| 1 |                         // Dominique YVON, CEA/DAPNIA/SPP 02/2000
 | 
|---|
| 2 | 
 | 
|---|
| 3 | #include <math.h>
 | 
|---|
| 4 | #include <iostream>
 | 
|---|
| 5 | #include <iostream>
 | 
|---|
| 6 | #include <fstream>
 | 
|---|
| 7 | #ifdef __MWERKS__
 | 
|---|
| 8 |     
 | 
|---|
| 9 |    #include "unixmac.h"
 | 
|---|
| 10 | #endif
 | 
|---|
| 11 | #include "sigcalctools.h"
 | 
|---|
| 12 | #include "lightdipole.h"
 | 
|---|
| 13 | 
 | 
|---|
| 14 | //_______________ ici toutes les frequences sont en Hz ___________________________
 | 
|---|
| 15 | 
 | 
|---|
| 16 | static SigCalcTool* pSigToolcur;
 | 
|---|
| 17 | 
 | 
|---|
| 18 | double SigCalGLFreqFunc1(double freq) {
 | 
|---|
| 19 |         double temp1=(pSigToolcur->pLSrc)->spectre(freq);
 | 
|---|
| 20 |         double temp2=(pSigToolcur->pLobe)->spectre(freq);
 | 
|---|
| 21 |         double temp3=(pSigToolcur->pFilter)->transmission(freq);
 | 
|---|
| 22 |         
 | 
|---|
| 23 |         return  temp1*temp2*temp3;
 | 
|---|
| 24 | }
 | 
|---|
| 25 | 
 | 
|---|
| 26 | double SigCalGLFreqFunc2(double freq) 
 | 
|---|
| 27 | { 
 | 
|---|
| 28 |         // Integration function for GLInteg
 | 
|---|
| 29 |   double temp1=
 | 
|---|
| 30 |         (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq);
 | 
|---|
| 31 |   double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq);
 | 
|---|
| 32 |   double temp3=(pSigToolcur->pFilter)->transmission(freq);
 | 
|---|
| 33 |   return temp1*temp2*temp3;
 | 
|---|
| 34 | }
 | 
|---|
| 35 | 
 | 
|---|
| 36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar, 
 | 
|---|
| 37 |         SpectralResponse* pFilt):pLSrc(pLightSrc)
 | 
|---|
| 38 | {       pLobe=pLobeNoPolar;
 | 
|---|
| 39 |         pFilter=pFilt;
 | 
|---|
| 40 |         
 | 
|---|
| 41 |         SigCalcToolInit(); 
 | 
|---|
| 42 | }
 | 
|---|
| 43 | 
 | 
|---|
| 44 | void SigCalcTool::SigCalcToolInit()
 | 
|---|
| 45 | {       emptySignal=false;
 | 
|---|
| 46 | // Compute frequency integration boundaries
 | 
|---|
| 47 |         cout<< "Initialisation Calctool"<<endl;
 | 
|---|
| 48 |         FreqMin=max(pLobe->minFreq(), pFilter->minFreq());
 | 
|---|
| 49 |         FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq());
 | 
|---|
| 50 |         if(FreqMax<FreqMin) { 
 | 
|---|
| 51 |                 emptySignal=true;
 | 
|---|
| 52 |                 cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl;
 | 
|---|
| 53 |                 cerr<< "check consistency of lobes and Filters"<<endl;
 | 
|---|
| 54 |         }
 | 
|---|
| 55 | // Computation Options
 | 
|---|
| 56 |         if(pLSrc->IsMappedPowerSrc())
 | 
|---|
| 57 |         {  if(!pLobe->IsFreqSep())
 | 
|---|
| 58 |                 { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl;
 | 
|---|
| 59 |                   cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl;
 | 
|---|
| 60 |                   cerr<<" Program exited"<<endl;
 | 
|---|
| 61 |                   exit(-1.);
 | 
|---|
| 62 |                 }
 | 
|---|
| 63 |                 Option=IsLightMapPowerInband;
 | 
|---|
| 64 |                 pIntegrale= new GLInteg();
 | 
|---|
| 65 |                         // Pour eviter un plantage dans ~SigCalcTool
 | 
|---|
| 66 |         }
 | 
|---|
| 67 |         
 | 
|---|
| 68 |         else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) {
 | 
|---|
| 69 |                 Option=AllSeparable;
 | 
|---|
| 70 |                 pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz.
