| 1 | /* | 
|---|
| 2 | * $Id: eval.cc,v 1.1.1.1 1999-04-09 17:59:03 ansari Exp $ | 
|---|
| 3 | * | 
|---|
| 4 | * $Log: not supported by cvs2svn $ | 
|---|
| 5 | * Revision 1.2  1998/03/14 00:04:47  tveldhui | 
|---|
| 6 | * 0.2-alpha-05 | 
|---|
| 7 | * | 
|---|
| 8 | * Revision 1.1  1998/02/25 20:04:01  tveldhui | 
|---|
| 9 | * Initial revision | 
|---|
| 10 | * | 
|---|
| 11 | */ | 
|---|
| 12 |  | 
|---|
| 13 | #ifndef BZ_ARRAYEVAL_CC | 
|---|
| 14 | #define BZ_ARRAYEVAL_CC | 
|---|
| 15 |  | 
|---|
| 16 | #ifndef BZ_ARRAY_H | 
|---|
| 17 | #error <blitz/array/eval.cc> must be included via <blitz/array.h> | 
|---|
| 18 | #endif | 
|---|
| 19 |  | 
|---|
| 20 | BZ_NAMESPACE(blitz) | 
|---|
| 21 |  | 
|---|
| 22 | /* | 
|---|
| 23 | * Assign an expression to an array.  For performance reasons, there are | 
|---|
| 24 | * several traversal mechanisms: | 
|---|
| 25 | * | 
|---|
| 26 | * - Index traversal scans through the destination array in storage order. | 
|---|
| 27 | *   The expression is evaluated using a TinyVector<int,N> operand.  This | 
|---|
| 28 | *   version is used only when there are index placeholders in the expression | 
|---|
| 29 | *   (see <blitz/indexexpr.h>) | 
|---|
| 30 | * - Stack traversal also scans through the destination array in storage | 
|---|
| 31 | *   order.  However, push/pop stack iterators are used. | 
|---|
| 32 | * - Fast traversal follows a Hilbert (or other) space-filling curve to | 
|---|
| 33 | *   improve cache reuse for stencilling operations.  Currently, the | 
|---|
| 34 | *   space filling curves must be generated by calling | 
|---|
| 35 | *   generateFastTraversalOrder(TinyVector<int,N_dimensions>). | 
|---|
| 36 | * - 2D tiled traversal follows a tiled traversal, to improve cache reuse | 
|---|
| 37 | *   for 2D stencils.  Space filling curves have too much overhead to use | 
|---|
| 38 | *   in two-dimensions. | 
|---|
| 39 | * | 
|---|
| 40 | * _bz_tryFastTraversal is a helper class.  Fast traversals are only | 
|---|
| 41 | * attempted if the expression looks like a stencil -- it's at least | 
|---|
| 42 | * three-dimensional, has at least six array operands, and there are | 
|---|
| 43 | * no index placeholders in the expression.  These are all things which | 
|---|
| 44 | * can be checked at compile time, so the if()/else() syntax has been | 
|---|
| 45 | * replaced with this class template. | 
|---|
| 46 | */ | 
|---|
| 47 |  | 
|---|
| 48 | // Fast traversals require <set> from the ISO/ANSI C++ standard library | 
|---|
| 49 | #ifdef BZ_HAVE_STD | 
|---|
| 50 |  | 
|---|
| 51 | template<_bz_bool canTryFastTraversal> | 
|---|
| 52 | struct _bz_tryFastTraversal { | 
|---|
| 53 | template<class T_numtype, int N_rank, class T_expr, class T_update> | 
|---|
| 54 | static _bz_bool tryFast(Array<T_numtype,N_rank>& array, | 
|---|
| 55 | _bz_ArrayExpr<T_expr> expr, T_update) | 
|---|
| 56 | { | 
|---|
| 57 | return _bz_false; | 
|---|
| 58 | } | 
|---|
| 59 | }; | 
|---|
| 60 |  | 
|---|
| 61 | template<> | 
|---|
| 62 | struct _bz_tryFastTraversal<_bz_true> { | 
|---|
| 63 | template<class T_numtype, int N_rank, class T_expr, class T_update> | 
|---|
| 64 | static _bz_bool tryFast(Array<T_numtype,N_rank>& array, | 
|---|
| 65 | _bz_ArrayExpr<T_expr> expr, T_update) | 
|---|
| 66 | { | 
|---|
| 67 | // See if there's an appropriate space filling curve available. | 
|---|
| 68 | // Currently fast traversals use an N-1 dimensional curve.  The | 
|---|
| 69 | // Nth dimension column corresponding to each point on the curve | 
|---|
| 70 | // is traversed in the normal fashion. | 
|---|
| 71 | TraversalOrderCollection<N_rank-1> traversals; | 
|---|
| 72 | TinyVector<int, N_rank - 1> traversalGridSize; | 
|---|
| 73 |  | 
|---|
| 74 | for (int i=0; i < N_rank - 1; ++i) | 
|---|
| 75 | traversalGridSize[i] = array.length(array.ordering(i+1)); | 
|---|
| 76 |  | 
|---|
| 77 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 78 | cout << "traversalGridSize = " << traversalGridSize << endl; | 
|---|
| 79 | cout.flush(); | 
|---|
| 80 | #endif | 
|---|
| 81 |  | 
|---|
| 82 | const TraversalOrder<N_rank-1>* order = | 
|---|
| 83 | traversals.find(traversalGridSize); | 
|---|
| 84 |  | 
|---|
| 85 | if (order) | 
|---|
| 86 | { | 
|---|
| 87 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 88 | cerr << "Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype) | 
|---|
| 89 | << ", " << N_rank << ">: Using stack traversal" << endl; | 
|---|
| 90 | #endif | 
|---|
| 91 | // A curve was available -- use fast traversal. | 
|---|
