute power flux from foreground in this direction
|
---|
| 218 | // Weigth with weigth function and solid angle
|
---|
| 219 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
| 220 |
|
---|
| 221 | while((lastAngShiftMax+dAngShift)<angShiftLimit){
|
---|
| 222 | CircleNumber++;
|
---|
| 223 | angShift=lastAngShiftMax+dAngShift/2.;
|
---|
| 224 |
|
---|
| 225 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
| 226 |
|
---|
| 227 | // Compute number of step and associates on a circle
|
---|
| 228 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
|
---|
| 229 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
| 230 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
| 231 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
|
---|
| 232 | // MRotAround=RotVec(VPoin,stepAngCircle);
|
---|
| 233 |
|
---|
| 234 | //----------- integrate on a circle -------------------
|
---|
| 235 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
|
---|
| 236 | // Pour un echantillonnage en quinconce
|
---|
| 237 |
|
---|
| 238 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
| 239 | {
|
---|
| 240 | //cout<< "rotation numb: "<< i<<endl;
|
---|
| 241 | powerInteg+=calcPowerDens()*solidAngStepCircle;
|
---|
| 242 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
| 243 | } // end of circle
|
---|
| 244 |
|
---|
| 245 | lastAngShiftMax+=dAngShift;
|
---|
| 246 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | // On s'occupe des effets de bord: un dernier tour!
|
---|
| 250 | // On change le code pour eviter les instabilites dues a dAngShift tres petit
|
---|
| 251 | CircleNumber++;
|
---|
| 252 | angShift=(angShiftLimit+lastAngShiftMax)/2.;
|
---|
| 253 |
|
---|
| 254 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
| 255 | // Compute number of step and associates on a circle
|
---|
| 256 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
|
---|
| 257 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
| 258 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
| 259 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
|
---|
| 260 |
|
---|
| 261 | //----------- integrate on last circle -------------------
|
---|
| 262 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
| 263 | {
|
---|
| 264 | powerInteg+=calcPowerDens()*solidAngStepCircle;
|
---|
| 265 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
| 266 | }
|
---|
| 267 | //end of last circle
|
---|
| 268 |
|
---|
| 269 | //end of integration
|
---|
| 270 |
|
---|
| 271 | // cout<<"On a termine un point, OUFF"<< endl;
|
---|
| 272 | return powerInteg;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | double SigCalcTool::NormKelvinRayleighJeans()
|
---|
| 276 | {
|
---|
| 277 | double tempeCNoir=10000.;
|
---|
| 278 | // Kelvin
|
---|
| 279 | double CutFreq=1.380662e-23*tempeCNoir/6.626176e-34/5.;
|
---|
| 280 | if(FreqMax>1.380662e-23*tempeCNoir/6.626176e-34/5.)
|
---|
| 281 | { cerr<< "RaleighJeans approximation is not valid for this frequency"<<endl;
|
---|
| 282 | cerr<< "Frequency: "<< FreqMax<<" in SigCalcTool::NormRayleighJeans"<<endl;
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | LightBlackBody CorpsNoir(tempeCNoir, RAngComp);
|
---|
| 286 | SigCalcTool ToolRJ(&CorpsNoir,pLobe,pFilter);
|
---|
| 287 | double puissNorm = ToolRJ.compPixel(M_PI/2.,M_PI); // Un pixel au hasard
|
---|
| 288 | return tempeCNoir/puissNorm; // Kelvin RaleighJeans/(Watt/m2)
|
---|
| 289 |
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | double SigCalcTool::NormKelvinCMB()
|
---|
| 293 | {
|
---|
| 294 | double deltatempeCNoir=1.; // Kelvin
|
---|
| 295 | LightNormTCMB DeltaCorpsNoir(deltatempeCNoir, RAngComp);
|
---|
| 296 | SigCalcTool ToolDeltaCMB(&DeltaCorpsNoir,pLobe,pFilter);
|
---|
| 297 | double puissNorm = ToolDeltaCMB.compPixel(M_PI/2.,M_PI); // Un pixel au hasard
|
---|
| 298 | return deltatempeCNoir/puissNorm; // KelvinCMB/(Watt/m2)
|
---|
| 299 |
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | /*
|
---|
| 303 | double SigCalcTool::CalcInBandPower(double theta, double phi)
|
---|
| 304 | {
|
---|
| 305 | double returnRes=0.;
|
---|
| 306 | UnitVector VP(theta,phi);
|
---|
| 307 | UnitVector VYbidon=VP.VperpPhi();
|
---|
| 308 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
| 309 | VCur=VP;
|
---|
| 310 | VPointe=VP;
|
---|
| 311 | VY=VYbidon;
|
---|
| 312 | VX=VY^VP;
|
---|
| 313 | if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence
|
---|
| 314 | return returnRes;
|
---|
| 315 | }
|
---|
| 316 | */
|
---|
| 317 |
|
---|
| 318 | double SigCalcTool::AngResComp(double angle) const
|
---|
| 319 | {
|
---|
| 320 | double AngRes;
|
---|
| 321 | if(pLSrc->IsQPtSrc()) AngRes=RAngComp;
|
---|
| 322 | else AngRes=RAngComp*pLobe->ResolutionCurve(angle);
|
---|
| 323 | return AngRes;
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 |
|
---|
| 327 |
|
---|
| 328 | double SigCalcTool::max(double a, double b) const{
|
---|
| 329 | if(a>b) return a;
|
---|
| 330 | else return b;
|
---|
| 331 | }
|
---|
| 332 |
|
---|
| 333 | double SigCalcTool::min(double a, double b) const{
|
---|
| 334 | if(a<b) return a;
|
---|
| 335 | else return b;
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | double SigCalcTool::CalcLobeSize(double frequency)
|
---|
| 339 | {
|
---|
| 340 | // Compute lobe extension in steradians
|
---|
| 341 |
|
---|
| 342 | if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.;
|
---|
| 343 |
|
---|
| 344 | double SizeInteg=0.;
|
---|
| 345 | // Sum of the incominig power on detector.
