| [801] | 1 | // Dominique YVON, CEA/DAPNIA/SPP 02/2000 | 
|---|
|  | 2 |  | 
|---|
|  | 3 | #include <math.h> | 
|---|
|  | 4 | #include <iostream> | 
|---|
|  | 5 | #include <iostream> | 
|---|
|  | 6 | #include <fstream> | 
|---|
|  | 7 | #ifdef __MWERKS__ | 
|---|
|  | 8 | #include "mwerksmath.h" | 
|---|
|  | 9 | #include "unixmac.h" | 
|---|
|  | 10 | #endif | 
|---|
|  | 11 | #include "sigcalctools.h" | 
|---|
|  | 12 | #include "lightdipole.h" | 
|---|
|  | 13 |  | 
|---|
|  | 14 | //_______________ ici toutes les frequences sont en Hz ___________________________ | 
|---|
|  | 15 |  | 
|---|
|  | 16 | static SigCalcTool* pSigToolcur; | 
|---|
|  | 17 |  | 
|---|
|  | 18 | double SigCalGLFreqFunc1(double freq) { | 
|---|
|  | 19 | double temp1=(pSigToolcur->pLSrc)->spectre(freq); | 
|---|
|  | 20 | double temp2=(pSigToolcur->pLobe)->spectre(freq); | 
|---|
|  | 21 | double temp3=(pSigToolcur->pFilter)->transmission(freq); | 
|---|
|  | 22 |  | 
|---|
|  | 23 | return  temp1*temp2*temp3; | 
|---|
|  | 24 | } | 
|---|
|  | 25 |  | 
|---|
|  | 26 | double SigCalGLFreqFunc2(double freq) | 
|---|
|  | 27 | { | 
|---|
|  | 28 | // Integration function for GLInteg | 
|---|
|  | 29 | double temp1= | 
|---|
|  | 30 | (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq); | 
|---|
|  | 31 | double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq); | 
|---|
|  | 32 | double temp3=(pSigToolcur->pFilter)->transmission(freq); | 
|---|
|  | 33 | return temp1*temp2*temp3; | 
|---|
|  | 34 | } | 
|---|
|  | 35 |  | 
|---|
|  | 36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar, | 
|---|
|  | 37 | SpectralResponse* pFilt):pLSrc(pLightSrc),pLobe(pLobeNoPolar),pFilter(pFilt) | 
|---|
|  | 38 | { | 
|---|
|  | 39 | SigCalcToolInit(); | 
|---|
|  | 40 | } | 
|---|
|  | 41 |  | 
|---|
|  | 42 | void SigCalcTool::SigCalcToolInit() | 
|---|
|  | 43 | {       emptySignal=false; | 
|---|
|  | 44 | // Compute frequency integration boundaries | 
|---|
|  | 45 | cout<< "Initialisation Calctool"<<endl; | 
|---|
|  | 46 | FreqMin=max(pLobe->minFreq(), pFilter->minFreq()); | 
|---|
|  | 47 | FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq()); | 
|---|
|  | 48 | if(FreqMax<FreqMin) { | 
|---|
|  | 49 | emptySignal=true; | 
|---|
|  | 50 | cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl; | 
|---|
|  | 51 | cerr<< "check consistency of lobes and Filters"<<endl; | 
|---|
|  | 52 | } | 
|---|
|  | 53 | // Computation Options | 
|---|
|  | 54 | if(pLSrc->IsMappedPowerSrc()) | 
|---|
|  | 55 | {  if(!pLobe->IsFreqSep()) | 
|---|
|  | 56 | { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl; | 
|---|
|  | 57 | cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl; | 
|---|
|  | 58 | cerr<<" Program exited"<<endl; | 
|---|
|  | 59 | exit(-1.); | 
|---|
|  | 60 | } | 
|---|
|  | 61 | Option=IsLightMapPowerInband; | 
|---|
|  | 62 | pIntegrale= new GLInteg(); | 
|---|
|  | 63 | // Pour eviter un plantage dans ~SigCalcTool | 
|---|
|  | 64 | } | 
|---|
|  | 65 |  | 
|---|
|  | 66 | else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) { | 
|---|
|  | 67 | Option=AllSeparable; | 
|---|
|  | 68 | pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz. | 
|---|
|  | 69 | pSigToolcur=this; | 
|---|
|  | 70 | pIntegrale->NStep(200);                 // Integration tres srieuse | 
|---|
|  | 71 | IntegSpectOverFreq=pIntegrale->Value(); | 
|---|
|  | 72 | } | 
|---|
|  | 73 |  | 
|---|
|  | 74 | else | 
|---|
|  | 75 | {       Option=NonSeparable; | 
|---|
|  | 76 | pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax); | 
