| 1 | // Dominique YVON, CEA/DAPNIA/SPP 02/2000 | 
|---|
| 2 |  | 
|---|
| 3 | #include <math.h> | 
|---|
| 4 | #include <iostream> | 
|---|
| 5 | #include <iostream> | 
|---|
| 6 | #include <fstream> | 
|---|
| 7 | #ifdef __MWERKS__ | 
|---|
| 8 | #include "mwerksmath.h" | 
|---|
| 9 | #include "unixmac.h" | 
|---|
| 10 | #endif | 
|---|
| 11 | #include "sigcalctools.h" | 
|---|
| 12 | #include "lightdipole.h" | 
|---|
| 13 |  | 
|---|
| 14 | //_______________ ici toutes les frequences sont en Hz ___________________________ | 
|---|
| 15 |  | 
|---|
| 16 | static SigCalcTool* pSigToolcur; | 
|---|
| 17 |  | 
|---|
| 18 | double SigCalGLFreqFunc1(double freq) { | 
|---|
| 19 | double temp1=(pSigToolcur->pLSrc)->spectre(freq); | 
|---|
| 20 | double temp2=(pSigToolcur->pLobe)->spectre(freq); | 
|---|
| 21 | double temp3=(pSigToolcur->pFilter)->transmission(freq); | 
|---|
| 22 |  | 
|---|
| 23 | return  temp1*temp2*temp3; | 
|---|
| 24 | } | 
|---|
| 25 |  | 
|---|
| 26 | double SigCalGLFreqFunc2(double freq) | 
|---|
| 27 | { | 
|---|
| 28 | // Integration function for GLInteg | 
|---|
| 29 | double temp1= | 
|---|
| 30 | (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq); | 
|---|
| 31 | double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq); | 
|---|
| 32 | double temp3=(pSigToolcur->pFilter)->transmission(freq); | 
|---|
| 33 | return temp1*temp2*temp3; | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar, | 
|---|
| 37 | SpectralResponse* pFilt):pLSrc(pLightSrc),pLobe(pLobeNoPolar),pFilter(pFilt) | 
|---|
| 38 | { | 
|---|
| 39 | SigCalcToolInit(); | 
|---|
| 40 | } | 
|---|
| 41 |  | 
|---|
| 42 | void SigCalcTool::SigCalcToolInit() | 
|---|
| 43 | {       emptySignal=false; | 
|---|
| 44 | // Compute frequency integration boundaries | 
|---|
| 45 | cout<< "Initialisation Calctool"<<endl; | 
|---|
| 46 | FreqMin=max(pLobe->minFreq(), pFilter->minFreq()); | 
|---|
| 47 | FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq()); | 
|---|
| 48 | if(FreqMax<FreqMin) { | 
|---|
| 49 | emptySignal=true; | 
|---|
| 50 | cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl; | 
|---|
| 51 | cerr<< "check consistency of lobes and Filters"<<endl; | 
|---|
| 52 | } | 
|---|
| 53 | // Computation Options | 
|---|
| 54 | if(pLSrc->IsMappedPowerSrc()) | 
|---|
| 55 | {  if(!pLobe->IsFreqSep()) | 
|---|
| 56 | { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl; | 
|---|
| 57 | cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl; | 
|---|
| 58 | cerr<<" Program exited"<<endl; | 
|---|
| 59 | exit(-1.); | 
|---|
| 60 | } | 
|---|
| 61 | Option=IsLightMapPowerInband; | 
|---|
| 62 | pIntegrale= new GLInteg(); | 
|---|
| 63 | // Pour eviter un plantage dans ~SigCalcTool | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) { | 
|---|
| 67 | Option=AllSeparable; | 
|---|
| 68 | pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz. | 
|---|
| 69 | pSigToolcur=this; | 
|---|
| 70 | pIntegrale->NStep(200);                 // Integration tres srieuse | 
|---|
| 71 | IntegSpectOverFreq=pIntegrale->Value(); | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | else | 
|---|
| 75 | {       Option=NonSeparable; | 
|---|
| 76 | pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax); | 
|---|
| 77 | pIntegrale->NStep(10);                // Pour aller plus vite. Serieux si le filtre est "compact" | 
|---|
| 78 | } | 
|---|
| 79 | // Computation Resolution | 
|---|
| 80 | RAngComp=pLSrc->LSrcResol();      // On integre sur la resolution de la carte | 
|---|
| 81 | if(RAngComp==0.) | 
|---|
| 82 | {       RAngComp=pLobe->lobeResol(); | 
|---|
| 83 | if(RAngComp==0.) | 
|---|
| 84 | {       cerr<<" Bizarre un lobe de resolution nulle?"<<endl; | 
|---|
| 85 | RAngComp= 5.e-4;        // Radians | 
|---|
| 86 | // On prend la resolution nominale de Planck | 
|---|
| 87 | } | 
