1 | // Dominique YVON, CEA/DAPNIA/SPP 02/2000
|
---|
2 |
|
---|
3 | #include <math.h>
|
---|
4 | #include <iostream>
|
---|
5 | #include <iostream>
|
---|
6 | #include <fstream>
|
---|
7 | #ifdef __MWERKS__
|
---|
8 | #include "mwerksmath.h"
|
---|
9 | #include "unixmac.h"
|
---|
10 | #endif
|
---|
11 | #include "sigcalctools.h"
|
---|
12 | #include "lightdipole.h"
|
---|
13 |
|
---|
14 | //_______________ ici toutes les frequences sont en Hz ___________________________
|
---|
15 |
|
---|
16 | static SigCalcTool* pSigToolcur;
|
---|
17 |
|
---|
18 | double SigCalGLFreqFunc1(double freq) {
|
---|
19 | double temp1=(pSigToolcur->pLSrc)->spectre(freq);
|
---|
20 | double temp2=(pSigToolcur->pLobe)->spectre(freq);
|
---|
21 | double temp3=(pSigToolcur->pFilter)->transmission(freq);
|
---|
22 |
|
---|
23 | return temp1*temp2*temp3;
|
---|
24 | }
|
---|
25 |
|
---|
26 | double SigCalGLFreqFunc2(double freq)
|
---|
27 | {
|
---|
28 | // Integration function for GLInteg
|
---|
29 | double temp1=
|
---|
30 | (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq);
|
---|
31 | double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq);
|
---|
32 | double temp3=(pSigToolcur->pFilter)->transmission(freq);
|
---|
33 | return temp1*temp2*temp3;
|
---|
34 | }
|
---|
35 |
|
---|
36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar,
|
---|
37 | SpectralResponse* pFilt):pLSrc(pLightSrc),pLobe(pLobeNoPolar),pFilter(pFilt)
|
---|
38 | {
|
---|
39 | SigCalcToolInit();
|
---|
40 | }
|
---|
41 |
|
---|
42 | void SigCalcTool::SigCalcToolInit()
|
---|
43 | { emptySignal=false;
|
---|
44 | // Compute frequency integration boundaries
|
---|
45 | cout<< "Initialisation Calctool"<<endl;
|
---|
46 | FreqMin=max(pLobe->minFreq(), pFilter->minFreq());
|
---|
47 | FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq());
|
---|
48 | if(FreqMax<FreqMin) {
|
---|
49 | emptySignal=true;
|
---|
50 | cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl;
|
---|
51 | cerr<< "check consistency of lobes and Filters"<<endl;
|
---|
52 | }
|
---|
53 | // Computation Options
|
---|
54 | if(pLSrc->IsMappedPowerSrc())
|
---|
55 | { if(!pLobe->IsFreqSep())
|
---|
56 | { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl;
|
---|
57 | cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl;
|
---|
58 | cerr<<" Program exited"<<endl;
|
---|
59 | exit(-1.);
|
---|
60 | }
|
---|
61 | Option=IsLightMapPowerInband;
|
---|
62 | pIntegrale= new GLInteg();
|
---|
63 | // Pour eviter un plantage dans ~SigCalcTool
|
---|
64 | }
|
---|
65 |
|
---|
66 | else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) {
|
---|
67 | Option=AllSeparable;
|
---|
68 | pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz.
|
---|
69 | pSigToolcur=this;
|
---|
70 | pIntegrale->NStep(200); // Integration tres srieuse
|
---|
71 | IntegSpectOverFreq=pIntegrale->Value();
|
---|
72 | }
|
---|
73 |
|
---|
74 | else
|
---|
75 | { Option=NonSeparable;
|
---|
76 | pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax);
|
---|
77 | pIntegrale->NStep(10); // Pour aller plus vite. Serieux si le filtre est "compact"
|
---|
78 | }
|
---|
79 | // Computation Resolution
|
---|
80 | RAngComp=pLSrc->LSrcResol(); // On integre sur la resolution de la carte
|
---|
81 | if(RAngComp==0.)