|
---|
| 346 | UnitVector VPoin;
|
---|
| 347 | // VPointe Boresigth du telescope microonde
|
---|
| 348 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
|
---|
| 349 | // VCur, vecteur courant du calcul.
|
---|
| 350 |
|
---|
| 351 | //------Initialisation of Lobe integration------------------------------------------
|
---|
| 352 | double angShift=0.; // Angular distance from VPoin
|
---|
| 353 | double angShiftLimit=pLobe->AngleMax(); // On calcule jusqu'a angShiftLimit de VPoin
|
---|
| 354 |
|
---|
| 355 |
|
---|
| 356 | // On va tourner autour de VPoin
|
---|
| 357 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
| 358 | UnitVector VPerp;
|
---|
| 359 | VPerp=VPoin.VperpPhi();
|
---|
| 360 |
|
---|
| 361 | double dAngShift=AngResComp(0.)*1.1;
|
---|
| 362 | // AngleSteps are not necessarily constant.
|
---|
| 363 | // factor 1.1 to raise ambiguities in nearby pixel integration.
|
---|
| 364 | double lastAngShiftMax;
|
---|
| 365 | // Needed to compute accurately solid angle values
|
---|
| 366 | UnitVector VCur;
|
---|
| 367 | VCur=VPoin;
|
---|
| 368 |
|
---|
| 369 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
| 370 | lastAngShiftMax= dAngShift/2.;
|
---|
| 371 |
|
---|
| 372 | long NbPasOneCircle;
|
---|
| 373 | long CircleNumber=0; // no du cercle en cour:
|
---|
| 374 | // Gestion des dcalages pour un echantillonnage en quinconce
|
---|
| 375 | double solidAngStepCircle;
|
---|
| 376 | float stepAngCircle;
|
---|
| 377 |
|
---|
| 378 | ///---------- Lobe integration-----------------------------------------
|
---|
| 379 | // generate vectors around VPoin at angular distance angShift.
|
---|
| 380 | // Compute power flux from foreground in this direction
|
---|
| 381 | // Weigth with weigth function and solid angle
|
---|
| 382 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
| 383 |
|
---|
| 384 | while((lastAngShiftMax+dAngShift)<angShiftLimit)
|
---|
| 385 | {
|
---|
| 386 | CircleNumber++;
|
---|
| 387 | angShift=lastAngShiftMax+dAngShift/2.;
|
---|
| 388 |
|
---|
| 389 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
| 390 |
|
---|
| 391 | // Compute number of step and associates on a circle
|
---|
| 392 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
|
---|
| 393 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
| 394 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
| 395 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
|
---|
| 396 |
|
---|
| 397 | //----------- integrate on a circle -------------------
|
---|
| 398 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
|
---|
| 399 | // Pour un echantillonnage en quinconce
|
---|
| 400 |
|
---|
| 401 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
| 402 | {
|
---|
| 403 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
| 404 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
| 405 | } // end of circle
|
---|
| 406 |
|
---|
| 407 | lastAngShiftMax+=dAngShift;
|
---|
| 408 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | // On s'occupe des effets de bord: un dernier tour!