 | 
|---|
| 71 |                 pSigToolcur=this;       
 | 
|---|
| 72 |                 pIntegrale->NStep(200);                 // Integration tres srieuse
 | 
|---|
| 73 |                 IntegSpectOverFreq=pIntegrale->Value();
 | 
|---|
| 74 |         }
 | 
|---|
| 75 | 
 | 
|---|
| 76 |         else 
 | 
|---|
| 77 |         {       Option=NonSeparable;
 | 
|---|
| 78 |                 pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax);
 | 
|---|
| 79 |             pIntegrale->NStep(10);                // Pour aller plus vite. Serieux si le filtre est "compact"
 | 
|---|
| 80 |         }
 | 
|---|
| 81 | // Computation Resolution
 | 
|---|
| 82 |         RAngComp=pLSrc->LSrcResol();      // On integre sur la resolution de la carte
 | 
|---|
| 83 |         if(RAngComp==0.) 
 | 
|---|
| 84 |         {       RAngComp=pLobe->lobeResol();
 | 
|---|
| 85 |                 if(RAngComp==0.) 
 | 
|---|
| 86 |                 {       cerr<<" Bizarre un lobe de resolution nulle?"<<endl;
 | 
|---|
| 87 |                         RAngComp= 5.e-4;        // Radians
 | 
|---|
| 88 |                                                                 // On prend la resolution nominale de Planck
 | 
|---|
| 89 |                 }
 | 
|---|
| 90 |         }
 | 
|---|
| 91 |         if(RAngComp<pLobe->lobeResol())
 | 
|---|
| 92 |         {       cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl;
 | 
|---|
| 93 |                 cerr<<" Not healthy: Ckeck consistency"<<endl;
 | 
|---|
| 94 |         } 
 | 
|---|
| 95 |         cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl;
 | 
|---|
| 96 | }
 | 
|---|
| 97 | 
 | 
|---|
| 98 | 
 | 
|---|
| 99 | 
 | 
|---|
| 100 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){
 | 
|---|
| 101 |   double returnRes=0.;
 | 
|---|
| 102 |   VPointe=VP;
 | 
|---|
| 103 |   VY=VdirectY;
 | 
|---|
| 104 |   VX=VY^VP;
 | 
|---|
| 105 |   if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere 
 | 
|---|
| 106 |   return returnRes;
 | 
|---|
| 107 | }
 | 
|---|
| 108 | 
 | 
|---|
| 109 | 
 | 
|---|
| 110 | double SigCalcTool::calcPowerDens() const{
 | 
|---|
| 111 | // Compute the power integrated on frequency dependance, (Lobe and LightSource)
 | 
|---|
| 112 |   pSigToolcur=(SigCalcTool*) this;
 | 
|---|
| 113 |   double returnRes;
 | 
|---|
| 114 |   double poidlobe;
 | 
|---|
| 115 |   double Puiss;
 | 
|---|
| 116 |   switch (Option) 
 | 
|---|
| 117 |   {
 | 
|---|
| 118 |         case AllSeparable:
 | 
|---|
| 119 |         { 
 | 
|---|
| 120 |           poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);  // ss dimensions
 | 
|---|
| 121 | /* 
 | 
|---|
| 122 |           if (poidlobe>.1) 
 | 
|---|
| 123 |           { cout<<poidlobe<<endl;
 | 
|---|
| 124 |           }
 | 
|---|
| 125 | */         
 | 
|---|
| 126 |          
 | 
|---|
| 127 |           Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
 | 
|---|
| 128 |                         // W m-2 st-1 Hz-1 
 | 
|---|
| 129 |           returnRes=Puiss * poidlobe * IntegSpectOverFreq;      // W / m2 / st
 | 
|---|
| 130 |           return returnRes;
 | 
|---|
| 131 |         }
 | 
|---|
| 132 |         case IsLightMapPowerInband:
 | 
|---|
| 133 |         {   
 | 
|---|
| 134 |          //     cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl;
 | 
|---|
| 135 |                 poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);
 | 
|---|
| 136 |                 Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
 | 
|---|
| 137 |                 returnRes=Puiss * poidlobe;
 | 
|---|
| 138 |                 return returnRes;
 | 
|---|
| 139 |         }
 | 
|---|
| 140 |         
 | 
|---|
| 141 |         default: 
 | 
|---|
| 142 |         {  // Cas NonSeparable
 | 
|---|
| 143 |            // Integration over at coordinates
 | 
|---|
| 144 |           returnRes=pIntegrale->Value();
 | 
|---|
| 145 |           return returnRes;
 | 
|---|
| 146 |         }
 | 
|---|
| 147 |  
 | 
|---|
| 148 |   }
 | 
|---|
| 149 | }
 | 
|---|
| 150 | 
 | 
|---|
| 151 | 
 | 
|---|
| 152 | #define NBStepCircleMin (12)
 | 
|---|
| 153 | 
 | 
|---|
| 154 | double SigCalcTool::powerInteg() {
 | 
|---|
| 155 |         // compute power on detector
 | 
|---|
| 156 |   
 | 
|---|
| 157 |   double powerInteg=0.; 
 | 
|---|
| 158 |         // Sum of the incominig power on detector.