|
---|
82 | { RAngComp=pLobe->lobeResol();
|
---|
83 | if(RAngComp==0.)
|
---|
84 | { cerr<<" Bizarre un lobe de resolution nulle?"<<endl;
|
---|
85 | RAngComp= 5.e-4; // Radians
|
---|
86 | // On prend la resolution nominale de Planck
|
---|
87 | }
|
---|
88 | }
|
---|
89 | if(RAngComp<pLobe->lobeResol())
|
---|
90 | { cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl;
|
---|
91 | cerr<<" Not healthy: Ckeck consistency"<<endl;
|
---|
92 | }
|
---|
93 | cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl;
|
---|
94 | }
|
---|
95 |
|
---|
96 | double SigCalcTool::compPixel(double theta,double phi) {
|
---|
97 | UnitVector VP(theta,phi);
|
---|
98 | UnitVector VYbidon=VP.VperpPhi();
|
---|
99 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
100 | return compPixel(VP,VYbidon);
|
---|
101 | }
|
---|
102 |
|
---|
103 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){
|
---|
104 | double returnRes=0.;
|
---|
105 | VPointe=VP;
|
---|
106 | VY=VdirectY;
|
---|
107 | VX=VY^VP;
|
---|
108 | if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere
|
---|
109 | return returnRes;
|
---|
110 | }
|
---|
111 |
|
---|
112 |
|
---|
113 | double SigCalcTool::calcPowerDens() const{
|
---|
114 | // Compute the power integrated on frequency dependance, (Lobe and LightSource)
|
---|
115 | pSigToolcur=(SigCalcTool*) this;
|
---|
116 | double returnRes;
|
---|
117 | double poidlobe;
|
---|
118 | double Puiss;
|
---|
119 | switch (Option)
|
---|
120 | {
|
---|
121 | case AllSeparable:
|
---|
122 | {
|
---|
123 | poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY); // ss dimensions
|
---|
124 | /*
|
---|
125 | if (poidlobe>.1)
|
---|
126 | { cout<<poidlobe<<endl;
|
---|
127 | }
|
---|
128 | */
|
---|
129 |
|
---|
130 | Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
|
---|
131 | // W m-2 st-1 Hz-1
|
---|
132 | returnRes=Puiss * poidlobe * IntegSpectOverFreq; // W / m2 / st
|
---|
133 | return returnRes;
|
---|
134 | }
|
---|
135 | case IsLightMapPowerInband:
|
---|
136 | {
|
---|
137 | // cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl;
|
---|
138 | poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);
|
---|
139 | Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
|
---|
140 | returnRes=Puiss * poidlobe;
|
---|
141 | return returnRes;
|
---|
142 | }
|
---|
143 |
|
---|
144 | default:
|
---|
145 | { // Cas NonSeparable
|
---|
146 | // Integration over at coordinates
|
---|
147 | returnRes=pIntegrale->Value();
|
---|
148 | return returnRes;
|
---|
149 | }
|
---|
150 |
|
---|
151 | }
|
---|
152 | }
|
---|
153 |
|
---|
154 |
|
---|
155 | #define NBStepCircleMin (12)
|
---|
156 |
|
---|
157 | double SigCalcTool::powerInteg() {
|
---|
158 | // compute power on detector
|
---|
159 |
|
---|
160 | double powerInteg=0.;
|
---|
161 | // Sum of the incominig power on detector.
|
---|
162 | UnitVector VPoin;
|
---|
163 | // VPointe Boresigth du telescope microonde
|
---|
164 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
|
---|
165 | // VCur, vecteur courant du calcul.
