| 1 | // Dominique YVON, CEA/DAPNIA/SPP 02/2000 | 
|---|
| 2 |  | 
|---|
| 3 | #include <math.h> | 
|---|
| 4 | #include <iostream> | 
|---|
| 5 | #include <iostream> | 
|---|
| 6 | #include <fstream> | 
|---|
| 7 | #ifdef __MWERKS__ | 
|---|
| 8 |  | 
|---|
| 9 | #include "unixmac.h" | 
|---|
| 10 | #endif | 
|---|
| 11 | #include "sigcalctools.h" | 
|---|
| 12 | #include "lightdipole.h" | 
|---|
| 13 |  | 
|---|
| 14 | //_______________ ici toutes les frequences sont en Hz ___________________________ | 
|---|
| 15 |  | 
|---|
| 16 | static SigCalcTool* pSigToolcur; | 
|---|
| 17 |  | 
|---|
| 18 | double SigCalGLFreqFunc1(double freq) { | 
|---|
| 19 | double temp1=(pSigToolcur->pLSrc)->spectre(freq); | 
|---|
| 20 | double temp2=(pSigToolcur->pLobe)->spectre(freq); | 
|---|
| 21 | double temp3=(pSigToolcur->pFilter)->transmission(freq); | 
|---|
| 22 |  | 
|---|
| 23 | return  temp1*temp2*temp3; | 
|---|
| 24 | } | 
|---|
| 25 |  | 
|---|
| 26 | double SigCalGLFreqFunc2(double freq) | 
|---|
| 27 | { | 
|---|
| 28 | // Integration function for GLInteg | 
|---|
| 29 | double temp1= | 
|---|
| 30 | (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq); | 
|---|
| 31 | double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq); | 
|---|
| 32 | double temp3=(pSigToolcur->pFilter)->transmission(freq); | 
|---|
| 33 | return temp1*temp2*temp3; | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar, | 
|---|
| 37 | SpectralResponse* pFilt):pLSrc(pLightSrc) | 
|---|
| 38 | {       pLobe=pLobeNoPolar; | 
|---|
| 39 | pFilter=pFilt; | 
|---|
| 40 |  | 
|---|
| 41 | SigCalcToolInit(); | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | void SigCalcTool::SigCalcToolInit() | 
|---|
| 45 | {       emptySignal=false; | 
|---|
| 46 | // Compute frequency integration boundaries | 
|---|
| 47 | cout<< "Initialisation Calctool"<<endl; | 
|---|
| 48 | FreqMin=max(pLobe->minFreq(), pFilter->minFreq()); | 
|---|
| 49 | FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq()); | 
|---|
| 50 | if(FreqMax<FreqMin) { | 
|---|
| 51 | emptySignal=true; | 
|---|
| 52 | cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl; | 
|---|
| 53 | cerr<< "check consistency of lobes and Filters"<<endl; | 
|---|
| 54 | } | 
|---|
| 55 | // Computation Options | 
|---|
| 56 | if(pLSrc->IsMappedPowerSrc()) | 
|---|
| 57 | {  if(!pLobe->IsFreqSep()) | 
|---|
| 58 | { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl; | 
|---|
| 59 | cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl; | 
|---|
| 60 | cerr<<" Program exited"<<endl; | 
|---|
| 61 | exit(-1.); | 
|---|
| 62 | } | 
|---|
| 63 | Option=IsLightMapPowerInband; | 
|---|
| 64 | pIntegrale= new GLInteg(); | 
|---|
| 65 | // Pour eviter un plantage dans ~SigCalcTool | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) { | 
|---|
| 69 | Option=AllSeparable; | 
|---|
| 70 | pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz. | 
|---|
| 71 | pSigToolcur=this; | 
|---|
| 72 | pIntegrale->NStep(200);                 // Integration tres srieuse | 
|---|
| 73 | IntegSpectOverFreq=pIntegrale->Value(); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | else | 
|---|
| 77 | {       Option=NonSeparable; | 
|---|
| 78 | pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax); | 
|---|
| 79 | pIntegrale->NStep(10);                // Pour aller plus vite. Serieux si le filtre est "compact" | 