| 92 | array.evaluateWithFastTraversal(*order, expr, T_update()); | 
|---|
| 93 | return _bz_true; | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | return _bz_false; | 
|---|
| 97 | } | 
|---|
| 98 | }; | 
|---|
| 99 |  | 
|---|
| 100 | #endif // BZ_HAVE_STD | 
|---|
| 101 |  | 
|---|
| 102 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 103 | inline Array<T_numtype, N_rank>& | 
|---|
| 104 | Array<T_numtype, N_rank>::evaluate(_bz_ArrayExpr<T_expr> expr, T_update) | 
|---|
| 105 | { | 
|---|
| 106 | // Check that all arrays have the same shape | 
|---|
| 107 | #ifdef BZ_DEBUG | 
|---|
| 108 | if (!expr.shapeCheck(shape())) | 
|---|
| 109 | { | 
|---|
| 110 | if (assertFailMode == _bz_false) | 
|---|
| 111 | { | 
|---|
| 112 | cerr << "[Blitz++] Shape check failed: Module " << __FILE__ | 
|---|
| 113 | << " line " << __LINE__ << endl | 
|---|
| 114 | << "          Expression: "; | 
|---|
| 115 | prettyPrintFormat format(_bz_true);   // Use terse formatting | 
|---|
| 116 | string str; | 
|---|
| 117 | expr.prettyPrint(str, format); | 
|---|
| 118 | cerr << str << endl ; | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | #if 0 | 
|---|
| 122 | // Shape dumping is broken by change to using string for prettyPrint | 
|---|
| 123 | << "          Shapes: " << shape() << " = "; | 
|---|
| 124 | prettyPrintFormat format2; | 
|---|
| 125 | format2.setDumpArrayShapesMode(); | 
|---|
| 126 | expr.prettyPrint(cerr, format2); | 
|---|
| 127 | cerr << endl; | 
|---|
| 128 | #endif | 
|---|
| 129 | BZ_PRE_FAIL; | 
|---|
| 130 | } | 
|---|
| 131 | #endif | 
|---|
| 132 |  | 
|---|
| 133 | BZPRECHECK(expr.shapeCheck(shape()), | 
|---|
| 134 | "Shape check failed." << endl << "Expression:"); | 
|---|
| 135 |  | 
|---|
| 136 | BZPRECHECK((T_expr::rank == N_rank) || (T_expr::numArrayOperands == 0), | 
|---|
| 137 | "Assigned rank " << T_expr::rank << " expression to rank " | 
|---|
| 138 | << N_rank << " array."); | 
|---|
| 139 |  | 
|---|
| 140 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 141 | cout << "T_expr::numIndexPlaceholders = " << T_expr::numIndexPlaceholders | 
|---|
| 142 | << endl; cout.flush(); | 
|---|
| 143 | #endif | 
|---|
| 144 |  | 
|---|
| 145 | // Tau profiling code.  Provide Tau with a pretty-printed version of | 
|---|
| 146 | // the expression. | 
|---|
| 147 | // NEEDS_WORK-- use a static initializer somehow. | 
|---|
| 148 |  | 
|---|
| 149 | #ifdef BZ_TAU_PROFILING | 
|---|
| 150 | static string exprDescription; | 
|---|
| 151 | if (!exprDescription.length())   // faked static initializer | 
|---|
| 152 | { | 
|---|
| 153 | exprDescription = "A"; | 
|---|
| 154 | prettyPrintFormat format(_bz_true);   // Terse mode on | 
|---|
| 155 | format.nextArrayOperandSymbol(); | 
|---|
| 156 | T_update::prettyPrint(exprDescription); | 
|---|
| 157 | expr.prettyPrint(exprDescription, format); | 
|---|
| 158 | } | 
|---|
| 159 | TAU_PROFILE(" ", exprDescription, TAU_BLITZ); | 
|---|
| 160 | #endif | 
|---|
| 161 |  | 
|---|
| 162 | // Determine which evaluation mechanism to use | 
|---|
| 163 | if (T_expr::numIndexPlaceholders > 0) | 
|---|
| 164 | { | 
|---|
| 165 | // The expression involves index placeholders, so have to | 
|---|
| 166 | // use index traversal rather than stack traversal. | 
|---|
| 167 |  | 
|---|
| 168 | if (N_rank == 1) | 
|---|
| 169 | return evaluateWithIndexTraversal1(expr, T_update()); | 
|---|
| 170 | else | 
|---|
| 171 | return evaluateWithIndexTraversalN(expr, T_update()); | 
|---|
| 172 | } | 
|---|
| 173 | else { | 
|---|
| 174 |  | 
|---|
| 175 | // If this expression looks like an array stencil, then attempt to | 
|---|
| 176 | // use a fast traversal order. | 
|---|
| 177 | // Fast traversals require <set> from the ISO/ANSI C++ standard | 
|---|
| 178 | // library. | 
|---|
| 179 |  | 
|---|
| 180 | #ifdef BZ_HAVE_STD | 
|---|
| 181 |  | 
|---|
| 182 | enum { isStencil = (N_rank >= 3) && (T_expr::numArrayOperands > 6) | 
|---|
| 183 | && (T_expr::numIndexPlaceholders == 0) }; | 
|---|
| 184 |  | 
|---|
| 185 | if (_bz_tryFastTraversal<isStencil>::tryFast(*this, expr, T_update())) | 
|---|
| 186 | return *this; | 
|---|
| 187 |  | 
|---|
| 188 | #endif | 
|---|
| 189 |  | 
|---|
| 190 | #ifdef BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 191 | // Does this look like a 2-dimensional stencil on a largeish | 
|---|
| 192 | // array? | 
|---|
| 193 |  | 
|---|
| 194 | if ((N_rank == 2) && (T_expr::numArrayOperands >= 5)) | 
|---|
| 195 | { | 
|---|
| 196 | // Use a heuristic to determine whether a tiled traversal | 
|---|