|---|
| 88 | } | 
|---|
| 89 | if(RAngComp<pLobe->lobeResol()) | 
|---|
| 90 | {       cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl; | 
|---|
| 91 | cerr<<" Not healthy: Ckeck consistency"<<endl; | 
|---|
| 92 | } | 
|---|
| 93 | cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl; | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | double SigCalcTool::compPixel(double theta,double phi) { | 
|---|
| 97 | UnitVector VP(theta,phi); | 
|---|
| 98 | UnitVector VYbidon=VP.VperpPhi(); | 
|---|
| 99 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 100 | return compPixel(VP,VYbidon); | 
|---|
| 101 | } | 
|---|
| 102 |  | 
|---|
| 103 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){ | 
|---|
| 104 | double returnRes=0.; | 
|---|
| 105 | VPointe=VP; | 
|---|
| 106 | VY=VdirectY; | 
|---|
| 107 | VX=VY^VP; | 
|---|
| 108 | if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere | 
|---|
| 109 | return returnRes; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 |  | 
|---|
| 113 | double SigCalcTool::calcPowerDens() const{ | 
|---|
| 114 | // Compute the power integrated on frequency dependance, (Lobe and LightSource) | 
|---|
| 115 | pSigToolcur=(SigCalcTool*) this; | 
|---|
| 116 | double returnRes; | 
|---|
| 117 | double poidlobe; | 
|---|
| 118 | double Puiss; | 
|---|
| 119 | switch (Option) | 
|---|
| 120 | { | 
|---|
| 121 | case AllSeparable: | 
|---|
| 122 | { | 
|---|
| 123 | poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);  // ss dimensions | 
|---|
| 124 | /* | 
|---|
| 125 | if (poidlobe>.1) | 
|---|
| 126 | { cout<<poidlobe<<endl; | 
|---|
| 127 | } | 
|---|
| 128 | */ | 
|---|
| 129 |  | 
|---|
| 130 | Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi()); | 
|---|
| 131 | // W m-2 st-1 Hz-1 | 
|---|
| 132 | returnRes=Puiss * poidlobe * IntegSpectOverFreq;      // W / m2 / st | 
|---|
| 133 | return returnRes; | 
|---|
| 134 | } | 
|---|
| 135 | case IsLightMapPowerInband: | 
|---|
| 136 | { | 
|---|
| 137 | //     cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl; | 
|---|
| 138 | poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY); | 
|---|
| 139 | Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi()); | 
|---|
| 140 | returnRes=Puiss * poidlobe; | 
|---|
| 141 | return returnRes; | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | default: | 
|---|
| 145 | {  // Cas NonSeparable | 
|---|
| 146 | // Integration over at coordinates | 
|---|
| 147 | returnRes=pIntegrale->Value(); | 
|---|
| 148 | return returnRes; | 
|---|
| 149 | } | 
|---|
| 150 |  | 
|---|
| 151 | } | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|
| 154 |  | 
|---|
| 155 | #define NBStepCircleMin (12) | 
|---|
| 156 |  | 
|---|
| 157 | double SigCalcTool::powerInteg() { | 
|---|
| 158 | // compute power on detector | 
|---|
| 159 |  | 
|---|
| 160 | double powerInteg=0.; | 
|---|
| 161 | // Sum of the incominig power on detector. | 
|---|
| 162 | UnitVector VPoin; | 
|---|
| 163 | // VPointe Boresigth du telescope microonde | 
|---|
| 164 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule | 
|---|
| 165 | // VCur, vecteur courant du calcul. | 
|---|
| 166 | //  double thetaCur, phiCur;    // Coordinates of VCur | 
|---|
| 167 | // Units is radian | 
|---|
| 168 |  | 
|---|
| 169 |  | 
|---|
| 170 |  | 
|---|
| 171 | //------Initialisation of Lobe integration------------------------------------------ | 
|---|
| 172 | double angShift=0.;       // Angular distance from VPoin | 
|---|
| 173 | double angShiftLimit;         // On calcule jusqu'a angShiftLimit de VPoin | 
|---|
| 174 |  | 
|---|
| 175 | if(pLSrc->IsQPtSrc()) | 
|---|
| 176 | {      double ang1=pLSrc->getAngSize()+pLobe->AngleMax(); | 
|---|
| 177 | VPoin=pLobe->VecShift(VPointe, VY); | 
|---|
| 178 | if (ang1>=M_PI) { } //rien | 
|---|
| 179 | else | 
|---|