|---|
|  | 77 | pIntegrale->NStep(10);                // Pour aller plus vite. Serieux si le filtre est "compact" | 
|---|
|  | 78 | } | 
|---|
|  | 79 | // Computation Resolution | 
|---|
|  | 80 | RAngComp=pLSrc->LSrcResol();      // On integre sur la resolution de la carte | 
|---|
|  | 81 | if(RAngComp==0.) | 
|---|
|  | 82 | {       RAngComp=pLobe->lobeResol(); | 
|---|
|  | 83 | if(RAngComp==0.) | 
|---|
|  | 84 | {       cerr<<" Bizarre un lobe de resolution nulle?"<<endl; | 
|---|
|  | 85 | RAngComp= 5.e-4;        // Radians | 
|---|
|  | 86 | // On prend la resolution nominale de Planck | 
|---|
|  | 87 | } | 
|---|
|  | 88 | } | 
|---|
|  | 89 | if(RAngComp<pLobe->lobeResol()) | 
|---|
|  | 90 | {       cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl; | 
|---|
|  | 91 | cerr<<" Not healthy: Ckeck consistency"<<endl; | 
|---|
|  | 92 | } | 
|---|
|  | 93 | cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl; | 
|---|
|  | 94 | } | 
|---|
|  | 95 |  | 
|---|
|  | 96 | double SigCalcTool::compPixel(double theta,double phi) { | 
|---|
|  | 97 | UnitVector VP(theta,phi); | 
|---|
|  | 98 | UnitVector VYbidon=VP.VperpPhi(); | 
|---|
|  | 99 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
|  | 100 | return compPixel(VP,VYbidon); | 
|---|
|  | 101 | } | 
|---|
|  | 102 |  | 
|---|
|  | 103 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){ | 
|---|
|  | 104 | double returnRes=0.; | 
|---|
|  | 105 | VPointe=VP; | 
|---|
|  | 106 | VY=VdirectY; | 
|---|
|  | 107 | VX=VY^VP; | 
|---|
|  | 108 | if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere | 
|---|
|  | 109 | return returnRes; | 
|---|
|  | 110 | } | 
|---|
|  | 111 |  | 
|---|
|  | 112 |  | 
|---|
|  | 113 | double SigCalcTool::calcPowerDens() const{ | 
|---|
|  | 114 | // Compute the power integrated on frequency dependance, (Lobe and LightSource) | 
|---|
|  | 115 | pSigToolcur=(SigCalcTool*) this; | 
|---|
|  | 116 | double returnRes; | 
|---|
|  | 117 | double poidlobe; | 
|---|
|  | 118 | double Puiss; | 
|---|
|  | 119 | switch (Option) | 
|---|
|  | 120 | { | 
|---|
|  | 121 | case AllSeparable: | 
|---|
|  | 122 | { | 
|---|
|  | 123 | poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);  // ss dimensions | 
|---|
|  | 124 | /* | 
|---|
|  | 125 | if (poidlobe>.1) | 
|---|
|  | 126 | { cout<<poidlobe<<endl; | 
|---|
|  | 127 | } | 
|---|
|  | 128 | */ | 
|---|
|  | 129 |  | 
|---|
|  | 130 | Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi()); | 
|---|
|  | 131 | // W m-2 st-1 Hz-1 | 
|---|
|  | 132 | returnRes=Puiss * poidlobe * IntegSpectOverFreq;      // W / m2 / st | 
|---|
|  | 133 | return returnRes; | 
|---|
|  | 134 | } | 
|---|
|  | 135 | case IsLightMapPowerInband: | 
|---|
|  | 136 | { | 
|---|
|  | 137 | //     cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl; | 
|---|
|  | 138 | poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY); | 
|---|
|  | 139 | Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi()); | 
|---|
|  | 140 | returnRes=Puiss * poidlobe; | 
|---|
|  | 141 | return returnRes; | 
|---|
|  | 142 | } | 
|---|
|  | 143 |  | 
|---|
|  | 144 | default: | 
|---|
|  | 145 | {  // Cas NonSeparable | 
|---|
|  | 146 | // Integration over at coordinates | 
|---|
|  | 147 | returnRes=pIntegrale->Value(); | 
|---|
|  | 148 | return returnRes; | 
|---|
|  | 149 | } | 
|---|
|  | 150 |  | 
|---|
|  | 151 | } | 
|---|
|  | 152 | } | 
|---|
|  | 153 |  | 
|---|
|  | 154 |  | 
|---|
|  | 155 | #define NBStepCircleMin (12) | 
|---|
|  | 156 |  | 
|---|
