1 | // Dominique YVON, CEA/DAPNIA/SPP 02/2000
|
---|
2 |
|
---|
3 | #include <math.h>
|
---|
4 | #include <iostream>
|
---|
5 | #include <iostream>
|
---|
6 | #include <fstream>
|
---|
7 | #ifdef __MWERKS__
|
---|
8 |
|
---|
9 | #include "unixmac.h"
|
---|
10 | #endif
|
---|
11 | #include "sigcalctools.h"
|
---|
12 | #include "lightdipole.h"
|
---|
13 |
|
---|
14 | //_______________ ici toutes les frequences sont en Hz ___________________________
|
---|
15 |
|
---|
16 | static SigCalcTool* pSigToolcur;
|
---|
17 |
|
---|
18 | double SigCalGLFreqFunc1(double freq) {
|
---|
19 | double temp1=(pSigToolcur->pLSrc)->spectre(freq);
|
---|
20 | double temp2=(pSigToolcur->pLobe)->spectre(freq);
|
---|
21 | double temp3=(pSigToolcur->pFilter)->transmission(freq);
|
---|
22 |
|
---|
23 | return temp1*temp2*temp3;
|
---|
24 | }
|
---|
25 |
|
---|
26 | double SigCalGLFreqFunc2(double freq)
|
---|
27 | {
|
---|
28 | // Integration function for GLInteg
|
---|
29 | double temp1=
|
---|
30 | (pSigToolcur->pLSrc)->powSpecDens((pSigToolcur->VPointe).Theta(),(pSigToolcur->VPointe).Phi(),freq);
|
---|
31 | double temp2=(pSigToolcur->pLobe)->weigth(pSigToolcur->VCur,pSigToolcur->VPointe,pSigToolcur->VY,freq);
|
---|
32 | double temp3=(pSigToolcur->pFilter)->transmission(freq);
|
---|
33 | return temp1*temp2*temp3;
|
---|
34 | }
|
---|
35 |
|
---|
36 | SigCalcTool::SigCalcTool(AbsLightSource* pLightSrc, AbsLobeNoPolar* pLobeNoPolar,
|
---|
37 | SpectralResponse* pFilt):pLSrc(pLightSrc)
|
---|
38 | { pLobe=pLobeNoPolar;
|
---|
39 | pFilter=pFilt;
|
---|
40 |
|
---|
41 | SigCalcToolInit();
|
---|
42 | }
|
---|
43 |
|
---|
44 | void SigCalcTool::SigCalcToolInit()
|
---|
45 | { emptySignal=false;
|
---|
46 | // Compute frequency integration boundaries
|
---|
47 | cout<< "Initialisation Calctool"<<endl;
|
---|
48 | FreqMin=max(pLobe->minFreq(), pFilter->minFreq());
|
---|
49 | FreqMax=min(pLobe->maxFreq(), pFilter->maxFreq());
|
---|
50 | if(FreqMax<FreqMin) {
|
---|
51 | emptySignal=true;
|
---|
52 | cerr<< "Frequency max is lower than Frequency Min in SigCalcTool"<<endl;
|
---|
53 | cerr<< "check consistency of lobes and Filters"<<endl;
|
---|
54 | }
|
---|
55 | // Computation Options
|
---|
56 | if(pLSrc->IsMappedPowerSrc())
|
---|
57 | { if(!pLobe->IsFreqSep())
|
---|
58 | { cerr<<" Sigcalctool error: using a LightMapPowerInband with a lobe non freq separable"<<endl;
|
---|
59 | cerr<<" Did you change lobe between constructing the map and running sigcalctool?"<<endl;
|
---|
60 | cerr<<" Program exited"<<endl;
|
---|
61 | exit(-1.);
|
---|
62 | }
|
---|
63 | Option=IsLightMapPowerInband;
|
---|
64 | pIntegrale= new GLInteg();
|
---|
65 | // Pour eviter un plantage dans ~SigCalcTool
|
---|
66 | }
|
---|
67 |
|
---|
68 | else if(pLSrc->IsFreqSep()&&pLobe->IsFreqSep()) {
|
---|
69 | Option=AllSeparable;
|
---|
70 | pIntegrale= new GLInteg(SigCalGLFreqFunc1,FreqMin,FreqMax); //en Hz.