| 180 | {  double cosinus=VPoin*pLSrc->GetVSrcCenter(); | 
|---|
| 181 | if (cosinus<cos(ang1)) return 0.; | 
|---|
| 182 | //C'est le cas ou la source est trop loin de la direction pointe | 
|---|
| 183 | } | 
|---|
| 184 | // Maintenant on intgre | 
|---|
| 185 | angShiftLimit=ang1; | 
|---|
| 186 | } | 
|---|
| 187 | else | 
|---|
| 188 | { | 
|---|
| 189 | VPoin=pLobe->VecShift(VPointe, VY); | 
|---|
| 190 | angShiftLimit=pLobe->AngleMax(); | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | // On va tourner autour de VPoin | 
|---|
| 194 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 195 | UnitVector VPerp; | 
|---|
| 196 | VPerp=VPoin.VperpPhi(); | 
|---|
| 197 |  | 
|---|
| 198 | double dAngShift=AngResComp(0.)*1.1; | 
|---|
| 199 | // AngleSteps are not necessarily constant. | 
|---|
| 200 | // factor 1.1 to raise ambiguities in nearby pixel integration | 
|---|
| 201 | double lastAngShiftMax; | 
|---|
| 202 | // Needed to compute accurately solid angle values | 
|---|
| 203 |  | 
|---|
| 204 | VCur=VPoin; | 
|---|
| 205 |  | 
|---|
| 206 | powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 207 | lastAngShiftMax= dAngShift/2.; | 
|---|
| 208 |  | 
|---|
| 209 | long NbPasOneCircle; | 
|---|
| 210 | long CircleNumber=0;   // no du cercle en cour: | 
|---|
| 211 | // Gestion des dcalages pour un echantillonnage en quinconce | 
|---|
| 212 | double solidAngStepCircle; | 
|---|
| 213 | float stepAngCircle; | 
|---|
| 214 |  | 
|---|
| 215 | ///---------- Lobe integration----------------------------------------- | 
|---|
| 216 | // generate vectors around VPoin at angular distance angShift. | 
|---|
| 217 | // Compute power flux from foreground in this direction | 
|---|
| 218 | // Weigth  with weigth function and solid angle | 
|---|
| 219 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 220 |  | 
|---|
| 221 | while((lastAngShiftMax+dAngShift)<angShiftLimit){ | 
|---|
| 222 | CircleNumber++; | 
|---|
| 223 | angShift=lastAngShiftMax+dAngShift/2.; | 
|---|
| 224 |  | 
|---|
| 225 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 226 |  | 
|---|
| 227 | // Compute number of step and associates on a circle | 
|---|
| 228 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift)); | 
|---|
| 229 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 230 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 231 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle; | 
|---|
| 232 | // MRotAround=RotVec(VPoin,stepAngCircle); | 
|---|
| 233 |  | 
|---|
| 234 | //----------- integrate on a circle ------------------- | 
|---|
| 235 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.); | 
|---|
| 236 | // Pour un echantillonnage en quinconce | 
|---|
| 237 |  | 
|---|
| 238 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 239 | { | 
|---|
| 240 | //cout<< "rotation numb: "<< i<<endl; | 
|---|
| 241 | powerInteg+=calcPowerDens()*solidAngStepCircle; | 
|---|
| 242 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 243 | }   // end of circle | 
|---|
| 244 |  | 
|---|
| 245 | lastAngShiftMax+=dAngShift; | 
|---|
| 246 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | // On s'occupe des effets de bord: un dernier tour! | 
|---|
| 250 | // On change le code pour eviter les instabilites dues a dAngShift tres petit | 
|---|
| 251 | CircleNumber++; | 
|---|
| 252 | angShift=(angShiftLimit+lastAngShiftMax)/2.; | 
|---|
| 253 |  | 
|---|
| 254 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 255 | // Compute number of step and associates on a circle | 
|---|
| 256 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift)); | 
|---|
| 257 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 258 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 259 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle; | 
|---|
| 260 |  | 
|---|