| 197 | // is desirable.  First, estimate how much L1 cache is needed | 
|---|
| 198 | // to achieve a high hit rate using the stack traversal. | 
|---|
| 199 | // Try to err on the side of using tiled traversal even when | 
|---|
| 200 | // it isn't strictly needed. | 
|---|
| 201 |  | 
|---|
| 202 | // Assumptions: | 
|---|
| 203 | //    Stencil width 3 | 
|---|
| 204 | //    3 arrays involved in stencil | 
|---|
| 205 | //    Uniform data type in arrays (all T_numtype) | 
|---|
| 206 |  | 
|---|
| 207 | int cacheNeeded = 3 * 3 * sizeof(T_numtype) * length(ordering(0)); | 
|---|
| 208 | if (cacheNeeded > BZ_L1_CACHE_ESTIMATED_SIZE) | 
|---|
| 209 | return evaluateWithTiled2DTraversal(expr, T_update()); | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | #endif | 
|---|
| 213 |  | 
|---|
| 214 | // If fast traversal isn't available or appropriate, then just | 
|---|
| 215 | // do a stack traversal. | 
|---|
| 216 | if (N_rank == 1) | 
|---|
| 217 | return evaluateWithStackTraversal1(expr, T_update()); | 
|---|
| 218 | else | 
|---|
| 219 | return evaluateWithStackTraversalN(expr, T_update()); | 
|---|
| 220 | } | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 224 | inline Array<T_numtype, N_rank>& | 
|---|
| 225 | Array<T_numtype, N_rank>::evaluateWithStackTraversal1(_bz_ArrayExpr<T_expr> | 
|---|
| 226 | expr, T_update) | 
|---|
| 227 | { | 
|---|
| 228 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 229 | BZ_DEBUG_MESSAGE("Array<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype) | 
|---|
| 230 | << ", " << N_rank << ">: Using stack traversal"); | 
|---|
| 231 | #endif | 
|---|
| 232 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 233 | iter.loadStride(firstRank); | 
|---|
| 234 | expr.loadStride(firstRank); | 
|---|
| 235 |  | 
|---|
| 236 | _bz_bool useUnitStride = iter.isUnitStride(firstRank) | 
|---|
| 237 | && expr.isUnitStride(firstRank); | 
|---|
| 238 |  | 
|---|
| 239 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 240 | int commonStride = expr.suggestStride(firstRank); | 
|---|
| 241 | if (iter.suggestStride(firstRank) > commonStride) | 
|---|
| 242 | commonStride = iter.suggestStride(firstRank); | 
|---|
| 243 | bool useCommonStride = iter.isStride(firstRank,commonStride) | 
|---|
| 244 | && expr.isStride(firstRank,commonStride); | 
|---|
| 245 |  | 
|---|
| 246 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 247 | BZ_DEBUG_MESSAGE("BZ_ARRAY_EXPR_USE_COMMON_STRIDE:" << endl | 
|---|
| 248 | << "    commonStride = " << commonStride << " useCommonStride = " | 
|---|
| 249 | << useCommonStride); | 
|---|
| 250 | #endif | 
|---|
| 251 | #else | 
|---|
| 252 | int commonStride = 1; | 
|---|
| 253 | bool useCommonStride = _bz_false; | 
|---|
| 254 | #endif | 
|---|
| 255 |  | 
|---|
| 256 | const T_numtype * last = iter.data() + length(firstRank) | 
|---|
| 257 | * stride(firstRank); | 
|---|
| 258 |  | 
|---|
| 259 | if (useUnitStride || useCommonStride) | 
|---|
| 260 | { | 
|---|
| 261 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 262 |  | 
|---|
| 263 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 264 | BZ_DEBUG_MESSAGE("BZ_USE_FAST_READ_ARRAY_EXPR with commonStride"); | 
|---|
| 265 | #endif | 
|---|
| 266 | int ubound = length(firstRank) * commonStride; | 
|---|
| 267 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data()); | 
|---|
| 268 |  | 
|---|
| 269 | if (commonStride == 1) | 
|---|
| 270 | { | 
|---|
| 271 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 272 | for (int i=0; i < ubound; ++i) | 
|---|
| 273 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 274 | #else | 
|---|
| 275 | int n1 = ubound & 3; | 
|---|
| 276 | int i = 0; | 
|---|
| 277 | for (; i < n1; ++i) | 
|---|
| 278 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 279 |  | 
|---|
| 280 | for (; i < ubound; i += 4) | 
|---|
| 281 | { | 
|---|
| 282 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_CSE_AND_ANTIALIAS | 
|---|
| 283 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 284 | T_update::update(data[i+1], expr.fastRead(i+1)); | 
|---|
| 285 | T_update::update(data[i+2], expr.fastRead(i+2)); | 
|---|
| 286 | T_update::update(data[i+3], expr.fastRead(i+3)); | 
|---|
| 287 | #else | 
|---|
| 288 | int t1 = i+1; | 
|---|
| 289 | int t2 = i+2; | 
|---|
| 290 | int t3 = i+3; | 
|---|
| 291 |  | 
|---|
| 292 | _bz_typename T_expr::T_numtype tmp1, tmp2, tmp3, tmp4; | 
|---|
| 293 |  | 
|---|
| 294 | tmp1 = expr.fastRead(i); | 
|---|
| 295 | tmp2 = expr.fastRead(BZ_NO_PROPAGATE(t1)); | 
|---|
| 296 | tmp3 = expr.fastRead(BZ_NO_PROPAGATE(t2)); | 