|
---|
71 | pSigToolcur=this;
|
---|
72 | pIntegrale->NStep(200); // Integration tres srieuse
|
---|
73 | IntegSpectOverFreq=pIntegrale->Value();
|
---|
74 | }
|
---|
75 |
|
---|
76 | else
|
---|
77 | { Option=NonSeparable;
|
---|
78 | pIntegrale= new GLInteg(SigCalGLFreqFunc2,FreqMin,FreqMax);
|
---|
79 | pIntegrale->NStep(10); // Pour aller plus vite. Serieux si le filtre est "compact"
|
---|
80 | }
|
---|
81 | // Computation Resolution
|
---|
82 | RAngComp=pLSrc->LSrcResol(); // On integre sur la resolution de la carte
|
---|
83 | if(RAngComp==0.)
|
---|
84 | { RAngComp=pLobe->lobeResol();
|
---|
85 | if(RAngComp==0.)
|
---|
86 | { cerr<<" Bizarre un lobe de resolution nulle?"<<endl;
|
---|
87 | RAngComp= 5.e-4; // Radians
|
---|
88 | // On prend la resolution nominale de Planck
|
---|
89 | }
|
---|
90 | }
|
---|
91 | if(RAngComp<pLobe->lobeResol())
|
---|
92 | { cerr<<" SigCalcTool: LightSource resolution lower than expected lobe resolution"<<endl;
|
---|
93 | cerr<<" Not healthy: Ckeck consistency"<<endl;
|
---|
94 | }
|
---|
95 | cout<<"Resolution de calcul: "<<RAngComp<<" Radian"<<endl<<endl;
|
---|
96 | }
|
---|
97 |
|
---|
98 |
|
---|
99 |
|
---|
100 | double SigCalcTool::compPixel(UnitVector& VP, UnitVector& VdirectY){
|
---|
101 | double returnRes=0.;
|
---|
102 | VPointe=VP;
|
---|
103 | VY=VdirectY;
|
---|
104 | VX=VY^VP;
|
---|
105 | if(!emptySignal) returnRes=powerInteg(); // On integre sur la sphere
|
---|
106 | return returnRes;
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | double SigCalcTool::calcPowerDens() const{
|
---|
111 | // Compute the power integrated on frequency dependance, (Lobe and LightSource)
|
---|
112 | pSigToolcur=(SigCalcTool*) this;
|
---|
113 | double returnRes;
|
---|
114 | double poidlobe;
|
---|
115 | double Puiss;
|
---|
116 | switch (Option)
|
---|
117 | {
|
---|
118 | case AllSeparable:
|
---|
119 | {
|
---|
120 | poidlobe=(pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY); // ss dimensions
|
---|
121 | /*
|
---|
122 | if (poidlobe>.1)
|
---|
123 | { cout<<poidlobe<<endl;
|
---|
124 | }
|
---|
125 | */
|
---|
126 |
|
---|
127 | Puiss=(pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
|
---|
128 | // W m-2 st-1 Hz-1
|
---|
129 | returnRes=Puiss * poidlobe * IntegSpectOverFreq; // W / m2 / st
|
---|
130 | return returnRes;
|
---|
131 | }
|
---|
132 | case IsLightMapPowerInband:
|
---|
133 | {
|
---|
134 | // cout<<"VCur.Theta: "<<VCur.Theta()<<"VCur.Phi(): "<<VCur.Phi()<<endl;
|
---|
135 | poidlobe= (pSigToolcur->pLobe)->weigthAmpl(VCur,VPointe,VY);
|
---|
136 | Puiss= (pSigToolcur->pLSrc)->powerDensAmpli(VCur.Theta(),VCur.Phi());
|
---|
137 | returnRes=Puiss * poidlobe;
|
---|
138 | return returnRes;
|
---|
139 | }
|
---|
140 |
|
---|
141 | default:
|
---|
142 | { // Cas NonSeparable
|
---|
143 | // Integration over at coordinates
|
---|
144 | returnRes=pIntegrale->Value();
|
---|
145 | return returnRes;
|
---|
146 | }
|
---|
147 |
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 |
|
---|
152 | #define NBStepCircleMin (12)
|
---|
153 |
|
---|
154 | double SigCalcTool::powerInteg() {
|
---|
155 | // compute power on detector
|
---|
156 |
|
---|
157 | double powerInteg=0.;
|
---|
158 | // Sum of the incominig power on detector.