|  | 157 | double SigCalcTool::powerInteg() { | 
|---|
|  | 158 | // compute power on detector | 
|---|
|  | 159 |  | 
|---|
|  | 160 | double powerInteg=0.; | 
|---|
|  | 161 | // Sum of the incominig power on detector. | 
|---|
|  | 162 | UnitVector VPoin; | 
|---|
|  | 163 | // VPointe Boresigth du telescope microonde | 
|---|
|  | 164 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule | 
|---|
|  | 165 | // VCur, vecteur courant du calcul. | 
|---|
|  | 166 | //  double thetaCur, phiCur;    // Coordinates of VCur | 
|---|
|  | 167 | // Units is radian | 
|---|
|  | 168 |  | 
|---|
|  | 169 |  | 
|---|
|  | 170 |  | 
|---|
|  | 171 | //------Initialisation of Lobe integration------------------------------------------ | 
|---|
|  | 172 | double angShift=0.;       // Angular distance from VPoin | 
|---|
|  | 173 | double angShiftLimit;         // On calcule jusqu'a angShiftLimit de VPoin | 
|---|
|  | 174 |  | 
|---|
|  | 175 | if(pLSrc->IsQPtSrc()) | 
|---|
|  | 176 | {      double ang1=pLSrc->getAngSize()+pLobe->AngleMax(); | 
|---|
|  | 177 | VPoin=pLobe->VecShift(VPointe, VY); | 
|---|
|  | 178 | if (ang1>=M_PI) { } //rien | 
|---|
|  | 179 | else | 
|---|
|  | 180 | {  double cosinus=VPoin*pLSrc->GetVSrcCenter(); | 
|---|
|  | 181 | if (cosinus<cos(ang1)) return 0.; | 
|---|
|  | 182 | //C'est le cas ou la source est trop loin de la direction pointe | 
|---|
|  | 183 | } | 
|---|
|  | 184 | // Maintenant on intgre | 
|---|
|  | 185 | angShiftLimit=ang1; | 
|---|
|  | 186 | } | 
|---|
|  | 187 | else | 
|---|
|  | 188 | { | 
|---|
|  | 189 | VPoin=pLobe->VecShift(VPointe, VY); | 
|---|
|  | 190 | angShiftLimit=pLobe->AngleMax(); | 
|---|
|  | 191 | } | 
|---|
|  | 192 |  | 
|---|
|  | 193 | // On va tourner autour de VPoin | 
|---|
|  | 194 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
|  | 195 | UnitVector VPerp; | 
|---|
|  | 196 | VPerp=VPoin.VperpPhi(); | 
|---|
|  | 197 |  | 
|---|
|  | 198 | double dAngShift=AngResComp(0.)*1.1; | 
|---|
|  | 199 | // AngleSteps are not necessarily constant. | 
|---|
|  | 200 | // factor 1.1 to raise ambiguities in nearby pixel integration | 
|---|
|  | 201 | double lastAngShiftMax; | 
|---|
|  | 202 | // Needed to compute accurately solid angle values | 
|---|
|  | 203 |  | 
|---|
|  | 204 | VCur=VPoin; | 
|---|
|  | 205 |  | 
|---|
|  | 206 | powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.); | 
|---|
|  | 207 | lastAngShiftMax= dAngShift/2.; | 
|---|
|  | 208 |  | 
|---|
|  | 209 | long NbPasOneCircle; | 
|---|
|  | 210 | long CircleNumber=0;   // no du cercle en cour: | 
|---|
|  | 211 | // Gestion des dcalages pour un echantillonnage en quinconce | 
|---|
|  | 212 | double solidAngStepCircle; | 
|---|
|  | 213 | float stepAngCircle; | 
|---|
|  | 214 |  | 
|---|
|  | 215 | ///---------- Lobe integration----------------------------------------- | 
|---|
|  | 216 | // generate vectors around VPoin at angular distance angShift. | 
|---|
|  | 217 | // Compute power flux from foreground in this direction | 
|---|
|  | 218 | // Weigth  with weigth function and solid angle | 
|---|
|  | 219 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
|  | 220 |  | 
|---|
|  | 221 | while((lastAngShiftMax+dAngShift)<angShiftLimit){ | 
|---|
|  | 222 | CircleNumber++; | 
|---|
|  | 223 | angShift=lastAngShiftMax+dAngShift/2.; | 
|---|
|  | 224 |  | 
|---|
|  | 225 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
|  | 226 |  | 
|---|
|  | 227 | // Compute number of step and associates on a circle | 
|---|
|  | 228 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift)); | 