|---|
| 297 | tmp4 = expr.fastRead(BZ_NO_PROPAGATE(t3)); | 
|---|
| 298 |  | 
|---|
| 299 | T_update::update(data[i], BZ_NO_PROPAGATE(tmp1)); | 
|---|
| 300 | T_update::update(data[BZ_NO_PROPAGATE(t1)], tmp2); | 
|---|
| 301 | T_update::update(data[BZ_NO_PROPAGATE(t2)], tmp3); | 
|---|
| 302 | T_update::update(data[BZ_NO_PROPAGATE(t3)], tmp4); | 
|---|
| 303 | #endif | 
|---|
| 304 | } | 
|---|
| 305 | #endif // BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 306 |  | 
|---|
| 307 | } | 
|---|
| 308 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 309 | else { | 
|---|
| 310 |  | 
|---|
| 311 | #ifndef BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 312 | for (int i=0; i < ubound; i += commonStride) | 
|---|
| 313 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 314 | #else | 
|---|
| 315 | int n1 = (length(firstRank) & 3) * commonStride; | 
|---|
| 316 |  | 
|---|
| 317 | int i = 0; | 
|---|
| 318 | for (; i < n1; i += commonStride) | 
|---|
| 319 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 320 |  | 
|---|
| 321 | int strideInc = 4 * commonStride; | 
|---|
| 322 | for (; i < ubound; i += strideInc) | 
|---|
| 323 | { | 
|---|
| 324 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 325 | int i2 = i + commonStride; | 
|---|
| 326 | T_update::update(data[i2], expr.fastRead(i2)); | 
|---|
| 327 | int i3 = i + 2 * commonStride; | 
|---|
| 328 | T_update::update(data[i3], expr.fastRead(i3)); | 
|---|
| 329 | int i4 = i + 3 * commonStride; | 
|---|
| 330 | T_update::update(data[i4], expr.fastRead(i4)); | 
|---|
| 331 | } | 
|---|
| 332 | #endif  // BZ_ARRAY_STACK_TRAVERSAL_UNROLL | 
|---|
| 333 | } | 
|---|
| 334 | #endif  // BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 335 |  | 
|---|
| 336 | #else   // ! BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 337 |  | 
|---|
| 338 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 339 | BZ_DEBUG_MESSAGE("Common stride, no fast read"); | 
|---|
| 340 | #endif | 
|---|
| 341 | while (iter.data() != last) | 
|---|
| 342 | { | 
|---|
| 343 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 344 | iter.advance(commonStride); | 
|---|
| 345 | expr.advance(commonStride); | 
|---|
| 346 | } | 
|---|
| 347 | #endif | 
|---|
| 348 | } | 
|---|
| 349 | else { | 
|---|
| 350 | while (iter.data() != last) | 
|---|
| 351 | { | 
|---|
| 352 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 353 | iter.advance(); | 
|---|
| 354 | expr.advance(); | 
|---|
| 355 | } | 
|---|
| 356 | } | 
|---|
| 357 |  | 
|---|
| 358 | return *this; | 
|---|
| 359 | } | 
|---|
| 360 |  | 
|---|
| 361 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 362 | inline Array<T_numtype, N_rank>& | 
|---|
| 363 | Array<T_numtype, N_rank>::evaluateWithStackTraversalN(_bz_ArrayExpr<T_expr> | 
|---|
| 364 | expr, T_update) | 
|---|
| 365 | { | 
|---|
| 366 | /* | 
|---|
| 367 | * A stack traversal replaces the usual nested loops: | 
|---|
| 368 | * | 
|---|
| 369 | * for (int i=A.lbound(firstDim); i <= A.ubound(firstDim); ++i) | 
|---|
| 370 | *   for (int j=A.lbound(secondDim); j <= A.ubound(secondDim); ++j) | 
|---|
| 371 | *     for (int k=A.lbound(thirdDim); k <= A.ubound(thirdDim); ++k) | 
|---|
| 372 | *       A(i,j,k) = 0; | 
|---|
| 373 | * | 
|---|
| 374 | * with a stack data structure.  The stack allows this single | 
|---|
| 375 | * routine to replace any number of nested loops. | 
|---|
| 376 | * | 
|---|
| 377 | * For each dimension (loop), these quantities are needed: | 
|---|
| 378 | * - a pointer to the first element encountered in the loop | 
|---|
| 379 | * - the stride associated with the dimension/loop | 
|---|
| 380 | * - a pointer to the last element encountered in the loop | 
|---|
| 381 | * | 
|---|
| 382 | * The basic idea is that entering each loop is a "push" onto the | 
|---|
| 383 | * stack, and exiting each loop is a "pop".  In practice, this | 
|---|
| 384 | * routine treats accesses the stack in a random-access way, | 
|---|
| 385 | * which confuses the picture a bit.  But conceptually, that's | 
|---|
| 386 | * what is going on. | 
|---|
| 387 | */ | 
|---|
| 388 |  | 
|---|
| 389 | /* | 
|---|
| 390 | * ordering(0) gives the dimension associated with the smallest | 
|---|
| 391 | * stride (usually; the exceptions have to do with subarrays and | 
|---|
| 392 | * are uninteresting).  We call this dimension maxRank; it will | 
|---|
| 393 | * become the innermost "loop". | 
|---|
| 394 | * | 
|---|
| 395 | * Ordering the loops from ordering(N_rank-1) down to | 
|---|