 | 
|---|
| 159 |   UnitVector VPoin;
 | 
|---|
| 160 |     // VPointe Boresigth du telescope microonde
 | 
|---|
| 161 |     // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
 | 
|---|
| 162 |     // VCur, vecteur courant du calcul.
 | 
|---|
| 163 | //  double thetaCur, phiCur;    // Coordinates of VCur
 | 
|---|
| 164 |                                                           // Units is radian
 | 
|---|
| 165 |                                                           
 | 
|---|
| 166 |  
 | 
|---|
| 167 |   
 | 
|---|
| 168 |   //------Initialisation of Lobe integration------------------------------------------
 | 
|---|
| 169 |   double angShift=0.;       // Angular distance from VPoin
 | 
|---|
| 170 |   double angShiftLimit;         // On calcule jusqu'a angShiftLimit de VPoin
 | 
|---|
| 171 |   
 | 
|---|
| 172 |   if(pLSrc->IsQPtSrc())
 | 
|---|
| 173 |   {      double ang1=pLSrc->getAngSize()+pLobe->AngleMax();
 | 
|---|
| 174 |          VPoin=pLobe->VecShift(VPointe, VY); 
 | 
|---|
| 175 |      if (ang1>=M_PI) { } //rien 
 | 
|---|
| 176 |          else 
 | 
|---|
| 177 |          {  double cosinus=VPoin*pLSrc->GetVSrcCenter();
 | 
|---|
| 178 |             if (cosinus<cos(ang1)) return 0.;
 | 
|---|
| 179 |                 //C'est le cas ou la source est trop loin de la direction pointe
 | 
|---|
| 180 |          }
 | 
|---|
| 181 |                 // Maintenant on intgre
 | 
|---|
| 182 |          angShiftLimit=ang1;
 | 
|---|
| 183 |   }
 | 
|---|
| 184 |   else 
 | 
|---|
| 185 |   {
 | 
|---|
| 186 |      VPoin=pLobe->VecShift(VPointe, VY);      
 | 
|---|
| 187 |      angShiftLimit=pLobe->AngleMax();  
 | 
|---|
| 188 |   }
 | 
|---|
| 189 |   
 | 
|---|
| 190 |   // On va tourner autour de VPoin
 | 
|---|
| 191 |   // Compute unit vector perpendicular to Vpoin at same theta
 | 
|---|
| 192 |   UnitVector VPerp;
 | 
|---|
| 193 |   VPerp=VPoin.VperpPhi();
 | 
|---|
| 194 | 
 | 
|---|
| 195 |   double dAngShift=AngResComp(0.);
 | 
|---|
| 196 |     // AngleSteps are not necessarily constant.