|
---|
159 | UnitVector VPoin;
|
---|
160 | // VPointe Boresigth du telescope microonde
|
---|
161 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
|
---|
162 | // VCur, vecteur courant du calcul.
|
---|
163 | // double thetaCur, phiCur; // Coordinates of VCur
|
---|
164 | // Units is radian
|
---|
165 |
|
---|
166 |
|
---|
167 |
|
---|
168 | //------Initialisation of Lobe integration------------------------------------------
|
---|
169 | double angShift=0.; // Angular distance from VPoin
|
---|
170 | double angShiftLimit; // On calcule jusqu'a angShiftLimit de VPoin
|
---|
171 |
|
---|
172 | if(pLSrc->IsQPtSrc())
|
---|
173 | { double ang1=pLSrc->getAngSize()+pLobe->AngleMax();
|
---|
174 | VPoin=pLobe->VecShift(VPointe, VY);
|
---|
175 | if (ang1>=M_PI) { } //rien
|
---|
176 | else
|
---|
177 | { double cosinus=VPoin*pLSrc->GetVSrcCenter();
|
---|
178 | if (cosinus<cos(ang1)) return 0.;
|
---|
179 | //C'est le cas ou la source est trop loin de la direction pointe
|
---|
180 | }
|
---|
181 | // Maintenant on intgre
|
---|
182 | angShiftLimit=ang1;
|
---|
183 | }
|
---|
184 | else
|
---|
185 | {
|
---|
186 | VPoin=pLobe->VecShift(VPointe, VY);
|
---|
187 | angShiftLimit=pLobe->AngleMax();
|
---|
188 | }
|
---|
189 |
|
---|
190 | // On va tourner autour de VPoin
|
---|
191 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
192 | UnitVector VPerp;
|
---|
193 | VPerp=VPoin.VperpPhi();
|
---|
194 |
|
---|
195 | double dAngShift=AngResComp(0.);
|
---|
196 | // AngleSteps are not necessarily constant.
|
---|
197 | double lastAngShiftMax;
|
---|
198 | // Needed to compute accurately solid angle values
|
---|
199 |
|
---|
200 | VCur=VPoin;
|
---|
201 |
|
---|
202 | powerInteg+=calcPowerDens()*diffSolidAng(0.,dAngShift/2.);
|
---|
203 | lastAngShiftMax= dAngShift/2.;
|
---|
204 |
|
---|
205 | long NbPasOneCircle;
|
---|
206 | long CircleNumber=0; // no du cercle en cour:
|
---|
207 | // Gestion des dcalages pour un echantillonnage en quinconce
|
---|
208 | double solidAngStepCircle;
|
---|
209 | float stepAngCircle;
|
---|
210 |
|
---|
211 | ///---------- Lobe integration-----------------------------------------
|
---|
212 | // generate vectors around VPoin at angular distance angShift.