|---|
|  | 229 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
|  | 230 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
|  | 231 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle; | 
|---|
|  | 232 | // MRotAround=RotVec(VPoin,stepAngCircle); | 
|---|
|  | 233 |  | 
|---|
|  | 234 | //----------- integrate on a circle ------------------- | 
|---|
|  | 235 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.); | 
|---|
|  | 236 | // Pour un echantillonnage en quinconce | 
|---|
|  | 237 |  | 
|---|
|  | 238 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
|  | 239 | { | 
|---|
|  | 240 | //cout<< "rotation numb: "<< i<<endl; | 
|---|
|  | 241 | powerInteg+=calcPowerDens()*solidAngStepCircle; | 
|---|
|  | 242 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
|  | 243 | }   // end of circle | 
|---|
|  | 244 |  | 
|---|
|  | 245 | lastAngShiftMax+=dAngShift; | 
|---|
|  | 246 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
|  | 247 | } | 
|---|
|  | 248 |  | 
|---|
|  | 249 | // On s'occupe des effets de bord: un dernier tour! | 
|---|
|  | 250 | // On change le code pour eviter les instabilites dues a dAngShift tres petit | 
|---|
|  | 251 | CircleNumber++; | 
|---|
|  | 252 | angShift=(angShiftLimit+lastAngShiftMax)/2.; | 
|---|
|  | 253 |  | 
|---|
|  | 254 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
|  | 255 | // Compute number of step and associates on a circle | 
|---|
|  | 256 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift)); | 
|---|
|  | 257 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
|  | 258 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
|  | 259 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle; | 
|---|
|  | 260 |  | 
|---|
|  | 261 | //----------- integrate on last circle ------------------- | 
|---|
|  | 262 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
|  | 263 | { | 
|---|
|  | 264 | powerInteg+=calcPowerDens()*solidAngStepCircle; | 
|---|
|  | 265 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
|  | 266 | } | 
|---|
|  | 267 | //end of last circle | 
|---|
|  | 268 |  | 
|---|
|  | 269 | //end of integration | 
|---|
|  | 270 |  | 
|---|
|  | 271 | // cout<<"On a termine un point, OUFF"<< endl; | 
|---|
|  | 272 | return powerInteg; | 
|---|
|  | 273 | } | 
|---|
|  | 274 |  | 
|---|
|  | 275 | double SigCalcTool::NormKelvinRayleighJeans() | 
|---|
|  | 276 | { | 
|---|
|  | 277 | double tempeCNoir=10000.; | 
|---|
|  | 278 | // Kelvin | 
|---|
|  | 279 | double CutFreq=1.380662e-23*tempeCNoir/6.626176e-34/5.; | 
|---|
|  | 280 | if(FreqMax>1.380662e-23*tempeCNoir/6.626176e-34/5.) | 
|---|
|  | 281 | {       cerr<< "RaleighJeans approximation is not valid for this frequency"<<endl; | 
|---|
|  | 282 | cerr<< "Frequency: "<< FreqMax<<" in SigCalcTool::NormRayleighJeans"<<endl; | 
|---|
|  | 283 | } | 
|---|
|  | 284 |  | 
|---|
|  | 285 | LightBlackBody CorpsNoir(tempeCNoir, RAngComp); | 
|---|
|  | 286 | SigCalcTool ToolRJ(&CorpsNoir,pLobe,pFilter); | 
|---|
|  | 287 | double puissNorm = ToolRJ.compPixel(M_PI/2.,M_PI);      // Un pixel au hasard | 
|---|
|  | 288 | return tempeCNoir/puissNorm;                            // Kelvin RaleighJeans/(Watt/m2) | 
|---|
|  | 289 |  | 
|---|
|  | 290 | } | 
|---|
|  | 291 |  | 
|---|
|  | 292 | double SigCalcTool::NormKelvinCMB() | 
|---|
|  | 293 | { | 
|---|
|  | 294 | double deltatempeCNoir=1.;                                      // Kelvin | 
|---|
|  | 295 | LightNormTCMB DeltaCorpsNoir(deltatempeCNoir, RAngComp); | 
|---|