| 396 | * ordering(0) ensures that the largest stride is associated | 
|---|
| 397 | * with the outermost loop, and the smallest stride with the | 
|---|
| 398 | * innermost.  This is critical for good performance on | 
|---|
| 399 | * cached machines. | 
|---|
| 400 | */ | 
|---|
| 401 | const int maxRank = ordering(0); | 
|---|
| 402 | const int secondLastRank = ordering(1); | 
|---|
| 403 |  | 
|---|
| 404 | // Create an iterator for the array receiving the result | 
|---|
| 405 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 406 |  | 
|---|
| 407 | // Set the initial stack configuration by pushing the pointer | 
|---|
| 408 | // to the first element of the array onto the stack N times. | 
|---|
| 409 |  | 
|---|
| 410 | int i; | 
|---|
| 411 | for (i=1; i < N_rank; ++i) | 
|---|
| 412 | { | 
|---|
| 413 | iter.push(i); | 
|---|
| 414 | expr.push(i); | 
|---|
| 415 | } | 
|---|
| 416 |  | 
|---|
| 417 | // Load the strides associated with the innermost loop. | 
|---|
| 418 | iter.loadStride(maxRank); | 
|---|
| 419 | expr.loadStride(maxRank); | 
|---|
| 420 |  | 
|---|
| 421 | /* | 
|---|
| 422 | * Is the stride in the innermost loop equal to 1?  If so, | 
|---|
| 423 | * we might take advantage of this and generate more | 
|---|
| 424 | * efficient code. | 
|---|
| 425 | */ | 
|---|
| 426 | _bz_bool useUnitStride = iter.isUnitStride(maxRank) | 
|---|
| 427 | && expr.isUnitStride(maxRank); | 
|---|
| 428 |  | 
|---|
| 429 | /* | 
|---|
| 430 | * Do all array operands share a common stride in the innermost | 
|---|
| 431 | * loop?  If so, we can generate more efficient code (but only | 
|---|
| 432 | * if this optimization has been enabled). | 
|---|
| 433 | */ | 
|---|
| 434 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 435 | int commonStride = expr.suggestStride(maxRank); | 
|---|
| 436 | if (iter.suggestStride(maxRank) > commonStride) | 
|---|
| 437 | commonStride = iter.suggestStride(maxRank); | 
|---|
| 438 | bool useCommonStride = iter.isStride(maxRank,commonStride) | 
|---|
| 439 | && expr.isStride(maxRank,commonStride); | 
|---|
| 440 |  | 
|---|
| 441 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 442 | BZ_DEBUG_MESSAGE("BZ_ARRAY_EXPR_USE_COMMON_STRIDE" << endl | 
|---|
| 443 | << "commonStride = " << commonStride << " useCommonStride = " | 
|---|
| 444 | << useCommonStride); | 
|---|
| 445 | #endif | 
|---|
| 446 |  | 
|---|
| 447 | #else | 
|---|
| 448 | int commonStride = 1; | 
|---|
| 449 | bool useCommonStride = _bz_false; | 
|---|
| 450 | #endif | 
|---|
| 451 |  | 
|---|
| 452 | /* | 
|---|
| 453 | * The "last" array contains a pointer to the last element | 
|---|
| 454 | * encountered in each "loop". | 
|---|
| 455 | */ | 
|---|
| 456 | const T_numtype* _bz_restrict last[N_rank]; | 
|---|
| 457 |  | 
|---|
| 458 | // Set up the initial state of the "last" array | 
|---|
| 459 | for (i=1; i < N_rank; ++i) | 
|---|
| 460 | last[i] = iter.data() + length(ordering(i)) * stride(ordering(i)); | 
|---|
| 461 |  | 
|---|
| 462 | int lastLength = length(maxRank); | 
|---|
| 463 | int firstNoncollapsedLoop = 1; | 
|---|
| 464 |  | 
|---|
| 465 | #ifdef BZ_COLLAPSE_LOOPS | 
|---|
| 466 |  | 
|---|
| 467 | /* | 
|---|
| 468 | * This bit of code handles collapsing loops.  When possible, | 
|---|
| 469 | * the N nested loops are converted into a single loop (basically, | 
|---|
| 470 | * the N-dimensional array is treated as a long vector). | 
|---|
| 471 | * This is important for cases where the length of the innermost | 
|---|
| 472 | * loop is very small, for example a 100x100x3 array. | 
|---|
| 473 | * If this code can't collapse all the loops into a single loop, | 
|---|
| 474 | * it will collapse as many loops as possible starting from the | 
|---|
| 475 | * innermost and working out. | 
|---|
| 476 | */ | 
|---|
| 477 |  | 
|---|
| 478 | // Collapse loops when possible | 
|---|
| 479 | for (i=1; i < N_rank; ++i) | 
|---|
| 480 | { | 
|---|
| 481 | // Figure out which pair of loops we are considering combining. | 
|---|
| 482 | int outerLoopRank = ordering(i); | 
|---|
| 483 | int innerLoopRank = ordering(i-1); | 
|---|
| 484 |  | 
|---|
| 485 | /* | 
|---|
| 486 | * The canCollapse() routines look at the strides and extents | 
|---|
| 487 | * of the loops, and determine if they can be combined into | 
|---|
| 488 | * one loop. | 
|---|
| 489 | */ | 
|---|
| 490 |  | 
|---|
| 491 | if (canCollapse(outerLoopRank,innerLoopRank) | 
|---|
| 492 | && expr.canCollapse(outerLoopRank,innerLoopRank)) | 
|---|
| 493 | { | 
|---|
| 494 | lastLength *= length(outerLoopRank); | 
|---|