|
---|
213 | // Compute power flux from foreground in this direction
|
---|
214 | // Weigth with weigth function and solid angle
|
---|
215 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
216 |
|
---|
217 | while((lastAngShiftMax+dAngShift)<angShiftLimit){
|
---|
218 | CircleNumber++;
|
---|
219 | angShift=lastAngShiftMax+dAngShift/2.;
|
---|
220 |
|
---|
221 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
222 |
|
---|
223 | // Compute number of step and associates on a circle
|
---|
224 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
|
---|
225 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
226 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
227 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
|
---|
228 | // MRotAround=RotVec(VPoin,stepAngCircle);
|
---|
229 |
|
---|
230 | //----------- integrate on a circle -------------------
|
---|
231 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
|
---|
232 | // Pour un echantillonnage en quinconce
|
---|
233 |
|
---|
234 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
235 | {
|
---|
236 | //cout<< "rotation numb: "<< i<<endl;
|
---|
237 | powerInteg+=calcPowerDens()*solidAngStepCircle;
|
---|
238 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
239 | } // end of circle
|
---|
240 |
|
---|
241 | lastAngShiftMax+=dAngShift;
|
---|
242 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
243 | }
|
---|
244 |
|
---|
245 | // On s'occupe des effets de bord: un dernier tour!
|
---|
246 | // On change le code pour eviter les instabilites dues a dAngShift tres petit
|
---|
247 | CircleNumber++;
|
---|
248 | angShift=(angShiftLimit+lastAngShiftMax)/2.;
|
---|
249 |
|
---|
250 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
251 | // Compute number of step and associates on a circle
|
---|
252 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
|
---|
253 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
254 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
255 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
|
---|
256 |
|
---|
257 | //----------- integrate on last circle -------------------
|
---|
258 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
259 | {
|
---|
260 | powerInteg+=calcPowerDens()*solidAngStepCircle;
|
---|
261 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
262 | }
|
---|
263 | //end of last circle
|
---|
264 |
|
---|
265 | //end of integration
|
---|
266 |
|
---|
267 | // cout<<"On a termine un point, OUFF"<< endl;
|
---|
268 | return powerInteg;
|
---|
269 | }
|
---|
270 |
|
---|
271 | /*
|
---|
272 | double SigCalcTool::CalcInBandPower(double theta, double phi)
|
---|
273 | {
|
---|
274 | double returnRes=0.;
|
---|
275 | UnitVector VP(theta,phi);
|
---|
276 | UnitVector VYbidon=VP.VperpPhi();
|
---|
277 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
278 | VCur=VP;
|
---|
279 | VPointe=VP;
|
---|
280 | VY=VYbidon;
|
---|
281 | VX=VY^VP;
|
---|
282 | if(!emptySignal) returnRes=calcPowerDens(); // On integre sur la frequence
|
---|
283 | return returnRes;
|
---|
284 | }
|
---|
285 | */
|
---|
286 |
|
---|
287 | double SigCalcTool::AngResComp(double angle) const
|
---|
288 | {
|
---|
289 | double AngRes;
|
---|
290 | if(pLSrc->IsQPtSrc()) AngRes=RAngComp;
|
---|
291 | else AngRes=RAngComp*pLobe->ResolutionCurve(angle);
|
---|
292 | return AngRes;
|
---|
293 | }
|
---|
294 |
|
---|
295 | double SigCalcTool::CalcLobeSize(double frequency)
|
---|
296 | {
|
---|
297 | // Compute lobe extension in steradians
|
---|
298 |
|
---|
299 | if(frequency== -10.) frequency=(FreqMin+FreqMax)/2.;
|
---|
300 |
|
---|
301 | double SizeInteg=0.;
|
---|
302 | // Sum of the incominig power on detector.
|
---|
303 | UnitVector VPoin;
|
---|
304 | // VPointe Boresigth du telescope microonde
|
---|
305 | // VPoin direction priviliegiee du lobe, autour de laquelle on calcule
|
---|
306 | // VCur, vecteur courant du calcul.
|
---|
307 |
|
---|
308 | //------Initialisation of Lobe integration------------------------------------------
|
---|
309 | double angShift=0.; // Angular distance from VPoin
|
---|
310 | double angShiftLimit=pLobe->AngleMax(); // On calcule jusqu'a angShiftLimit de VPoin
|
---|
311 |
|
---|
312 |
|
---|
313 | // On va tourner autour de VPoin
|
---|
314 | // Compute unit vector perpendicular to Vpoin at same theta
|
---|
315 | UnitVector VPerp;
|
---|
316 | VPerp=VPoin.VperpPhi();
|
---|
317 |
|
---|
318 | double dAngShift=AngResComp(0.);
|
---|
319 | // AngleSteps are not necessarily constant.