|
---|
166 | // double thetaCur, phiCur; // Coordinates of VCur
|
---|
167 | // Units is radian
|
---|
168 |
|
---|
169 |
|
---|
170 |
|
---|
171 | //------Initialisation of Lobe integration------------------------------------------
|
---|
172 | double angShift=0.; // Angular distance from VPoin
|
---|
173 | double angShiftLimit; // On calcule jusqu'a angShiftLimit de VPoin
|
---|
174 |
|
---|
175 | if(pLSrc->IsQPtSrc())
|
---|
176 | { double ang1=pLSrc->getAngSize()+pLobe->AngleMax();
|
---|
177 | VPoin=pLobe->VecShift(VPointe, VY);
|
---|
178 | if (ang1>=M_PI) { } //rien
|
---|
179 | else
|
---|
180 | { double cosinus=VPoin*pLSrc->GetVSrcCenter();
|
---|
181 | if (cosinus<cos(ang1)) return 0.;
|
---|
182 | //C'est le cas ou la source est trop loin de la direction pointe
|
---|
183 | }
|
---|
184 | // Maintenant on intgre
|
---|
185 | angShiftLimit=ang1;
|
---|
186 | }
|
---|
187 | else
|
---|
188 | {
|
---|
189 | VPoin=pLobe->VecShift(VPointe, VY);
|
---|
190 | angShiftLimit=pLobe->AngleMax();
|
---|
191 | }
|
---|
192 |
|
---|
193 | // On va tourner autour de VPoin
|
---|
194 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
195 | UnitVector VPerp;
|
---|
196 | VPerp=VPoin.VperpPhi();
|
---|
197 |
|
---|
198 | double dAngShift=AngResComp(0.)*1.1;
|
---|
199 | // AngleSteps are not necessarily constant.
|
---|
200 | // factor 1.1 to raise ambiguities in nearby pixel integration
|
---|
201 | double lastAngShiftMax;
|
---|
202 | // Needed to compute accurately solid angle values
|
---|
203 |
|
---|
204 | VCur=VPoin;
|
---|
205 |
|
---|
206 | powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.);
|
---|
207 | lastAngShiftMax= dAngShift/2.;
|
---|
208 |
|
---|
209 | long NbPasOneCircle;
|
---|
210 | long CircleNumber=0; // no du cercle en cour:
|
---|
211 | // Gestion des dcalages pour un echantillonnage en quinconce
|
---|
212 | double solidAngStepCircle;
|
---|
213 | float stepAngCircle;
|
---|
214 |
|
---|
215 | ///---------- Lobe integration-----------------------------------------
|
---|
216 | // generate vectors around VPoin at angular distance angShift.
|
---|
217 | // Compute power flux from foreground in this direction
|
---|
218 | // Weigth with weigth function and solid angle
|
---|
219 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
220 |
|
---|
221 | while((lastAngShiftMax+dAngShift)<angShiftLimit){
|
---|
222 | CircleNumber++;
|
---|
223 | angShift=lastAngShiftMax+dAngShift/2.;
|
---|
224 |
|
---|
225 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
226 |
|
---|
227 | // Compute number of step and associates on a circle
|
---|
228 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
|
---|
229 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
230 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
231 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
|
---|
232 | // MRotAround=RotVec(VPoin,stepAngCircle);
|
---|
233 |
|
---|
234 | //----------- integrate on a circle -------------------
|
---|
235 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
|
---|
236 | // Pour un echantillonnage en quinconce
|
---|
237 |
|
---|
238 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
239 | {
|
---|
240 | //cout<< "rotation numb: "<< i<<endl;
|
---|
241 | powerInteg+=calcPowerDens()*solidAngStepCircle;
|
---|
242 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
243 | } // end of circle
|
---|
244 |
|
---|
245 | lastAngShiftMax+=dAngShift;
|
---|
246 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
247 | }
|
---|
248 |
|
---|
249 | // On s'occupe des effets de bord: un dernier tour!