| 495 | firstNoncollapsedLoop = i+1; | 
|---|
| 496 | } | 
|---|
| 497 | } | 
|---|
| 498 | #endif // BZ_COLLAPSE_LOOPS | 
|---|
| 499 |  | 
|---|
| 500 | /* | 
|---|
| 501 | * Now we actually perform the loops.  This while loop contains | 
|---|
| 502 | * two parts: first, the innermost loop is performed.  Then we | 
|---|
| 503 | * exit the loop, and pop our way down the stack until we find | 
|---|
| 504 | * a loop that isn't completed.  We then restart the inner loops | 
|---|
| 505 | * and push them onto the stack. | 
|---|
| 506 | */ | 
|---|
| 507 |  | 
|---|
| 508 | while (true) { | 
|---|
| 509 |  | 
|---|
| 510 | /* | 
|---|
| 511 | * This bit of code handles the innermost loop.  It would look | 
|---|
| 512 | * a lot simpler if it weren't for unit stride and common stride | 
|---|
| 513 | * optimizations; these clutter up the code with multiple versions. | 
|---|
| 514 | */ | 
|---|
| 515 |  | 
|---|
| 516 | if ((useUnitStride) || (useCommonStride)) | 
|---|
| 517 | { | 
|---|
| 518 | T_numtype * _bz_restrict end = const_cast<T_numtype*>(iter.data()) | 
|---|
| 519 | + lastLength; | 
|---|
| 520 |  | 
|---|
| 521 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 522 |  | 
|---|
| 523 | /* | 
|---|
| 524 | * The check for BZ_USE_FAST_READ_ARRAY_EXPR can probably | 
|---|
| 525 | * be taken out.  This was put in place while the unit stride/ | 
|---|
| 526 | * common stride optimizations were being implemented and | 
|---|
| 527 | * tested. | 
|---|
| 528 | */ | 
|---|
| 529 |  | 
|---|
| 530 | // Calculate the end of the innermost loop | 
|---|
| 531 | int ubound = lastLength * commonStride; | 
|---|
| 532 |  | 
|---|
| 533 | /* | 
|---|
| 534 | * This is a real kludge.  I didn't want to have to write | 
|---|
| 535 | * a const and non-const version of ArrayIterator, so I use a | 
|---|
| 536 | * const iterator and cast away const.  This could | 
|---|
| 537 | * probably be avoided with some trick, but the whole routine | 
|---|
| 538 | * is ugly, so why bother. | 
|---|
| 539 | */ | 
|---|
| 540 |  | 
|---|
| 541 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data()); | 
|---|
| 542 |  | 
|---|
| 543 | /* | 
|---|
| 544 | * BZ_NEEDS_WORK-- need to implement optional unrolling. | 
|---|
| 545 | */ | 
|---|
| 546 | if (commonStride == 1) | 
|---|
| 547 | { | 
|---|
| 548 | for (int i=0; i < ubound; ++i) | 
|---|
| 549 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 550 | } | 
|---|
| 551 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 552 | else { | 
|---|
| 553 | for (int i=0; i < ubound; i += commonStride) | 
|---|
| 554 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 555 | } | 
|---|
| 556 | #endif | 
|---|
| 557 | /* | 
|---|
| 558 | * Tidy up for the fact that we haven't actually been | 
|---|
| 559 | * incrementing the iterators in the innermost loop, by | 
|---|
| 560 | * faking it afterward. | 
|---|
| 561 | */ | 
|---|
| 562 | iter.advance(lastLength * commonStride); | 
|---|
| 563 | expr.advance(lastLength * commonStride); | 
|---|
| 564 | #else | 
|---|
| 565 | // !BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 566 | // This bit of code not really needed; should remove at some | 
|---|
| 567 | // point, along with the test for BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 568 |  | 
|---|
| 569 | while (iter.data() != end) | 
|---|
| 570 | { | 
|---|
| 571 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 572 | iter.advance(commonStride); | 
|---|
| 573 | expr.advance(commonStride); | 
|---|
| 574 | } | 
|---|
| 575 | #endif | 
|---|
| 576 | } | 
|---|
| 577 | else { | 
|---|
| 578 | /* | 
|---|
| 579 | * We don't have a unit stride or common stride in the innermost | 
|---|
| 580 | * loop.  This is going to hurt performance.  Luckily 95% of | 
|---|
| 581 | * the time, we hit the cases above. | 
|---|
| 582 | */ | 
|---|
| 583 | T_numtype * _bz_restrict end = const_cast<T_numtype*>(iter.data()) | 
|---|
| 584 | + lastLength * stride(maxRank); | 
|---|
| 585 |  | 
|---|
| 586 | while (iter.data() != end) | 
|---|
| 587 | { | 
|---|
| 588 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 589 | iter.advance(); | 
|---|
| 590 | expr.advance(); | 
|---|
| 591 | } | 
|---|
| 592 | } | 
|---|
| 593 |  | 
|---|
| 594 |  | 
|---|
| 595 | /* | 
|---|
| 596 | * We just finished the innermost loop.  Now we pop our way down | 
|---|
| 597 | * the stack, until we hit a loop that hasn't completed yet. | 
|---|
| 598 | */ | 
|---|
| 599 | int j = firstNoncollapsedLoop; | 
|---|
| 600 | for (; j < N_rank; ++j) | 
|---|
| 601 | { | 
|---|