 | 
|---|
| 197 |   double lastAngShiftMax;                            
 | 
|---|
| 198 |     // Needed to compute accurately solid angle values
 | 
|---|
| 199 | 
 | 
|---|
| 200 |   VCur=VPoin;
 | 
|---|
| 201 |   
 | 
|---|
| 202 |   powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.);
 | 
|---|
| 203 |   lastAngShiftMax= dAngShift/2.;
 | 
|---|
| 204 | 
 | 
|---|
| 205 |   long NbPasOneCircle;
 | 
|---|
| 206 |   long CircleNumber=0;   // no du cercle en cour: 
 | 
|---|
| 207 |                                                  // Gestion des dcalages pour un echantillonnage en quinconce
 | 
|---|
| 208 |   double solidAngStepCircle; 
 | 
|---|
| 209 |   float stepAngCircle;
 | 
|---|
| 210 | 
 | 
|---|
| 211 |   ///---------- Lobe integration-----------------------------------------
 | 
|---|
| 212 |   // generate vectors around VPoin at angular distance angShift.
 | 
|---|
| 213 |   // Compute power flux from foreground in this direction
 | 
|---|
| 214 |   // Weigth  with weigth function and solid angle
 | 
|---|
| 215 |   dAngShift=AngResComp(lastAngShiftMax);
 | 
|---|
| 216 | 
 | 
|---|
| 217 |   while((lastAngShiftMax+dAngShift)<angShiftLimit){
 | 
|---|
| 218 |         CircleNumber++;
 | 
|---|
| 219 |     angShift=lastAngShiftMax+dAngShift/2.;
 | 
|---|
| 220 |     
 | 
|---|
| 221 |     VCur=VPoin.Rotate(VPerp,angShift);
 | 
|---|
| 222 |     
 | 
|---|
| 223 |     // Compute number of step and associates on a circle  
 | 
|---|
| 224 |         NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
 | 
|---|
| 225 |         if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
 | 
|---|
| 226 |     stepAngCircle=2*M_PI/NbPasOneCircle;
 | 
|---|
| 227 |     solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
 | 
|---|
| 228 |         // MRotAround=RotVec(VPoin,stepAngCircle);
 | 
|---|
| 229 |         
 | 
|---|
| 230 |     //----------- integrate on a circle -------------------
 | 
|---|
| 231 |     if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
 | 
|---|
| 232 |         // Pour un echantillonnage en quinconce
 | 
|---|
| 233 |         
 | 
|---|
| 234 |     for(long i=0;i<NbPasOneCircle;i++)
 | 
|---|
| 235 |     {  
 | 
|---|
| 236 |       //cout<< "rotation numb: "<< i<<endl;     
 | 
|---|
| 237 |       powerInteg+=calcPowerDens()*solidAngStepCircle;
 | 
|---|
| 238 |       VCur=VCur.Rotate(VPoin,stepAngCircle);
 | 
|---|
| 239 |     }   // end of circle
 | 
|---|
| 240 |     
 | 
|---|
| 241 |     lastAngShiftMax+=dAngShift;
 | 
|---|
| 242 |     dAngShift=AngResComp(lastAngShiftMax);
 | 
|---|
| 243 |   }
 | 
|---|
| 244 |   
 | 
|---|
| 245 |   // On s'occupe des effets de bord: un dernier tour!