|
---|
250 | // On change le code pour eviter les instabilites dues a dAngShift tres petit
|
---|
251 | CircleNumber++;
|
---|
252 | angShift=(angShiftLimit+lastAngShiftMax)/2.;
|
---|
253 |
|
---|
254 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
255 | // Compute number of step and associates on a circle
|
---|
256 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
|
---|
257 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
258 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
259 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
|
---|
260 |
|
---|
261 | //----------- integrate on last circle -------------------
|
---|
262 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
263 | {
|
---|
264 | powerInteg+=calcPowerDens()*solidAngStepCircle;
|
---|
265 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
266 | }
|
---|
267 | //end of last circle
|
---|
268 |
|
---|
269 | //end of integration
|
---|
270 |
|
---|
271 | // cout<<"On a termine un point, OUFF"<< endl;
|
---|
272 | return powerInteg;
|
---|
273 | }
|
---|
274 |
|
---|
275 | double SigCalcTool::NormKelvinRayleighJeans()
|
---|
276 | {
|
---|
277 | double tempeCNoir=10000.;
|
---|
278 | // Kelvin
|
---|
279 | double CutFreq=1.380662e-23*tempeCNoir/6.626176e-34/5.;
|
---|
280 | if(FreqMax>1.380662e-23*tempeCNoir/6.626176e-34/5.)
|
---|
281 | { cerr<< "RaleighJeans approximation is not valid for this frequency"<<endl;
|
---|
282 | cerr<< "Frequency: "<< FreqMax<<" in SigCalcTool::NormRayleighJeans"<<endl;
|
---|
283 | }
|
---|
284 |
|
---|
285 | LightBlackBody CorpsNoir(tempeCNoir, RAngComp);
|
---|
286 | SigCalcTool ToolRJ(&CorpsNoir,pLobe,pFilter);
|
---|
287 | double puissNorm = ToolRJ.compPixel(M_PI/2.,M_PI); // Un pixel au hasard
|
---|
288 | return tempeCNoir/puissNorm; // Kelvin RaleighJeans/(Watt/m2)
|
---|
289 |
|
---|
290 | }
|
---|
291 |
|
---|
292 | double SigCalcTool::NormKelvinCMB()
|
---|
293 | {
|
---|
294 | double deltatempeCNoir=1.; // Kelvin
|
---|
295 | LightNormTCMB DeltaCorpsNoir(deltatempeCNoir, RAngComp);
|
---|
296 | SigCalcTool ToolDeltaCMB(&DeltaCorpsNoir,pLobe,pFilter);
|
---|
297 | double puissNorm = ToolDeltaCMB.compPixel(M_PI/2.,M_PI); // Un pixel au hasard
|
---|
298 | return deltatempeCNoir/puissNorm; // KelvinCMB/(Watt/m2)
|
---|
299 |
|
---|
300 | }
|
---|
301 |
|
---|
302 | /*
|
---|
303 | double SigCalcTool::CalcInBandPower(double theta, double phi)
|
---|
304 | {
|
---|
305 | double returnRes=0.;
|
---|
306 | UnitVector VP(theta,phi);
|
---|
307 | UnitVector VYbidon=VP.VperpPhi();
|
---|
308 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
309 | VCur=VP;
|
---|
310 | VPointe=VP;
|
---|
311 | VY=VYbidon;
|
---|
312 | VX=VY^VP;
|
---|
313 | if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence
|
---|
314 | return returnRes;
|
---|
315 | }
|
---|
316 | */
|
---|
317 |
|
---|
318 | double SigCalcTool::AngResComp(double angle) const
|
---|
319 | {
|
---|
320 | double AngRes;
|
---|
321 | if(pLSrc->IsQPtSrc()) AngRes=RAngComp;
|
---|
322 | else AngRes=RAngComp*pLobe->ResolutionCurve(angle);
|
---|
323 | return AngRes;
|
---|
324 | }
|
---|
325 |
|
---|
326 |
|
---|
327 |
|
---|
328 | double SigCalcTool::max(double a, double b) const{
|
---|
329 | if(a>b) return a;
|
---|
330 | else return b;
|
---|
331 | }
|
---|
332 |
|
---|
333 | double SigCalcTool::min(double a, double b) const{
|
---|
334 | if(a<b) return a;
|
---|
335 | else return b;
|
---|
336 | }
|
---|
337 |
|
---|
338 | double SigCalcTool::CalcLobeSize(double frequency)
|
---|
339 | {
|
---|
340 | // Compute lobe extension in steradians
|
---|
341 |
|
---|
342 | if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.;
|
---|
343 |
|
---|
344 | double SizeInteg=0.;
|
---|
345 | // Sum of the incominig power on detector.