|---|
| 80 | } | 
|---|
| 81 | // Computation Resolution | 
|---|
| 82 | RAngComp=pLSrc->LSrcResol();      // On integre sur la resolution de la carte | 
|---|
| 83 | if(RAngComp==0.) | 
|---|
| 84 | {       RAngComp=pLobe->lobeResol(); | 
|---|
| 85 | if(RAngComp==0.) | 
|---|
| 86 | {       cerr<<" Bizarre un lobe de resolution nulle?"<<endl; | 
|---|
| 87 | RAngComp= 5.e-4;        // Radians | 
|---|
| 88 | // On prend la resolution nominale de Planck | 
|---|
| 89 | } | 
|---|
| 90 | } | 
|---|
| 91 | if(RAngComp<pLobe->lobeResol()) | 
|---|
| 92 | {       cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl; | 
|---|
| 93 | cerr<<" Not healthy: Ckeck consistency"<<endl; | 
|---|
| 94 | } | 
|---|
| 95 | cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl; | 
|---|
| 96 | } | 
|---|
| 97 |  | 
|---|
| 98 |  | 
|---|
| 99 |  | 
|---|
| 100 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){ | 
|---|
| 101 | double returnRes=0.; | 
|---|
| 102 | VPointe=VP; | 
|---|
| 103 | VY=VdirectY; | 
|---|
| 104 | VX=VY^VP; | 
|---|
| 105 | if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere | 
|---|
| 106 | return returnRes; | 
|---|
| 107 | } | 
|---|
| 108 |  | 
|---|
| 109 |  | 
|---|
| 110 | double SigCalcTool::calcPowerDens() const{ | 
|---|
| 111 | // Compute the power integrated on frequency dependance, (Lobe and LightSource) | 
|---|
| 112 | pSigToolcur=(SigCalcTool*) this; | 
|---|
| 113 | double returnRes; | 
|---|
| 114 | double poidlobe; | 
|---|
| 115 | double Puiss; | 
|---|
| 116 | switch (Option) | 
|---|
| 117 | { | 
|---|
| 118 | case AllSeparable: | 
|---|
| 119 | { | 
|---|
| 120 | poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);  // ss dimensions | 
|---|
| 121 | /* | 
|---|
| 122 | if (poidlobe>.1) | 
|---|
| 123 | { cout<<poidlobe<<endl; | 
|---|
| 124 | } | 
|---|
| 125 | */ | 
|---|
| 126 |  | 
|---|
| 127 | Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi()); | 
|---|
| 128 | // W m-2 st-1 Hz-1 | 
|---|
| 129 | returnRes=Puiss * poidlobe * IntegSpectOverFreq;      // W / m2 / st | 
|---|
| 130 | return returnRes; | 
|---|
| 131 | } | 
|---|
| 132 | case IsLightMapPowerInband: | 
|---|
| 133 | { | 
|---|
| 134 | //     cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl; | 
|---|
| 135 | poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY); | 
|---|
| 136 | Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi()); | 
|---|
| 137 | returnRes=Puiss * poidlobe; | 
|---|
| 138 | return returnRes; | 
|---|
| 139 | } | 
|---|
| 140 |  | 
|---|
| 141 | default: | 
|---|
| 142 | {  // Cas NonSeparable | 
|---|
| 143 | // Integration over at coordinates | 
|---|
| 144 | returnRes=pIntegrale->Value(); | 
|---|
| 145 | return returnRes; | 
|---|
| 146 | } | 
|---|
| 147 |  | 
|---|
| 148 | } | 
|---|
| 149 | } | 
|---|
| 150 |  | 
|---|
| 151 |  | 
|---|
| 152 | #define NBStepCircleMin (12) | 
|---|
| 153 |  | 
|---|
| 154 | double SigCalcTool::powerInteg() { | 
|---|
| 155 | // compute power on detector | 
|---|
| 156 |  | 
|---|
| 157 | double powerInteg=0.; | 
|---|
| 158 | // Sum of the incominig power on detector. | 
|---|
| 159 | UnitVector VPoin; | 
|---|
| 160 | // VPointe Boresigth du telescope microonde | 
|---|
| 161 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule | 
|---|
| 162 | // VCur, vecteur courant du calcul. | 
|---|
| 163 | //  double thetaCur, phiCur;    // Coordinates of VCur | 