|  | 296 | SigCalcTool ToolDeltaCMB(&DeltaCorpsNoir,pLobe,pFilter); | 
|---|
|  | 297 | double puissNorm = ToolDeltaCMB.compPixel(M_PI/2.,M_PI);        // Un pixel au hasard | 
|---|
|  | 298 | return deltatempeCNoir/puissNorm;                       // KelvinCMB/(Watt/m2) | 
|---|
|  | 299 |  | 
|---|
|  | 300 | } | 
|---|
|  | 301 |  | 
|---|
|  | 302 | /* | 
|---|
|  | 303 | double SigCalcTool::CalcInBandPower(double theta, double phi) | 
|---|
|  | 304 | { | 
|---|
|  | 305 | double returnRes=0.; | 
|---|
|  | 306 | UnitVector VP(theta,phi); | 
|---|
|  | 307 | UnitVector VYbidon=VP.VperpPhi(); | 
|---|
|  | 308 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
|  | 309 | VCur=VP; | 
|---|
|  | 310 | VPointe=VP; | 
|---|
|  | 311 | VY=VYbidon; | 
|---|
|  | 312 | VX=VY^VP; | 
|---|
|  | 313 | if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence | 
|---|
|  | 314 | return returnRes; | 
|---|
|  | 315 | } | 
|---|
|  | 316 | */ | 
|---|
|  | 317 |  | 
|---|
|  | 318 | double SigCalcTool::AngResComp(double angle) const | 
|---|
|  | 319 | { | 
|---|
|  | 320 | double AngRes; | 
|---|
|  | 321 | if(pLSrc->IsQPtSrc()) AngRes=RAngComp; | 
|---|
|  | 322 | else AngRes=RAngComp*pLobe->ResolutionCurve(angle); | 
|---|
|  | 323 | return AngRes; | 
|---|
|  | 324 | } | 
|---|
|  | 325 |  | 
|---|
|  | 326 |  | 
|---|
|  | 327 |  | 
|---|
|  | 328 | double SigCalcTool::max(double a, double b) const{ | 
|---|
|  | 329 | if(a>b) return a; | 
|---|
|  | 330 | else return b; | 
|---|
|  | 331 | } | 
|---|
|  | 332 |  | 
|---|
|  | 333 | double SigCalcTool::min(double a, double b) const{ | 
|---|
|  | 334 | if(a<b) return a; | 
|---|
|  | 335 | else return b; | 
|---|
|  | 336 | } | 
|---|
|  | 337 |  | 
|---|
|  | 338 | double SigCalcTool::CalcLobeSize(double frequency) | 
|---|
|  | 339 | { | 
|---|
|  | 340 | // Compute lobe extension in steradians | 
|---|
|  | 341 |  | 
|---|
|  | 342 | if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.; | 
|---|
|  | 343 |  | 
|---|
|  | 344 | double SizeInteg=0.; | 
|---|
|  | 345 | // Sum of the incominig power on detector. | 
|---|
|  | 346 | UnitVector VPoin; | 
|---|
|  | 347 | // VPointe Boresigth du telescope microonde | 
|---|
|  | 348 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule | 
|---|
|  | 349 | // VCur, vecteur courant du calcul. | 
|---|
|  | 350 |  | 
|---|
|  | 351 | //------Initialisation of Lobe integration------------------------------------------ | 
|---|
|  | 352 | double angShift=0.;                           // Angular distance from VPoin | 
|---|
|  | 353 | double angShiftLimit=pLobe->AngleMax();               // On calcule jusqu'a angShiftLimit de VPoin | 
|---|
|  | 354 |  | 
|---|
|  | 355 |  | 
|---|
|  | 356 | // On va tourner autour de VPoin | 
|---|
|  | 357 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
|  | 358 | UnitVector VPerp; | 
|---|
|  | 359 | VPerp=VPoin.VperpPhi(); | 
|---|
|  | 360 |  | 
|---|
|  | 361 | double dAngShift=AngResComp(0.)*1.1; | 
|---|
|  | 362 | // AngleSteps are not necessarily constant. | 
|---|
|  | 363 | // factor 1.1 to raise ambiguities in nearby pixel integration. | 
|---|
|  | 364 | double lastAngShiftMax; | 
|---|
|  | 365 | // Needed to compute accurately solid angle values | 
|---|
|  | 366 | UnitVector VCur; | 
|---|
|  | 367 | VCur=VPoin; | 
|---|
|  | 368 |  | 
|---|
|  | 369 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
|  | 370 | lastAngShiftMax= dAngShift/2.; | 
|---|
|  | 371 |  | 
|---|
|  | 372 | long NbPasOneCircle; | 
|---|
|  | 373 | long CircleNumber=0;   // no du cercle en cour: | 