|
---|
| 412 | // On change le code pour eviter les instabilites dues a dAngShift tres petit
|
---|
| 413 | CircleNumber++;
|
---|
| 414 | angShift=(angShiftLimit+lastAngShiftMax)/2.;
|
---|
| 415 |
|
---|
| 416 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
| 417 | // Compute number of step and associates on a circle
|
---|
| 418 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
|
---|
| 419 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
| 420 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
| 421 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
|
---|
| 422 |
|
---|
| 423 | //----------- integrate on last circle -------------------
|
---|
| 424 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
| 425 | {
|
---|
| 426 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
| 427 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
| 428 | }
|
---|
| 429 | //end of last circle
|
---|
| 430 |
|
---|
| 431 | //end of integration
|
---|
| 432 |
|
---|
| 433 | return SizeInteg;
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | double SigCalcTool::diffSolidAng(double ang1,double ang2) const
|
---|
| 437 | { double returnVal; // Steradians
|
---|
| 438 | if(!pLSrc->IsPtSourceS()) returnVal= fabs(2*M_PI*(cos(ang1)-cos(ang2)));
|
---|
| 439 | // Cas d'une source tendue.
|
---|
| 440 | else returnVal= 1.;
|
---|
| 441 | // Cas d'une source ponctuelle. Sont flux est exprime en W/m2/Hz
|
---|
| 442 | // Pas d'angle solide.
|
---|
| 443 | return returnVal;
|
---|
| 444 |
|
---|
| 445 | }
|
---|
| 446 |
|
---|
| 447 | // should be included as a class member, would template member function
|
---|
| 448 | // work on all compilers
|
---|
| 449 |
|
---|
| 450 | static AbsLobeNoPolar* AddInBandPowerpLobe;
|
---|
| 451 | static AbsLightSource* AddInBandPowerpLSrc;
|
---|
| 452 | static SpectralResponse* AddInBandPowerpFilter;
|
---|
| 453 | static double AIBtheta;
|
---|
| 454 | static double AIBphi;
|
---|
| 455 |
|
---|
| 456 | static double AddInBandPowerFreqFunc1(double freq)
|
---|
| 457 | { // Integration function for GLInteg
|
---|
| 458 | double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq);
|
---|
| 459 | double temp2= AddInBandPowerpLobe->spectre(freq);
|
---|
| 460 | double temp3= AddInBandPowerpFilter->transmission(freq);
|
---|
| 461 | return temp1*temp2*temp3;
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool)
|
---|
| 465 | { // No spatial integration on the lobe
|
---|
| 466 | // Valid if lobe is separable in frequency
|
---|
| 467 | // Test
|
---|
| 468 | AddInBandPowerpLobe=Tool.getpLobe();
|
---|
| 469 | AddInBandPowerpLSrc=Tool.getpLSrc();
|
---|
| 470 | AddInBandPowerpFilter=Tool.getpFilter();
|
---|
| 471 | if(!AddInBandPowerpLobe->IsFreqSep())
|
---|
| 472 | { cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl;
|
---|
| 473 | cerr<<" No power added, addInBandPower skipped"<<endl;
|
---|
| 474 | return;
|
---|
| 475 | }
|
---|
| 476 |
|
---|
| 477 | long PixelNumber= Map.NbPixels();
|
---|
| 478 | double out;
|
---|
| 479 | T temp;
|
---|
| 480 | if(Tool.getOption()==AllSeparable)
|
---|
| 481 | { // Fast !
|
---|
| 482 | double FreqIntFactor=Tool.getIntegSpectOverFreq();
|
---|
| 483 | for(long k=0; k<PixelNumber; k++)
|
---|
| 484 | { Map.PixThetaPhi(k,AIBtheta,AIBphi);
|
---|
| 485 | out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor;
|
---|
| 486 | // Lobe weigth do no enters here
|
---|
| 487 | temp= (T) out;
|
---|
| 488 | Map(k)+= temp;
|
---|
| 489 | // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl;
|
---|
| 490 | }
|
---|
| 491 |
|
---|
| 492 | }
|
---|
| 493 | else
|
---|
| 494 | {
|
---|
| 495 | if(AddInBandPowerpLSrc->IsFreqSep())
|
---|
| 496 | { double FreqMax=Tool.getFreqMax();
|
---|
| 497 | double FreqMin=Tool.getFreqMin();
|
---|
| 498 | double out;
|
---|
| 499 | GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax);
|
---|
| 500 | Integrale.NStep(10); // Serieux!
|
---|
| 501 | for(long k=0; k<PixelNumber; k++)
|
---|
| 502 | {
|
---|
| 503 | Map.PixThetaPhi(k,AIBtheta,AIBphi);
|
---|
| 504 | // Lobe weigth do no enters here
|
---|
| 505 | out=Integrale.Value();
|
---|
| 506 | // Lobe weigth do no enters here
|
---|
| 507 | temp= (T) out;
|
---|
| 508 | Map(k)+= temp;
|
---|
| 509 | }
|
---|
| 510 | }
|
---|
| 511 | }
|
---|
| 512 | return;
|
---|
| 513 | }
|
---|
| 514 |
|
---|
| 515 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool);
|
---|
| 516 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool);
|
---|