|---|
| 164 | // Units is radian | 
|---|
| 165 |  | 
|---|
| 166 |  | 
|---|
| 167 |  | 
|---|
| 168 | //------Initialisation of Lobe integration------------------------------------------ | 
|---|
| 169 | double angShift=0.;       // Angular distance from VPoin | 
|---|
| 170 | double angShiftLimit;         // On calcule jusqu'a angShiftLimit de VPoin | 
|---|
| 171 |  | 
|---|
| 172 | if(pLSrc->IsQPtSrc()) | 
|---|
| 173 | {      double ang1=pLSrc->getAngSize()+pLobe->AngleMax(); | 
|---|
| 174 | VPoin=pLobe->VecShift(VPointe, VY); | 
|---|
| 175 | if (ang1>=M_PI) { } //rien | 
|---|
| 176 | else | 
|---|
| 177 | {  double cosinus=VPoin*pLSrc->GetVSrcCenter(); | 
|---|
| 178 | if (cosinus<cos(ang1)) return 0.; | 
|---|
| 179 | //C'est le cas ou la source est trop loin de la direction pointe | 
|---|
| 180 | } | 
|---|
| 181 | // Maintenant on intgre | 
|---|
| 182 | angShiftLimit=ang1; | 
|---|
| 183 | } | 
|---|
| 184 | else | 
|---|
| 185 | { | 
|---|
| 186 | VPoin=pLobe->VecShift(VPointe, VY); | 
|---|
| 187 | angShiftLimit=pLobe->AngleMax(); | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | // On va tourner autour de VPoin | 
|---|
| 191 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 192 | UnitVector VPerp; | 
|---|
| 193 | VPerp=VPoin.VperpPhi(); | 
|---|
| 194 |  | 
|---|
| 195 | double dAngShift=AngResComp(0.); | 
|---|
| 196 | // AngleSteps are not necessarily constant. | 
|---|
| 197 | double lastAngShiftMax; | 
|---|
| 198 | // Needed to compute accurately solid angle values | 
|---|
| 199 |  | 
|---|
| 200 | VCur=VPoin; | 
|---|
| 201 |  | 
|---|
| 202 | powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 203 | lastAngShiftMax= dAngShift/2.; | 
|---|
| 204 |  | 
|---|
| 205 | long NbPasOneCircle; | 
|---|
| 206 | long CircleNumber=0;   // no du cercle en cour: | 
|---|
| 207 | // Gestion des dcalages pour un echantillonnage en quinconce | 
|---|
| 208 | double solidAngStepCircle; | 
|---|
| 209 | float stepAngCircle; | 
|---|
| 210 |  | 
|---|
| 211 | ///---------- Lobe integration----------------------------------------- | 
|---|
| 212 | // generate vectors around VPoin at angular distance angShift. | 
|---|
| 213 | // Compute power flux from foreground in this direction | 
|---|
| 214 | // Weigth  with weigth function and solid angle | 
|---|
| 215 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 216 |  | 
|---|
| 217 | while((lastAngShiftMax+dAngShift)<angShiftLimit){ | 
|---|
| 218 | CircleNumber++; | 
|---|
| 219 | angShift=lastAngShiftMax+dAngShift/2.; | 
|---|
| 220 |  | 
|---|
| 221 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 222 |  | 
|---|
| 223 | // Compute number of step and associates on a circle | 
|---|
| 224 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift)); | 
|---|
| 225 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 226 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 227 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle; | 
|---|
| 228 | // MRotAround=RotVec(VPoin,stepAngCircle); | 
|---|
| 229 |  | 
|---|
| 230 | //----------- integrate on a circle ------------------- | 
|---|
| 231 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.); | 
|---|
| 232 | // Pour un echantillonnage en quinconce | 
|---|
| 233 |  | 
|---|
| 234 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 235 | { | 
|---|