| 261 | //----------- integrate on last circle ------------------- | 
|---|
| 262 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 263 | { | 
|---|
| 264 | powerInteg+=calcPowerDens()*solidAngStepCircle; | 
|---|
| 265 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 266 | } | 
|---|
| 267 | //end of last circle | 
|---|
| 268 |  | 
|---|
| 269 | //end of integration | 
|---|
| 270 |  | 
|---|
| 271 | // cout<<"On a termine un point, OUFF"<< endl; | 
|---|
| 272 | return powerInteg; | 
|---|
| 273 | } | 
|---|
| 274 |  | 
|---|
| 275 | double SigCalcTool::NormKelvinRayleighJeans() | 
|---|
| 276 | { | 
|---|
| 277 | double tempeCNoir=10000.; | 
|---|
| 278 | // Kelvin | 
|---|
| 279 | double CutFreq=1.380662e-23*tempeCNoir/6.626176e-34/5.; | 
|---|
| 280 | if(FreqMax>1.380662e-23*tempeCNoir/6.626176e-34/5.) | 
|---|
| 281 | {       cerr<< "RaleighJeans approximation is not valid for this frequency"<<endl; | 
|---|
| 282 | cerr<< "Frequency: "<< FreqMax<<" in SigCalcTool::NormRayleighJeans"<<endl; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | LightBlackBody CorpsNoir(tempeCNoir, RAngComp); | 
|---|
| 286 | SigCalcTool ToolRJ(&CorpsNoir,pLobe,pFilter); | 
|---|
| 287 | double puissNorm = ToolRJ.compPixel(M_PI/2.,M_PI);      // Un pixel au hasard | 
|---|
| 288 | return tempeCNoir/puissNorm;                            // Kelvin RaleighJeans/(Watt/m2) | 
|---|
| 289 |  | 
|---|
| 290 | } | 
|---|
| 291 |  | 
|---|
| 292 | double SigCalcTool::NormKelvinCMB() | 
|---|
| 293 | { | 
|---|
| 294 | double deltatempeCNoir=1.;                                      // Kelvin | 
|---|
| 295 | LightNormTCMB DeltaCorpsNoir(deltatempeCNoir, RAngComp); | 
|---|
| 296 | SigCalcTool ToolDeltaCMB(&DeltaCorpsNoir,pLobe,pFilter); | 
|---|
| 297 | double puissNorm = ToolDeltaCMB.compPixel(M_PI/2.,M_PI);        // Un pixel au hasard | 
|---|
| 298 | return deltatempeCNoir/puissNorm;                       // KelvinCMB/(Watt/m2) | 
|---|
| 299 |  | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | /* | 
|---|
| 303 | double SigCalcTool::CalcInBandPower(double theta, double phi) | 
|---|
| 304 | { | 
|---|
| 305 | double returnRes=0.; | 
|---|
| 306 | UnitVector VP(theta,phi); | 
|---|
| 307 | UnitVector VYbidon=VP.VperpPhi(); | 
|---|
| 308 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 309 | VCur=VP; | 
|---|
| 310 | VPointe=VP; | 
|---|
| 311 | VY=VYbidon; | 
|---|
| 312 | VX=VY^VP; | 
|---|
| 313 | if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence | 
|---|
| 314 | return returnRes; | 
|---|
| 315 | } | 
|---|
| 316 | */ | 
|---|
| 317 |  | 
|---|
| 318 | double SigCalcTool::AngResComp(double angle) const | 
|---|
| 319 | { | 
|---|
| 320 | double AngRes; | 
|---|
| 321 | if(pLSrc->IsQPtSrc()) AngRes=RAngComp; | 
|---|
| 322 | else AngRes=RAngComp*pLobe->ResolutionCurve(angle); | 
|---|
| 323 | return AngRes; | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 |  | 
|---|
| 327 |  | 
|---|
| 328 | double SigCalcTool::max(double a, double b) const{ | 
|---|
| 329 | if(a>b) return a; | 
|---|
| 330 | else return b; | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | double SigCalcTool::min(double a, double b) const{ | 
|---|
| 334 | if(a<b) return a; | 
|---|
| 335 | else return b; | 
|---|
| 336 | } | 
|---|
| 337 |  | 
|---|
| 338 | double SigCalcTool::CalcLobeSize(double frequency) | 
|---|
| 339 | { | 
|---|
| 340 | // Compute lobe extension in steradians | 
|---|
| 341 |  | 
|---|
| 342 | if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.; | 
|---|
| 343 |  | 
|---|
| 344 | double SizeInteg=0.; | 
|---|
| 345 | // Sum of the incominig power on detector. | 
|---|
| 346 | UnitVector VPoin; | 
|---|
| 347 | // VPointe Boresigth du telescope microonde | 
|---|
| 348 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule | 
|---|
| 349 | // VCur, vecteur courant du calcul. | 