|---|
|  | 374 | // Gestion des dcalages pour un echantillonnage en quinconce | 
|---|
|  | 375 | double solidAngStepCircle; | 
|---|
|  | 376 | float stepAngCircle; | 
|---|
|  | 377 |  | 
|---|
|  | 378 | ///---------- Lobe integration----------------------------------------- | 
|---|
|  | 379 | // generate vectors around VPoin at angular distance angShift. | 
|---|
|  | 380 | // Compute power flux from foreground in this direction | 
|---|
|  | 381 | // Weigth  with weigth function and solid angle | 
|---|
|  | 382 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
|  | 383 |  | 
|---|
|  | 384 | while((lastAngShiftMax+dAngShift)<angShiftLimit) | 
|---|
|  | 385 | { | 
|---|
|  | 386 | CircleNumber++; | 
|---|
|  | 387 | angShift=lastAngShiftMax+dAngShift/2.; | 
|---|
|  | 388 |  | 
|---|
|  | 389 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
|  | 390 |  | 
|---|
|  | 391 | // Compute number of step and associates on a circle | 
|---|
|  | 392 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift)); | 
|---|
|  | 393 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
|  | 394 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
|  | 395 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle; | 
|---|
|  | 396 |  | 
|---|
|  | 397 | //----------- integrate on a circle ------------------- | 
|---|
|  | 398 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.); | 
|---|
|  | 399 | // Pour un echantillonnage en quinconce | 
|---|
|  | 400 |  | 
|---|
|  | 401 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
|  | 402 | { | 
|---|
|  | 403 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
|  | 404 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
|  | 405 | }   // end of circle | 
|---|
|  | 406 |  | 
|---|
|  | 407 | lastAngShiftMax+=dAngShift; | 
|---|
|  | 408 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
|  | 409 | } | 
|---|
|  | 410 |  | 
|---|
|  | 411 | // On s'occupe des effets de bord: un dernier tour! | 
|---|
|  | 412 | // On change le code pour eviter les instabilites dues a dAngShift tres petit | 
|---|
|  | 413 | CircleNumber++; | 
|---|
|  | 414 | angShift=(angShiftLimit+lastAngShiftMax)/2.; | 
|---|
|  | 415 |  | 
|---|
|  | 416 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
|  | 417 | // Compute number of step and associates on a circle | 
|---|
|  | 418 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift)); | 
|---|
|  | 419 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
|  | 420 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
|  | 421 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle; | 
|---|
|  | 422 |  | 
|---|
|  | 423 | //----------- integrate on last circle ------------------- | 
|---|
|  | 424 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
|  | 425 | { | 
|---|
|  | 426 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
|  | 427 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
|  | 428 | } | 
|---|
|  | 429 | //end of last circle | 
|---|
|  | 430 |  | 
|---|
|  | 431 | //end of integration | 
|---|
|  | 432 |  | 
|---|
|  | 433 | return SizeInteg; | 
|---|
|  | 434 | } | 
|---|
|  | 435 |  | 
|---|
|  | 436 | double SigCalcTool::diffSolidAng(double ang1,double ang2) const | 
|---|
|  | 437 | {       double returnVal;               // Steradians | 
|---|
|  | 438 | if(!pLSrc->IsPtSourceS()) returnVal= fabs(2*M_PI*(cos(ang1)-cos(ang2))); | 
|---|
|  | 439 | // Cas d'une source tendue. | 
|---|
|  | 440 | else  returnVal= 1.; | 
|---|