 | 
|---|
| 246 |   // On change le code pour eviter les instabilites dues a dAngShift tres petit
 | 
|---|
| 247 |   CircleNumber++;
 | 
|---|
| 248 |   angShift=(angShiftLimit+lastAngShiftMax)/2.;
 | 
|---|
| 249 |   
 | 
|---|
| 250 |   VCur=VPoin.Rotate(VPerp,angShift);
 | 
|---|
| 251 |   // Compute number of step and associates on a circle  
 | 
|---|
| 252 |   NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
 | 
|---|
| 253 |   if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
 | 
|---|
| 254 |   stepAngCircle=2*M_PI/NbPasOneCircle;
 | 
|---|
| 255 |   solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
 | 
|---|
| 256 | 
 | 
|---|
| 257 |   //----------- integrate on last circle -------------------
 | 
|---|
| 258 |   for(long i=0;i<NbPasOneCircle;i++)
 | 
|---|
| 259 |   {
 | 
|---|
| 260 |      powerInteg+=calcPowerDens()*solidAngStepCircle;
 | 
|---|
| 261 |      VCur=VCur.Rotate(VPoin,stepAngCircle);
 | 
|---|
| 262 |   }
 | 
|---|
| 263 |   //end of last circle
 | 
|---|
| 264 | 
 | 
|---|
| 265 |   //end of integration
 | 
|---|
| 266 |   
 | 
|---|
| 267 | // cout<<"On a termine un point, OUFF"<< endl;
 | 
|---|
| 268 |   return powerInteg;
 | 
|---|
| 269 | }
 | 
|---|
| 270 | 
 | 
|---|
| 271 | /*
 | 
|---|
| 272 | double SigCalcTool::CalcInBandPower(double theta, double phi)
 | 
|---|
| 273 | {
 | 
|---|
| 274 |   double returnRes=0.;
 | 
|---|
| 275 |   UnitVector VP(theta,phi);
 | 
|---|
| 276 |   UnitVector VYbidon=VP.VperpPhi();       
 | 
|---|
| 277 | // Compute unit vector perpendicular to Vpoin at same theta
 | 
|---|
| 278 |   VCur=VP;
 | 
|---|
| 279 |   VPointe=VP;
 | 
|---|
| 280 |   VY=VYbidon;
 | 
|---|
| 281 |   VX=VY^VP;
 | 
|---|
| 282 |   if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence 
 | 
|---|
| 283 |   return returnRes;
 | 
|---|
| 284 | }
 | 
|---|
| 285 | */
 | 
|---|
| 286 | 
 | 
|---|
| 287 | double SigCalcTool::AngResComp(double angle) const
 | 
|---|
| 288 | {
 | 
|---|
| 289 |   double AngRes;
 | 
|---|
| 290 |   if(pLSrc->IsQPtSrc()) AngRes=RAngComp;
 | 
|---|
| 291 |   else AngRes=RAngComp*pLobe->ResolutionCurve(angle);
 | 
|---|
| 292 |   return AngRes;
 | 
|---|
| 293 | }
 | 
|---|
| 294 | 
 | 
|---|
| 295 | double SigCalcTool::CalcLobeSize(double frequency) 
 | 
|---|
| 296 | {
 | 
|---|
| 297 |         // Compute lobe extension in steradians
 | 
|---|
| 298 |         
 | 
|---|
| 299 |   if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.;
 | 
|---|
| 300 |   
 | 
|---|
| 301 |   double SizeInteg=0.; 
 | 
|---|
| 302 |         // Sum of the incominig power on detector.
 | 
|---|
| 303 |   UnitVector VPoin;
 | 
|---|
| 304 |     // VPointe Boresigth du telescope microonde
 | 
|---|
| 305 |     // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
 | 
|---|
| 306 |     // VCur, vecteur courant du calcul.                                                  
 | 
|---|
| 307 |   
 | 
|---|
| 308 |   //------Initialisation of Lobe integration------------------------------------------
 | 
|---|
| 309 |   double angShift=0.;                           // Angular distance from VPoin
 | 
|---|
| 310 |   double angShiftLimit=pLobe->AngleMax();               // On calcule jusqu'a angShiftLimit de VPoin
 | 
|---|
| 311 |   
 | 
|---|
| 312 |   
 | 
|---|
| 313 |   // On va tourner autour de VPoin
 | 
|---|
| 314 |   // Compute unit vector perpendicular to Vpoin at same theta
 | 
|---|
| 315 |   UnitVector VPerp;
 | 
|---|
| 316 |   VPerp=VPoin.VperpPhi();
 | 
|---|
| 317 | 
 | 
|---|
| 318 |   double dAngShift=AngResComp(0.);
 | 
|---|
| 319 |     // AngleSteps are not necessarily constant.
 | 
|---|
| 320 |   double lastAngShiftMax;                            
 | 
|---|
| 321 |     // Needed to compute accurately solid angle values
 | 
|---|
| 322 |   UnitVector VCur;
 | 
|---|
| 323 |   VCur=VPoin;
 | 
|---|
| 324 |   
 | 
|---|
| 325 |   SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
 | 
|---|
| 326 |   lastAngShiftMax= dAngShift/2.;
 | 
|---|
| 327 | 
 | 
|---|
| 328 |   long NbPasOneCircle;
 | 
|---|
| 329 |   long CircleNumber=0;   // no du cercle en cour: 
 | 
|---|
| 330 |                                                  // Gestion des dcalages pour un echantillonnage en quinconce
 | 
|---|
| 331 |   double solidAngStepCircle; 
 | 
|---|
| 332 |   float stepAngCircle;
 | 
|---|
| 333 | 
 | 
|---|
| 334 |   ///---------- Lobe integration-----------------------------------------
 | 
|---|
| 335 |   // generate vectors around VPoin at angular distance angShift.