|
---|
320 | double lastAngShiftMax;
|
---|
321 | // Needed to compute accurately solid angle values
|
---|
322 | UnitVector VCur;
|
---|
323 | VCur=VPoin;
|
---|
324 |
|
---|
325 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
326 | lastAngShiftMax= dAngShift/2.;
|
---|
327 |
|
---|
328 | long NbPasOneCircle;
|
---|
329 | long CircleNumber=0; // no du cercle en cour:
|
---|
330 | // Gestion des dcalages pour un echantillonnage en quinconce
|
---|
331 | double solidAngStepCircle;
|
---|
332 | float stepAngCircle;
|
---|
333 |
|
---|
334 | ///---------- Lobe integration-----------------------------------------
|
---|
335 | // generate vectors around VPoin at angular distance angShift.
|
---|
336 | // Compute power flux from foreground in this direction
|
---|
337 | // Weigth with weigth function and solid angle
|
---|
338 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
339 |
|
---|
340 | while((lastAngShiftMax+dAngShift)<angShiftLimit)
|
---|
341 | {
|
---|
342 | CircleNumber++;
|
---|
343 | angShift=lastAngShiftMax+dAngShift/2.;
|
---|
344 |
|
---|
345 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
346 |
|
---|
347 | // Compute number of step and associates on a circle
|
---|
348 | NbPasOneCircle=(long) (2*M_PI*sin(angShift)/sin(dAngShift));
|
---|
349 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
350 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
351 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShift+dAngShift/2.)/NbPasOneCircle;
|
---|
352 |
|
---|
353 | //----------- integrate on a circle -------------------
|
---|
354 | if((CircleNumber%2)==0) VCur=VCur.Rotate(VPoin,stepAngCircle/2.);
|
---|
355 | // Pour un echantillonnage en quinconce
|
---|
356 |
|
---|
357 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
358 | {
|
---|
359 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
360 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
361 | } // end of circle
|
---|
362 |
|
---|
363 | lastAngShiftMax+=dAngShift;
|
---|
364 | dAngShift=AngResComp(lastAngShiftMax);
|
---|
365 | }
|
---|
366 |
|
---|
367 | // On s'occupe des effets de bord: un dernier tour!
|
---|
368 | // On change le code pour eviter les instabilites dues a dAngShift tres petit
|
---|
369 | CircleNumber++;
|
---|
370 | angShift=(angShiftLimit+lastAngShiftMax)/2.;
|
---|
371 |
|
---|
372 | VCur=VPoin.Rotate(VPerp,angShift);
|
---|
373 | // Compute number of step and associates on a circle
|
---|
374 | NbPasOneCircle=(long) 2*M_PI*sin(angShift)/sin(AngResComp(angShift));
|
---|
375 | if(NbPasOneCircle<NBStepCircleMin) NbPasOneCircle=NBStepCircleMin;
|
---|
376 | stepAngCircle=2*M_PI/NbPasOneCircle;
|
---|
377 | solidAngStepCircle= diffSolidAng(lastAngShiftMax,angShiftLimit)/NbPasOneCircle;
|
---|
378 |
|
---|
379 | //----------- integrate on last circle -------------------
|
---|
380 | for(long i=0;i<NbPasOneCircle;i++)
|
---|
381 | {
|
---|
382 | SizeInteg+= pLobe->weigth(VCur,VPoin,VPerp,frequency)*diffSolidAng(0.,dAngShift/2.);
|
---|
383 | VCur=VCur.Rotate(VPoin,stepAngCircle);
|
---|
384 | }
|
---|
385 | //end of last circle
|
---|