| 236 | //cout<< "rotation numb: "<< i<<endl; | 
|---|
| 237 | powerInteg+=calcPowerDens()*solidAngStepCircle; | 
|---|
| 238 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 239 | }   // end of circle | 
|---|
| 240 |  | 
|---|
| 241 | lastAngShiftMax+=dAngShift; | 
|---|
| 242 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 243 | } | 
|---|
| 244 |  | 
|---|
| 245 | // On s'occupe des effets de bord: un dernier tour! | 
|---|
| 246 | // On change le code pour eviter les instabilites dues a dAngShift tres petit | 
|---|
| 247 | CircleNumber++; | 
|---|
| 248 | angShift=(angShiftLimit+lastAngShiftMax)/2.; | 
|---|
| 249 |  | 
|---|
| 250 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 251 | // Compute number of step and associates on a circle | 
|---|
| 252 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift)); | 
|---|
| 253 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 254 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 255 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle; | 
|---|
| 256 |  | 
|---|
| 257 | //----------- integrate on last circle ------------------- | 
|---|
| 258 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 259 | { | 
|---|
| 260 | powerInteg+=calcPowerDens()*solidAngStepCircle; | 
|---|
| 261 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 262 | } | 
|---|
| 263 | //end of last circle | 
|---|
| 264 |  | 
|---|
| 265 | //end of integration | 
|---|
| 266 |  | 
|---|
| 267 | // cout<<"On a termine un point, OUFF"<< endl; | 
|---|
| 268 | return powerInteg; | 
|---|
| 269 | } | 
|---|
| 270 |  | 
|---|
| 271 | /* | 
|---|
| 272 | double SigCalcTool::CalcInBandPower(double theta, double phi) | 
|---|
| 273 | { | 
|---|
| 274 | double returnRes=0.; | 
|---|
| 275 | UnitVector VP(theta,phi); | 
|---|
| 276 | UnitVector VYbidon=VP.VperpPhi(); | 
|---|
| 277 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 278 | VCur=VP; | 
|---|
| 279 | VPointe=VP; | 
|---|
| 280 | VY=VYbidon; | 
|---|
| 281 | VX=VY^VP; | 
|---|
| 282 | if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence | 
|---|
| 283 | return returnRes; | 
|---|
| 284 | } | 
|---|
| 285 | */ | 
|---|
| 286 |  | 
|---|
| 287 | double SigCalcTool::AngResComp(double angle) const | 
|---|
| 288 | { | 
|---|
| 289 | double AngRes; | 
|---|
| 290 | if(pLSrc->IsQPtSrc()) AngRes=RAngComp; | 
|---|
| 291 | else AngRes=RAngComp*pLobe->ResolutionCurve(angle); | 
|---|
| 292 | return AngRes; | 
|---|
| 293 | } | 
|---|
| 294 |  | 
|---|
| 295 | double SigCalcTool::CalcLobeSize(double frequency) | 
|---|
| 296 | { | 
|---|
| 297 | // Compute lobe extension in steradians | 
|---|
| 298 |  | 
|---|
| 299 | if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.; | 
|---|
| 300 |  | 
|---|
| 301 | double SizeInteg=0.; | 
|---|
| 302 | // Sum of the incominig power on detector. | 
|---|
| 303 | UnitVector VPoin; | 
|---|
| 304 | // VPointe Boresigth du telescope microonde | 
|---|
| 305 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule | 
|---|
| 306 | // VCur, vecteur courant du calcul. | 
|---|
| 307 |  | 
|---|
| 308 | //------Initialisation of Lobe integration------------------------------------------ | 
|---|
| 309 | double angShift=0.;                           // Angular distance from VPoin | 
|---|
| 310 | double angShiftLimit=pLobe->AngleMax();               // On calcule jusqu'a angShiftLimit de VPoin | 
|---|
| 311 |  | 