 | 
|---|
| 336 |   // Compute power flux from foreground in this direction
 | 
|---|
| 337 |   // Weigth  with weigth function and solid angle
 | 
|---|
| 338 |   dAngShift=AngResComp(lastAngShiftMax);
 | 
|---|
| 339 | 
 | 
|---|
| 340 |   while((lastAngShiftMax+dAngShift)<angShiftLimit)
 | 
|---|
| 341 |   {
 | 
|---|
| 342 |     CircleNumber++;
 | 
|---|
| 343 |     angShift=lastAngShiftMax+dAngShift/2.;
 | 
|---|
| 344 |     
 | 
|---|
| 345 |     VCur=VPoin.Rotate(VPerp,angShift);
 | 
|---|
| 346 |     
 | 
|---|
| 347 |     // Compute number of step and associates on a circle  
 | 
|---|
| 348 |         NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
 | 
|---|
| 349 |         if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
 | 
|---|
| 350 |     stepAngCircle=2*M_PI/NbPasOneCircle;
 | 
|---|
| 351 |     solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
 | 
|---|
| 352 |         
 | 
|---|
| 353 |     //----------- integrate on a circle -------------------
 | 
|---|
| 354 |     if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
 | 
|---|
| 355 |         // Pour un echantillonnage en quinconce
 | 
|---|
| 356 |         
 | 
|---|
| 357 |     for(long i=0;i<NbPasOneCircle;i++)
 | 
|---|
| 358 |     {           
 | 
|---|
| 359 |       SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
 | 
|---|
| 360 |       VCur=VCur.Rotate(VPoin,stepAngCircle);
 | 
|---|
| 361 |     }   // end of circle
 | 
|---|
| 362 |     
 | 
|---|
| 363 |     lastAngShiftMax+=dAngShift;
 | 
|---|
| 364 |     dAngShift=AngResComp(lastAngShiftMax);
 | 
|---|
| 365 |   }
 | 
|---|
| 366 |   
 | 
|---|
| 367 |   // On s'occupe des effets de bord: un dernier tour!
 | 
|---|
| 368 |   // On change le code pour eviter les instabilites dues a dAngShift tres petit
 | 
|---|
| 369 |   CircleNumber++;
 | 
|---|
| 370 |   angShift=(angShiftLimit+lastAngShiftMax)/2.;
 | 
|---|
| 371 |   
 | 
|---|
| 372 |   VCur=VPoin.Rotate(VPerp,angShift);
 | 
|---|
| 373 |   // Compute number of step and associates on a circle  
 | 
|---|
| 374 |   NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
 | 
|---|
| 375 |   if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
 | 
|---|
| 376 |   stepAngCircle=2*M_PI/NbPasOneCircle;
 | 
|---|
| 377 |   solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
 | 
|---|
| 378 | 
 | 
|---|
| 379 |   //----------- integrate on last circle -------------------
 | 
|---|
| 380 |   for(long i=0;i<NbPasOneCircle;i++)
 | 
|---|
| 381 |   {
 | 
|---|
| 382 |      SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
 | 
|---|
| 383 |      VCur=VCur.Rotate(VPoin,stepAngCircle);
 | 
|---|
| 384 |   }
 | 
|---|
| 385 |   //end of last circle
 | 
|---|
| 386 |   
 | 
|---|
| 387 |   //end of integration  
 | 
|---|
| 388 |   
 | 
|---|
| 389 |   return SizeInteg;
 | 
|---|
| 390 | }
 | 
|---|
| 391 | 
 | 
|---|
| 392 | // should be included as a class member, would template member function 
 | 
|---|
| 393 | // work on all compilers
 | 
|---|
| 394 | 
 | 
|---|
| 395 | static AbsLobeNoPolar* AddInBandPowerpLobe;
 | 
|---|
| 396 | static AbsLightSource* AddInBandPowerpLSrc;
 | 
|---|
| 397 | static SpectralResponse* AddInBandPowerpFilter;