| 602 | // Get the next loop | 
|---|
| 603 | int r = ordering(j); | 
|---|
| 604 |  | 
|---|
| 605 | // Pop-- this restores the data pointers to the first element | 
|---|
| 606 | // encountered in the loop. | 
|---|
| 607 | iter.pop(j); | 
|---|
| 608 | expr.pop(j); | 
|---|
| 609 |  | 
|---|
| 610 | // Load the stride associated with this loop, and increment | 
|---|
| 611 | // once. | 
|---|
| 612 | iter.loadStride(r); | 
|---|
| 613 | expr.loadStride(r); | 
|---|
| 614 | iter.advance(); | 
|---|
| 615 | expr.advance(); | 
|---|
| 616 |  | 
|---|
| 617 | // If we aren't at the end of this loop, then stop popping. | 
|---|
| 618 | if (iter.data() != last[j]) | 
|---|
| 619 | break; | 
|---|
| 620 | } | 
|---|
| 621 |  | 
|---|
| 622 | // Are we completely done? | 
|---|
| 623 | if (j == N_rank) | 
|---|
| 624 | break; | 
|---|
| 625 |  | 
|---|
| 626 | // No, so push all the inner loops back onto the stack. | 
|---|
| 627 | for (; j >= firstNoncollapsedLoop; --j) | 
|---|
| 628 | { | 
|---|
| 629 | int r2 = ordering(j-1); | 
|---|
| 630 | iter.push(j); | 
|---|
| 631 | expr.push(j); | 
|---|
| 632 | last[j-1] = iter.data() + length(r2) * stride(r2); | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 | // Load the stride for the innermost loop again. | 
|---|
| 636 | iter.loadStride(maxRank); | 
|---|
| 637 | expr.loadStride(maxRank); | 
|---|
| 638 | } | 
|---|
| 639 |  | 
|---|
| 640 | return *this; | 
|---|
| 641 | } | 
|---|
| 642 |  | 
|---|
| 643 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 644 | inline Array<T_numtype, N_rank>& | 
|---|
| 645 | Array<T_numtype, N_rank>::evaluateWithIndexTraversal1(_bz_ArrayExpr<T_expr> | 
|---|
| 646 | expr, T_update) | 
|---|
| 647 | { | 
|---|
| 648 | TinyVector<int,N_rank> index; | 
|---|
| 649 |  | 
|---|
| 650 | if (stride(firstRank) == 1) | 
|---|
| 651 | { | 
|---|
| 652 | T_numtype * _bz_restrict iter = data_; | 
|---|
| 653 | int last = ubound(firstRank); | 
|---|
| 654 |  | 
|---|
| 655 | for (index[0] = lbound(firstRank); index[0] <= last; | 
|---|
| 656 | ++index[0]) | 
|---|
| 657 | { | 
|---|
| 658 | iter[index[0]] = expr(index); | 
|---|
| 659 | } | 
|---|
| 660 | } | 
|---|
| 661 | else { | 
|---|
| 662 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 663 | iter.loadStride(0); | 
|---|
| 664 | int last = ubound(firstRank); | 
|---|
| 665 |  | 
|---|
| 666 | for (index[0] = lbound(firstRank); index[0] <= last; | 
|---|
| 667 | ++index[0]) | 
|---|
| 668 | { | 
|---|
| 669 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 670 | expr(index)); | 
|---|
| 671 | iter.advance(); | 
|---|
| 672 | } | 
|---|
| 673 | } | 
|---|
| 674 |  | 
|---|
| 675 | return *this; | 
|---|
| 676 | } | 
|---|
| 677 |  | 
|---|
| 678 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 679 | inline Array<T_numtype, N_rank>& | 
|---|
| 680 | Array<T_numtype, N_rank>::evaluateWithIndexTraversalN(_bz_ArrayExpr<T_expr> | 
|---|
| 681 | expr, T_update) | 
|---|
| 682 | { | 
|---|
| 683 | // Do a stack-type traversal for the destination array and use | 
|---|
| 684 | // index traversal for the source expression | 
|---|
| 685 |  | 
|---|
| 686 | const int maxRank = ordering(0); | 
|---|
| 687 | const int secondLastRank = ordering(1); | 
|---|
| 688 |  | 
|---|
| 689 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 690 | cout << "Index traversal: N_rank = " << N_rank << endl; | 
|---|
| 691 | cout << "maxRank = " << maxRank << " secondLastRank = " << secondLastRank | 
|---|
| 692 | << endl; | 
|---|
| 693 | cout.flush(); | 
|---|
| 694 | #endif | 
|---|
| 695 |  | 
|---|
| 696 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 697 | for (int i=1; i < N_rank; ++i) | 
|---|
| 698 | iter.push(ordering(i)); | 
|---|
| 699 |  | 
|---|
| 700 | iter.loadStride(maxRank); | 
|---|
| 701 |  | 
|---|
| 702 | TinyVector<int,N_rank> index, last; | 
|---|
| 703 |  | 
|---|
| 704 | index = storage_.base(); | 
|---|
| 705 | last = storage_.base() + length_; | 
|---|
| 706 |  | 
|---|
| 707 | int lastLength = length(maxRank); | 
|---|
| 708 |  | 
|---|
| 709 | while (true) { | 
|---|
| 710 |  | 
|---|
| 711 | for (index[maxRank] = base(maxRank); | 
|---|
| 712 | index[maxRank] < last[maxRank]; | 
|---|
| 713 | ++index[maxRank]) | 
|---|
| 714 | { | 
|---|
| 715 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 716 | #if 0 | 
|---|
| 717 | cout << "(" << index[0] << "," << index[1] << ") " << endl; | 
|---|
| 718 | cout.flush(); | 
|---|
| 719 | #endif | 
|---|
| 720 | #endif | 
|---|
| 721 |  | 
|---|
| 722 | T_update::update(*const_cast<T_numtype*>(iter.data()), expr(index)); | 