|---|
| 312 |  | 
|---|
| 313 | // On va tourner autour de VPoin | 
|---|
| 314 | // Compute unit vector perpendicular to Vpoin at same theta | 
|---|
| 315 | UnitVector VPerp; | 
|---|
| 316 | VPerp=VPoin.VperpPhi(); | 
|---|
| 317 |  | 
|---|
| 318 | double dAngShift=AngResComp(0.); | 
|---|
| 319 | // AngleSteps are not necessarily constant. | 
|---|
| 320 | double lastAngShiftMax; | 
|---|
| 321 | // Needed to compute accurately solid angle values | 
|---|
| 322 | UnitVector VCur; | 
|---|
| 323 | VCur=VPoin; | 
|---|
| 324 |  | 
|---|
| 325 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 326 | lastAngShiftMax= dAngShift/2.; | 
|---|
| 327 |  | 
|---|
| 328 | long NbPasOneCircle; | 
|---|
| 329 | long CircleNumber=0;   // no du cercle en cour: | 
|---|
| 330 | // Gestion des dcalages pour un echantillonnage en quinconce | 
|---|
| 331 | double solidAngStepCircle; | 
|---|
| 332 | float stepAngCircle; | 
|---|
| 333 |  | 
|---|
| 334 | ///---------- Lobe integration----------------------------------------- | 
|---|
| 335 | // generate vectors around VPoin at angular distance angShift. | 
|---|
| 336 | // Compute power flux from foreground in this direction | 
|---|
| 337 | // Weigth  with weigth function and solid angle | 
|---|
| 338 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 339 |  | 
|---|
| 340 | while((lastAngShiftMax+dAngShift)<angShiftLimit) | 
|---|
| 341 | { | 
|---|
| 342 | CircleNumber++; | 
|---|
| 343 | angShift=lastAngShiftMax+dAngShift/2.; | 
|---|
| 344 |  | 
|---|
| 345 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 346 |  | 
|---|
| 347 | // Compute number of step and associates on a circle | 
|---|
| 348 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift)); | 
|---|
| 349 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 350 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 351 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle; | 
|---|
| 352 |  | 
|---|
| 353 | //----------- integrate on a circle ------------------- | 
|---|
| 354 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.); | 
|---|
| 355 | // Pour un echantillonnage en quinconce | 
|---|
| 356 |  | 
|---|
| 357 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 358 | { | 
|---|
| 359 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 360 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 361 | }   // end of circle | 
|---|
| 362 |  | 
|---|
| 363 | lastAngShiftMax+=dAngShift; | 
|---|
| 364 | dAngShift=AngResComp(lastAngShiftMax); | 
|---|
| 365 | } | 
|---|
| 366 |  | 
|---|
| 367 | // On s'occupe des effets de bord: un dernier tour! | 
|---|
| 368 | // On change le code pour eviter les instabilites dues a dAngShift tres petit | 
|---|
| 369 | CircleNumber++; | 
|---|
| 370 | angShift=(angShiftLimit+lastAngShiftMax)/2.; | 
|---|
| 371 |  | 
|---|
| 372 | VCur=VPoin.Rotate(VPerp,angShift); | 
|---|
| 373 | // Compute number of step and associates on a circle | 
|---|
| 374 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift)); | 
|---|
| 375 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin; | 
|---|
| 376 | stepAngCircle=2*M_PI/NbPasOneCircle; | 
|---|
| 377 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle; | 
|---|
| 378 |  | 
|---|
| 379 | //----------- integrate on last circle ------------------- | 
|---|
| 380 | for(long i=0;i<NbPasOneCircle;i++) | 
|---|
| 381 | { | 