|
---|
346 | UnitVector VPoin;
|
---|
347 | // VPointe Boresigth du telescope microonde
|
---|
348 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
|
---|
349 | // VCur, vecteur courant du calcul.
|
---|
350 |
|
---|
351 | //------Initialisation of Lobe integration------------------------------------------
|
---|
352 | double angShift=0.; // Angular distance from VPoin
|
---|
353 | double angShiftLimit=pLobe->AngleMax(); // On calcule jusqu'a angShiftLimit de VPoin
|
---|
354 |
|
---|
355 |
|
---|
356 | // On va tourner autour de VPoin
|
---|
357 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
358 | UnitVector VPerp;
|
---|
359 | VPerp=VPoin.VperpPhi();
|
---|
360 |
|
---|
361 | double dAngShift=AngResComp(0.)*1.1;
|
---|
362 | // AngleSteps are not necessarily constant.
|
---|
363 | // factor 1.1 to raise ambiguities in nearby pixel integration.
|
---|
364 | double lastAngShiftMax;
|
---|
365 | // Needed to compute accurately solid angle values
|
---|
366 | UnitVector VCur;
|
---|
367 | VCur=VPoin;
|
---|
368 |
|
---|
369 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
370 | lastAngShiftMax= dAngShift/2.;
|
---|
371 |
|
---|
372 | long NbPasOneCircle;
|
---|
373 | long CircleNumber=0; // no du cercle en cour:
|
---|
374 | // Gestion des dcalages pour un echantillonnage en quinconce
|
---|
375 | double solidAngStepCircle;
|
---|
376 | float stepAngCircle;
|
---|
377 |
|
---|
378 | ///---------- Lobe integration-----------------------------------------
|
---|
379 | // generate vectors around VPoin at angular distance angShift.
|
---|
380 | // Compute power flux from foreground in this direction
|
---|
381 | // Weigth with weigth function and solid angle
|
---|
382 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
383 |
|
---|
384 | while((lastAngShiftMax+dAngShift)<angShiftLimit)
|
---|
385 | {
|
---|
386 | CircleNumber++;
|
---|
387 | angShift=lastAngShiftMax+dAngShift/2.;
|
---|
388 |
|
---|
389 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
390 |
|
---|
391 | // Compute number of step and associates on a circle
|
---|
392 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
|
---|
393 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
394 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
395 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
|
---|
396 |
|
---|
397 | //----------- integrate on a circle -------------------
|
---|
398 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
|
---|
399 | // Pour un echantillonnage en quinconce
|
---|
400 |
|
---|
401 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
402 | {
|
---|
403 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
404 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
405 | } // end of circle
|
---|
406 |
|
---|
407 | lastAngShiftMax+=dAngShift;
|
---|
408 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
409 | }
|
---|
410 |
|
---|
411 | // On s'occupe des effets de bord: un dernier tour!
|
---|
412 | // On change le code pour eviter les instabilites dues a dAngShift tres petit
|
---|
413 | CircleNumber++;
|
---|
414 | angShift=(angShiftLimit+lastAngShiftMax)/2.;
|
---|
415 |
|
---|
416 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
417 | // Compute number of step and associates on a circle
|
---|
418 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
|
---|
419 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
420 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
421 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
|
---|
422 |
|
---|
423 | //----------- integrate on last circle -------------------
|
---|
424 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
425 | {
|
---|
426 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
427 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
428 | }
|
---|
429 | //end of last circle
|
---|
430 |
|
---|
431 | //end of integration
|
---|
432 |
|
---|
433 | return SizeInteg;
|
---|
434 | }
|
---|
435 |
|
---|
436 | double SigCalcTool::diffSolidAng(double ang1,double ang2) const
|
---|
437 | { double returnVal; // Steradians
|
---|
438 | if(!pLSrc->IsPtSourceS()) returnVal= fabs(2*M_PI*(cos(ang1)-cos(ang2)));
|
---|
439 | // Cas d'une source tendue.