386 |
|
---|
387 | //end of integration
|
---|
388 |
|
---|
389 | return SizeInteg;
|
---|
390 | }
|
---|
391 |
|
---|
392 | // should be included as a class member, would template member function
|
---|
393 | // work on all compilers
|
---|
394 |
|
---|
395 | static AbsLobeNoPolar* AddInBandPowerpLobe;
|
---|
396 | static AbsLightSource* AddInBandPowerpLSrc;
|
---|
397 | static SpectralResponse* AddInBandPowerpFilter;
|
---|
398 | static double AIBtheta;
|
---|
399 | static double AIBphi;
|
---|
400 |
|
---|
401 | static double AddInBandPowerFreqFunc1(double freq)
|
---|
402 | { // Integration function for GLInteg
|
---|
403 | double temp1= AddInBandPowerpLSrc->powSpecDens(AIBtheta,AIBphi,freq);
|
---|
404 | double temp2= AddInBandPowerpLobe->spectre(freq);
|
---|
405 | double temp3= AddInBandPowerpFilter->transmission(freq);
|
---|
406 | return temp1*temp2*temp3;
|
---|
407 | }
|
---|
408 |
|
---|
409 | template <class T> void addInInBandPowerMap(PixelMap<T>& Map, SigCalcTool& Tool)
|
---|
410 | { // No spatial integration on the lobe
|
---|
411 | // Valid if lobe is separable in frequency
|
---|
412 | // Test
|
---|
413 | AddInBandPowerpLobe=Tool.getpLobe();
|
---|
414 | AddInBandPowerpLSrc=Tool.getpLSrc();
|
---|
415 | AddInBandPowerpFilter=Tool.getpFilter();
|
---|
416 | if(!AddInBandPowerpLobe->IsFreqSep())
|
---|
417 | { cerr<<" Adding power to a map using a lobe non separable in frequency is inconsistent"<<endl;
|
---|
418 | cerr<<" No power added, addInBandPower skipped"<<endl;
|
---|
419 | return;
|
---|
420 | }
|
---|
421 |
|
---|
422 | long PixelNumber= Map.NbPixels();
|
---|
423 | double out;
|
---|
424 | T temp;
|
---|
425 | if(Tool.getOption()==AllSeparable)
|
---|
426 | { // Fast !
|
---|
427 | double FreqIntFactor=Tool.getIntegSpectOverFreq();
|
---|
428 | for(long k=0; k<PixelNumber; k++)
|
---|
429 | { Map.PixThetaPhi(k,AIBtheta,AIBphi);
|
---|
430 | out= AddInBandPowerpLSrc->powerDensAmpli(AIBtheta,AIBphi)*FreqIntFactor;
|
---|
431 | // Lobe weigth do no enters here
|
---|
432 | temp= (T) out;
|
---|
433 | Map(k)+= temp;
|
---|
434 | // if((k%200)==0) cout<<"200 points calculs "<<"NbPoint Total= "<<k<<endl;
|
---|
435 | }
|
---|
436 |
|
---|
437 | }
|
---|
438 | else
|
---|
439 | {
|
---|
440 | if(AddInBandPowerpLSrc->IsFreqSep())
|
---|
441 | { double FreqMax=Tool.getFreqMax();
|
---|
442 | double FreqMin=Tool.getFreqMin();
|
---|
443 | double out;
|
---|
444 | GLInteg Integrale(AddInBandPowerFreqFunc1,FreqMin,FreqMax);
|
---|
445 | Integrale.NStep(10); // Serieux!
|
---|
446 | for(long k=0; k<PixelNumber; k++)
|
---|
447 | {
|
---|
448 | Map.PixThetaPhi(k,AIBtheta,AIBphi);
|
---|
449 | // Lobe weigth do no enters here
|
---|
450 | out=Integrale.Value();
|
---|
451 | // Lobe weigth do no enters here
|
---|
452 | temp= (T) out;
|
---|
453 | Map(k)+= temp;
|
---|
454 | }
|
---|
455 | }
|
---|
456 | }
|
---|
457 | return;
|
---|
458 | }
|
---|
459 |
|
---|
460 | template void addInInBandPowerMap(PixelMap<float>& Map, SigCalcTool& tool);
|
---|
461 | template void addInInBandPowerMap(PixelMap<double>& Map, SigCalcTool& tool);
|
---|