|---|
| 382 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.); | 
|---|
| 383 | VCur=VCur.Rotate(VPoin,stepAngCircle); | 
|---|
| 384 | } | 
|---|
| 385 | //end of last circle | 
|---|
| 386 |  | 
|---|
| 387 | //end of integration | 
|---|
| 388 |  | 
|---|
| 389 | return SizeInteg; | 
|---|
| 390 | } | 
|---|
| 391 |  | 
|---|
| 392 | // should be included as a class member, would template member function | 
|---|
| 393 | // work on all compilers | 
|---|
| 394 |  | 
|---|
| 395 | static AbsLobeNoPolar* AddInBandPowerpLobe; | 
|---|
| 396 | static AbsLightSource* AddInBandPowerpLSrc; | 
|---|
| 397 | static SpectralResponse* AddInBandPowerpFilter; | 
|---|
| 398 | static double AIBtheta; | 
|---|
| 399 | static double AIBphi; | 
|---|
| 400 |  | 
|---|
| 401 | static double AddInBandPowerFreqFunc1(double freq) | 
|---|
| 402 | {  // Integration function for GLInteg | 
|---|
| 403 | double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq); | 
|---|
| 404 | double temp2= AddInBandPowerpLobe->spectre(freq); | 
|---|
| 405 | double temp3= AddInBandPowerpFilter->transmission(freq); | 
|---|
| 406 | return temp1*temp2*temp3; | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool) | 
|---|
| 410 | {       // No spatial integration on the lobe | 
|---|
| 411 | // Valid if lobe is separable in frequency | 
|---|
| 412 | // Test | 
|---|
| 413 | AddInBandPowerpLobe=Tool.getpLobe(); | 
|---|
| 414 | AddInBandPowerpLSrc=Tool.getpLSrc(); | 
|---|
| 415 | AddInBandPowerpFilter=Tool.getpFilter(); | 
|---|
| 416 | if(!AddInBandPowerpLobe->IsFreqSep()) | 
|---|
| 417 | {     cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl; | 
|---|
| 418 | cerr<<" No power added, addInBandPower skipped"<<endl; | 
|---|
| 419 | return; | 
|---|
| 420 | } | 
|---|
| 421 |  | 
|---|
| 422 | long PixelNumber= Map.NbPixels(); | 
|---|
| 423 | double out; | 
|---|
| 424 | T temp; | 
|---|
| 425 | if(Tool.getOption()==AllSeparable) | 
|---|
| 426 | {             // Fast ! | 
|---|
| 427 | double FreqIntFactor=Tool.getIntegSpectOverFreq(); | 
|---|
| 428 | for(long k=0; k<PixelNumber; k++) | 
|---|
| 429 | {  Map.PixThetaPhi(k,AIBtheta,AIBphi); | 
|---|
| 430 | out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor; | 
|---|
| 431 | // Lobe weigth do no enters here | 
|---|
| 432 | temp= (T) out; | 
|---|
| 433 | Map(k)+= temp; | 
|---|
| 434 | // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl; | 
|---|
| 435 | } | 
|---|
| 436 |  | 
|---|
| 437 | } | 
|---|
| 438 | else | 
|---|
| 439 | { | 
|---|
| 440 | if(AddInBandPowerpLSrc->IsFreqSep()) | 
|---|
| 441 | { double FreqMax=Tool.getFreqMax(); | 
|---|
| 442 | double FreqMin=Tool.getFreqMin(); | 
|---|
| 443 | double out; | 
|---|
| 444 | GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax); | 
|---|
| 445 | Integrale.NStep(10);      // Serieux! | 
|---|
| 446 | for(long k=0; k<PixelNumber; k++) | 
|---|
| 447 | { | 
|---|
| 448 | Map.PixThetaPhi(k,AIBtheta,AIBphi); | 
|---|
| 449 | // Lobe weigth do no enters here | 
|---|
| 450 | out=Integrale.Value(); | 
|---|
| 451 | // Lobe weigth do no enters here | 
|---|
| 452 | temp= (T) out; | 
|---|
| 453 | Map(k)+= temp; | 
|---|
| 454 | } | 
|---|
| 455 | } | 
|---|
| 456 | } | 
|---|
| 457 | return; | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool); | 
|---|
| 461 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool); | 
|---|