|
---|
440 | else returnVal= 1.;
|
---|
441 | // Cas d'une source ponctuelle. Sont flux est exprime en W/m2/Hz
|
---|
442 | // Pas d'angle solide.
|
---|
443 | return returnVal;
|
---|
444 |
|
---|
445 | }
|
---|
446 |
|
---|
447 | // should be included as a class member, would template member function
|
---|
448 | // work on all compilers
|
---|
449 |
|
---|
450 | static AbsLobeNoPolar* AddInBandPowerpLobe;
|
---|
451 | static AbsLightSource* AddInBandPowerpLSrc;
|
---|
452 | static SpectralResponse* AddInBandPowerpFilter;
|
---|
453 | static double AIBtheta;
|
---|
454 | static double AIBphi;
|
---|
455 |
|
---|
456 | static double AddInBandPowerFreqFunc1(double freq)
|
---|
457 | { // Integration function for GLInteg
|
---|
458 | double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq);
|
---|
459 | double temp2= AddInBandPowerpLobe->spectre(freq);
|
---|
460 | double temp3= AddInBandPowerpFilter->transmission(freq);
|
---|
461 | return temp1*temp2*temp3;
|
---|
462 | }
|
---|
463 |
|
---|
464 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool)
|
---|
465 | { // No spatial integration on the lobe
|
---|
466 | // Valid if lobe is separable in frequency
|
---|
467 | // Test
|
---|
468 | AddInBandPowerpLobe=Tool.getpLobe();
|
---|
469 | AddInBandPowerpLSrc=Tool.getpLSrc();
|
---|
470 | AddInBandPowerpFilter=Tool.getpFilter();
|
---|
471 | if(!AddInBandPowerpLobe->IsFreqSep())
|
---|
472 | { cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl;
|
---|
473 | cerr<<" No power added, addInBandPower skipped"<<endl;
|
---|
474 | return;
|
---|
475 | }
|
---|
476 |
|
---|
477 | long PixelNumber= Map.NbPixels();
|
---|
478 | double out;
|
---|
479 | T temp;
|
---|
480 | if(Tool.getOption()==AllSeparable)
|
---|
481 | { // Fast !
|
---|
482 | double FreqIntFactor=Tool.getIntegSpectOverFreq();
|
---|
483 | for(long k=0; k<PixelNumber; k++)
|
---|
484 | { Map.PixThetaPhi(k,AIBtheta,AIBphi);
|
---|
485 | out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor;
|
---|
486 | // Lobe weigth do no enters here
|
---|
487 | temp= (T) out;
|
---|
488 | Map(k)+= temp;
|
---|
489 | // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl;
|
---|
490 | }
|
---|
491 |
|
---|
492 | }
|
---|
493 | else
|
---|
494 | {
|
---|
495 | if(AddInBandPowerpLSrc->IsFreqSep())
|
---|
496 | { double FreqMax=Tool.getFreqMax();
|
---|
497 | double FreqMin=Tool.getFreqMin();
|
---|
498 | double out;
|
---|
499 | GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax);
|
---|
500 | Integrale.NStep(10); // Serieux!
|
---|
501 | for(long k=0; k<PixelNumber; k++)
|
---|
502 | {
|
---|
503 | Map.PixThetaPhi(k,AIBtheta,AIBphi);
|
---|
504 | // Lobe weigth do no enters here
|
---|
505 | out=Integrale.Value();
|
---|
506 | // Lobe weigth do no enters here
|
---|
507 | temp= (T) out;
|
---|
508 | Map(k)+= temp;
|
---|
509 | }
|
---|
510 | }
|
---|
511 | }
|
---|
512 | return;
|
---|
513 | }
|
---|
514 |
|
---|
515 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool);
|
---|
516 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool);
|
---|