|---|
| 350 |  | 
|---|
| 351 | //------Initialisation of Lobe integration------------------------------------------ | 
|---|
| 352 | double angShift=0.;                           // Angular distance from VPoin | 
|---|
| 353 | double angShiftLimit=pLobe->AngleMax();               // On calcule jusqu'a angShiftLimit de VPoin | 
|---|
| 354 |  | 
|---|
| 355 |  | 
|---|
| 356 | // On va tourner autour de VPoin | 
|---|
| 357 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 358 | UnitVector VPerp; | 
|---|
| 359 | VPerp=VPoin.VperpPhi(); | 
|---|
| 360 |  | 
|---|
| 361 | double dAngShift=AngResComp(0.)*1.1; | 
|---|
| 362 | // AngleSteps are not necessarily constant. | 
|---|
| 363 | // factor 1.1 to raise ambiguities in nearby pixel integration. | 
|---|
| 364 | double lastAngShiftMax; | 
|---|
| 365 | // Needed to compute accurately solid angle values | 
|---|
| 366 | UnitVector VCur; | 
|---|
| 367 | VCur=VPoin; | 
|---|
| 368 |  | 
|---|
| 369 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 370 | lastAngShiftMax= dAngShift/2.; | 
|---|
| 371 |  | 
|---|
| 372 | long NbPasOneCircle; | 
|---|
| 373 | long CircleNumber=0;   // no du cercle en cour: | 
|---|
| 374 | // Gestion des dcalages pour un echantillonnage en quinconce | 
|---|
| 375 | double solidAngStepCircle; | 
|---|
| 376 | float stepAngCircle; | 
|---|
| 377 |  | 
|---|
| 378 | ///---------- Lobe integration----------------------------------------- | 
|---|
| 379 | // generate vectors around VPoin at angular distance angShift. | 
|---|
| 380 | // Compute power flux from foreground in this direction | 
|---|
| 381 | // Weigth  with weigth function and solid angle | 
|---|
| 382 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 383 |  | 
|---|
| 384 | while((lastAngShiftMax+dAngShift)<angShiftLimit) | 
|---|
| 385 | { | 
|---|
| 386 | CircleNumber++; | 
|---|
| 387 | angShift=lastAngShiftMax+dAngShift/2.; | 
|---|
| 388 |  | 
|---|
| 389 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 390 |  | 
|---|
| 391 | // Compute number of step and associates on a circle | 
|---|
| 392 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift)); | 
|---|
| 393 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 394 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 395 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle; | 
|---|
| 396 |  | 
|---|
| 397 | //----------- integrate on a circle ------------------- | 
|---|
| 398 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.); | 
|---|
| 399 | // Pour un echantillonnage en quinconce | 
|---|
| 400 |  | 
|---|
| 401 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 402 | { | 
|---|
| 403 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 404 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 405 | }   // end of circle | 
|---|
| 406 |  | 
|---|
| 407 | lastAngShiftMax+=dAngShift; | 
|---|
| 408 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | // On s'occupe des effets de bord: un dernier tour! | 
|---|
| 412 | // On change le code pour eviter les instabilites dues a dAngShift tres petit | 
|---|
| 413 | CircleNumber++; | 
|---|
| 414 | angShift=(angShiftLimit+lastAngShiftMax)/2.; | 
|---|
| 415 |  | 
|---|
| 416 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 417 | // Compute number of step and associates on a circle | 
|---|
| 418 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift)); | 
|---|
| 419 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 420 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 421 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle; | 
|---|
| 422 |  | 
|---|
| 423 | //----------- integrate on last circle ------------------- | 
|---|
| 424 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 425 | { | 
|---|
| 426 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 427 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 428 | } | 