 | 
|---|
| 398 | static double AIBtheta;
 | 
|---|
| 399 | static double AIBphi;
 | 
|---|
| 400 | 
 | 
|---|
| 401 | static double AddInBandPowerFreqFunc1(double freq)
 | 
|---|
| 402 | {  // Integration function for GLInteg
 | 
|---|
| 403 |   double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq);
 | 
|---|
| 404 |   double temp2= AddInBandPowerpLobe->spectre(freq);
 | 
|---|
| 405 |   double temp3= AddInBandPowerpFilter->transmission(freq);
 | 
|---|
| 406 |   return temp1*temp2*temp3;
 | 
|---|
| 407 | }
 | 
|---|
| 408 | 
 | 
|---|
| 409 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool)
 | 
|---|
| 410 | {       // No spatial integration on the lobe
 | 
|---|
| 411 |         // Valid if lobe is separable in frequency
 | 
|---|
| 412 |         // Test  
 | 
|---|
| 413 |   AddInBandPowerpLobe=Tool.getpLobe();
 | 
|---|
| 414 |   AddInBandPowerpLSrc=Tool.getpLSrc();
 | 
|---|
| 415 |   AddInBandPowerpFilter=Tool.getpFilter();
 | 
|---|
| 416 |   if(!AddInBandPowerpLobe->IsFreqSep())
 | 
|---|
| 417 |   {     cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl;
 | 
|---|
| 418 |     cerr<<" No power added, addInBandPower skipped"<<endl;
 | 
|---|
| 419 |     return;
 | 
|---|
| 420 |   }
 | 
|---|
| 421 |     
 | 
|---|
| 422 |   long PixelNumber= Map.NbPixels();
 | 
|---|
| 423 |   double out;
 | 
|---|
| 424 |   T temp;
 | 
|---|
| 425 |   if(Tool.getOption()==AllSeparable)
 | 
|---|
| 426 |   {             // Fast !
 | 
|---|
| 427 |         double FreqIntFactor=Tool.getIntegSpectOverFreq();
 | 
|---|
| 428 |         for(long k=0; k<PixelNumber; k++)
 | 
|---|
| 429 |         {  Map.PixThetaPhi(k,AIBtheta,AIBphi);
 | 
|---|
| 430 |            out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor;
 | 
|---|
| 431 |                  // Lobe weigth do no enters here
 | 
|---|
| 432 |            temp= (T) out;
 | 
|---|
| 433 |        Map(k)+= temp;
 | 
|---|
| 434 |    // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl;
 | 
|---|
| 435 |         }
 | 
|---|
| 436 |   
 | 
|---|
| 437 |   }
 | 
|---|
| 438 |   else
 | 
|---|
| 439 |   {
 | 
|---|
| 440 |     if(AddInBandPowerpLSrc->IsFreqSep()) 
 | 
|---|
| 441 |     { double FreqMax=Tool.getFreqMax();
 | 
|---|
| 442 |       double FreqMin=Tool.getFreqMin();
 | 
|---|
| 443 |       double out;
 | 
|---|
| 444 |       GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax);
 | 
|---|
| 445 |       Integrale.NStep(10);      // Serieux!
 | 
|---|
| 446 |           for(long k=0; k<PixelNumber; k++)
 | 
|---|
| 447 |           {  
 | 
|---|
| 448 |             Map.PixThetaPhi(k,AIBtheta,AIBphi);
 | 
|---|
| 449 |                                  // Lobe weigth do no enters here
 | 
|---|
| 450 |         out=Integrale.Value();
 | 
|---|
| 451 |                  // Lobe weigth do no enters here
 | 
|---|
| 452 |             temp= (T) out;
 | 
|---|
| 453 |         Map(k)+= temp;
 | 
|---|
| 454 |       }
 | 
|---|
| 455 |         }
 | 
|---|
| 456 |   }
 | 
|---|
| 457 |    return;
 | 
|---|
| 458 | }
 | 
|---|
| 459 | 
 | 
|---|
| 460 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool);
 | 
|---|
| 461 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool);
 | 
|---|