|  | 441 | // Cas d'une source ponctuelle. Sont flux est exprime en W/m2/Hz | 
|---|
|  | 442 | // Pas d'angle solide. | 
|---|
|  | 443 | return returnVal; | 
|---|
|  | 444 |  | 
|---|
|  | 445 | } | 
|---|
|  | 446 |  | 
|---|
|  | 447 | // should be included as a class member, would template member function | 
|---|
|  | 448 | // work on all compilers | 
|---|
|  | 449 |  | 
|---|
|  | 450 | static AbsLobeNoPolar* AddInBandPowerpLobe; | 
|---|
|  | 451 | static AbsLightSource* AddInBandPowerpLSrc; | 
|---|
|  | 452 | static SpectralResponse* AddInBandPowerpFilter; | 
|---|
|  | 453 | static double AIBtheta; | 
|---|
|  | 454 | static double AIBphi; | 
|---|
|  | 455 |  | 
|---|
|  | 456 | static double AddInBandPowerFreqFunc1(double freq) | 
|---|
|  | 457 | {  // Integration function for GLInteg | 
|---|
|  | 458 | double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq); | 
|---|
|  | 459 | double temp2= AddInBandPowerpLobe->spectre(freq); | 
|---|
|  | 460 | double temp3= AddInBandPowerpFilter->transmission(freq); | 
|---|
|  | 461 | return temp1*temp2*temp3; | 
|---|
|  | 462 | } | 
|---|
|  | 463 |  | 
|---|
|  | 464 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool) | 
|---|
|  | 465 | {       // No spatial integration on the lobe | 
|---|
|  | 466 | // Valid if lobe is separable in frequency | 
|---|
|  | 467 | // Test | 
|---|
|  | 468 | AddInBandPowerpLobe=Tool.getpLobe(); | 
|---|
|  | 469 | AddInBandPowerpLSrc=Tool.getpLSrc(); | 
|---|
|  | 470 | AddInBandPowerpFilter=Tool.getpFilter(); | 
|---|
|  | 471 | if(!AddInBandPowerpLobe->IsFreqSep()) | 
|---|
|  | 472 | {     cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl; | 
|---|
|  | 473 | cerr<<" No power added, addInBandPower skipped"<<endl; | 
|---|
|  | 474 | return; | 
|---|
|  | 475 | } | 
|---|
|  | 476 |  | 
|---|
|  | 477 | long PixelNumber= Map.NbPixels(); | 
|---|
|  | 478 | double out; | 
|---|
|  | 479 | T temp; | 
|---|
|  | 480 | if(Tool.getOption()==AllSeparable) | 
|---|
|  | 481 | {             // Fast ! | 
|---|
|  | 482 | double FreqIntFactor=Tool.getIntegSpectOverFreq(); | 
|---|
|  | 483 | for(long k=0; k<PixelNumber; k++) | 
|---|
|  | 484 | {  Map.PixThetaPhi(k,AIBtheta,AIBphi); | 
|---|
|  | 485 | out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor; | 
|---|
|  | 486 | // Lobe weigth do no enters here | 
|---|
|  | 487 | temp= (T) out; | 
|---|
|  | 488 | Map(k)+= temp; | 
|---|
|  | 489 | // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl; | 
|---|
|  | 490 | } | 
|---|
|  | 491 |  | 
|---|
|  | 492 | } | 
|---|
|  | 493 | else | 
|---|
|  | 494 | { | 
|---|
|  | 495 | if(AddInBandPowerpLSrc->IsFreqSep()) | 
|---|
|  | 496 | { double FreqMax=Tool.getFreqMax(); | 
|---|
|  | 497 | double FreqMin=Tool.getFreqMin(); | 
|---|
|  | 498 | double out; | 
|---|
|  | 499 | GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax); | 
|---|
|  | 500 | Integrale.NStep(10);      // Serieux! | 
|---|
|  | 501 | for(long k=0; k<PixelNumber; k++) | 
|---|
|  | 502 | { | 
|---|
|  | 503 | Map.PixThetaPhi(k,AIBtheta,AIBphi); | 
|---|
|  | 504 | // Lobe weigth do no enters here | 
|---|
|  | 505 | out=Integrale.Value(); | 
|---|
|  | 506 | // Lobe weigth do no enters here | 
|---|
|  | 507 | temp= (T) out; | 
|---|
|  | 508 | Map(k)+= temp; | 
|---|
|  | 509 | } | 
|---|
|  | 510 | } | 
|---|
|  | 511 | } | 
|---|
|  | 512 | return; | 
|---|
|  | 513 | } | 
|---|
|  | 514 |  | 
|---|
|  | 515 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool); | 
|---|
|  | 516 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool); | 
|---|