|---|
| 429 | //end of last circle | 
|---|
| 430 |  | 
|---|
| 431 | //end of integration | 
|---|
| 432 |  | 
|---|
| 433 | return SizeInteg; | 
|---|
| 434 | } | 
|---|
| 435 |  | 
|---|
| 436 | double SigCalcTool::diffSolidAng(double ang1,double ang2) const | 
|---|
| 437 | {       double returnVal;               // Steradians | 
|---|
| 438 | if(!pLSrc->IsPtSourceS()) returnVal= fabs(2*M_PI*(cos(ang1)-cos(ang2))); | 
|---|
| 439 | // Cas d'une source tendue. | 
|---|
| 440 | else  returnVal= 1.; | 
|---|
| 441 | // Cas d'une source ponctuelle. Sont flux est exprime en W/m2/Hz | 
|---|
| 442 | // Pas d'angle solide. | 
|---|
| 443 | return returnVal; | 
|---|
| 444 |  | 
|---|
| 445 | } | 
|---|
| 446 |  | 
|---|
| 447 | // should be included as a class member, would template member function | 
|---|
| 448 | // work on all compilers | 
|---|
| 449 |  | 
|---|
| 450 | static AbsLobeNoPolar* AddInBandPowerpLobe; | 
|---|
| 451 | static AbsLightSource* AddInBandPowerpLSrc; | 
|---|
| 452 | static SpectralResponse* AddInBandPowerpFilter; | 
|---|
| 453 | static double AIBtheta; | 
|---|
| 454 | static double AIBphi; | 
|---|
| 455 |  | 
|---|
| 456 | static double AddInBandPowerFreqFunc1(double freq) | 
|---|
| 457 | {  // Integration function for GLInteg | 
|---|
| 458 | double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq); | 
|---|
| 459 | double temp2= AddInBandPowerpLobe->spectre(freq); | 
|---|
| 460 | double temp3= AddInBandPowerpFilter->transmission(freq); | 
|---|
| 461 | return temp1*temp2*temp3; | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool) | 
|---|
| 465 | {       // No spatial integration on the lobe | 
|---|
| 466 | // Valid if lobe is separable in frequency | 
|---|
| 467 | // Test | 
|---|
| 468 | AddInBandPowerpLobe=Tool.getpLobe(); | 
|---|
| 469 | AddInBandPowerpLSrc=Tool.getpLSrc(); | 
|---|
| 470 | AddInBandPowerpFilter=Tool.getpFilter(); | 
|---|
| 471 | if(!AddInBandPowerpLobe->IsFreqSep()) | 
|---|
| 472 | {     cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl; | 
|---|
| 473 | cerr<<" No power added, addInBandPower skipped"<<endl; | 
|---|
| 474 | return; | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | long PixelNumber= Map.NbPixels(); | 
|---|
| 478 | double out; | 
|---|
| 479 | T temp; | 
|---|
| 480 | if(Tool.getOption()==AllSeparable) | 
|---|
| 481 | {             // Fast ! | 
|---|
| 482 | double FreqIntFactor=Tool.getIntegSpectOverFreq(); | 
|---|
| 483 | for(long k=0; k<PixelNumber; k++) | 
|---|
| 484 | {  Map.PixThetaPhi(k,AIBtheta,AIBphi); | 
|---|
| 485 | out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor; | 
|---|
| 486 | // Lobe weigth do no enters here | 
|---|
| 487 | temp= (T) out; | 
|---|
| 488 | Map(k)+= temp; | 
|---|
| 489 | // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl; | 
|---|
| 490 | } | 
|---|
| 491 |  | 
|---|
| 492 | } | 
|---|
| 493 | else | 
|---|
| 494 | { | 
|---|
| 495 | if(AddInBandPowerpLSrc->IsFreqSep()) | 
|---|
| 496 | { double FreqMax=Tool.getFreqMax(); | 
|---|
| 497 | double FreqMin=Tool.getFreqMin(); | 
|---|
| 498 | double out; | 
|---|
| 499 | GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax); | 
|---|
| 500 | Integrale.NStep(10);      // Serieux! | 
|---|
| 501 | for(long k=0; k<PixelNumber; k++) | 
|---|
| 502 | { | 
|---|
| 503 | Map.PixThetaPhi(k,AIBtheta,AIBphi); | 
|---|
| 504 | // Lobe weigth do no enters here | 
|---|
| 505 | out=Integrale.Value(); | 
|---|
| 506 | // Lobe weigth do no enters here | 
|---|
| 507 | temp= (T) out; | 
|---|
| 508 | Map(k)+= temp; | 
|---|
| 509 | } | 
|---|
| 510 | } | 
|---|
| 511 | } | 
|---|
| 512 | return; | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool); | 
|---|
| 516 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool); | 
|---|