|---|
| 723 | iter.advance(); | 
|---|
| 724 | } | 
|---|
| 725 |  | 
|---|
| 726 | int j = 1; | 
|---|
| 727 | for (; j < N_rank; ++j) | 
|---|
| 728 | { | 
|---|
| 729 | iter.pop(ordering(j)); | 
|---|
| 730 | iter.loadStride(ordering(j)); | 
|---|
| 731 | iter.advance(); | 
|---|
| 732 |  | 
|---|
| 733 | index[ordering(j-1)] = base(ordering(j-1)); | 
|---|
| 734 | ++index[ordering(j)]; | 
|---|
| 735 | if (index[ordering(j)] != last[ordering(j)]) | 
|---|
| 736 | break; | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | if (j == N_rank) | 
|---|
| 740 | break; | 
|---|
| 741 |  | 
|---|
| 742 | for (; j > 0; --j) | 
|---|
| 743 | { | 
|---|
| 744 | iter.push(ordering(j)); | 
|---|
| 745 | } | 
|---|
| 746 | iter.loadStride(maxRank); | 
|---|
| 747 | } | 
|---|
| 748 |  | 
|---|
| 749 | return *this; | 
|---|
| 750 | } | 
|---|
| 751 |  | 
|---|
| 752 | // Fast traversals require <set> from the ISO/ANSI C++ standard library | 
|---|
| 753 |  | 
|---|
| 754 | #ifdef BZ_HAVE_STD | 
|---|
| 755 |  | 
|---|
| 756 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 757 | inline Array<T_numtype, N_rank>& | 
|---|
| 758 | Array<T_numtype, N_rank>::evaluateWithFastTraversal( | 
|---|
| 759 | const TraversalOrder<N_rank - 1>& order, _bz_ArrayExpr<T_expr> expr, | 
|---|
| 760 | T_update) | 
|---|
| 761 | { | 
|---|
| 762 | const int maxRank = ordering(0); | 
|---|
| 763 | const int secondLastRank = ordering(1); | 
|---|
| 764 |  | 
|---|
| 765 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 766 | cerr << "maxRank = " << maxRank << " secondLastRank = " << secondLastRank | 
|---|
| 767 | << endl; | 
|---|
| 768 | #endif | 
|---|
| 769 |  | 
|---|
| 770 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 771 | iter.push(0); | 
|---|
| 772 | expr.push(0); | 
|---|
| 773 |  | 
|---|
| 774 | _bz_bool useUnitStride = iter.isUnitStride(maxRank) | 
|---|
| 775 | && expr.isUnitStride(maxRank); | 
|---|
| 776 |  | 
|---|
| 777 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 778 | int commonStride = expr.suggestStride(maxRank); | 
|---|
| 779 | if (iter.suggestStride(maxRank) > commonStride) | 
|---|
| 780 | commonStride = iter.suggestStride(maxRank); | 
|---|
| 781 | bool useCommonStride = iter.isStride(maxRank,commonStride) | 
|---|
| 782 | && expr.isStride(maxRank,commonStride); | 
|---|
| 783 | #else | 
|---|
| 784 | int commonStride = 1; | 
|---|
| 785 | bool useCommonStride = _bz_false; | 
|---|
| 786 | #endif | 
|---|
| 787 |  | 
|---|
| 788 | int lastLength = length(maxRank); | 
|---|
| 789 |  | 
|---|
| 790 | for (int i=0; i < order.length(); ++i) | 
|---|
| 791 | { | 
|---|
| 792 | iter.pop(0); | 
|---|
| 793 | expr.pop(0); | 
|---|
| 794 |  | 
|---|
| 795 | #ifdef BZ_DEBUG_TRAVERSE | 
|---|
| 796 | cerr << "Traversing: " << order[i] << endl; | 
|---|
| 797 | #endif | 
|---|
| 798 | // Position the iterator at the start of the next column | 
|---|
| 799 | for (int j=1; j < N_rank; ++j) | 
|---|
| 800 | { | 
|---|
| 801 | iter.loadStride(ordering(j)); | 
|---|
| 802 | expr.loadStride(ordering(j)); | 
|---|
| 803 |  | 
|---|
| 804 | int offset = order[i][j-1]; | 
|---|
| 805 | iter.advance(offset); | 
|---|
| 806 | expr.advance(offset); | 
|---|
| 807 | } | 
|---|
| 808 |  | 
|---|
| 809 | iter.loadStride(maxRank); | 
|---|
| 810 | expr.loadStride(maxRank); | 
|---|
| 811 |  | 
|---|
| 812 | // Evaluate the expression along the column | 
|---|
| 813 |  | 
|---|
| 814 | if ((useUnitStride) || (useCommonStride)) | 
|---|
| 815 | { | 
|---|
| 816 | T_numtype* _bz_restrict last = const_cast<T_numtype*>(iter.data()) | 
|---|
| 817 | + lastLength * commonStride; | 
|---|
| 818 |  | 
|---|
| 819 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 820 | int ubound = lastLength * commonStride; | 
|---|
| 821 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(iter.data()); | 
|---|
| 822 |  | 
|---|
| 823 | if (commonStride == 1) | 
|---|
| 824 | { | 
|---|
| 825 | #ifndef BZ_ARRAY_FAST_TRAVERSAL_UNROLL | 
|---|
| 826 | for (int i=0; i < ubound; ++i) | 
|---|
| 827 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 828 | #else | 
|---|
| 829 | int n1 = ubound & 3; | 
|---|
| 830 | int i=0; | 
|---|
| 831 | for (; i < n1; ++i) | 
|---|
| 832 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 833 |  | 
|---|
| 834 | for (; i < ubound; i += 4) | 
|---|
| 835 | { | 
|---|
| 836 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 837 | T_update::update(data[i+1], expr.fastRead(i+1)); | 
|---|
| 838 | T_update::update(data[i+2], expr.fastRead(i+2)); | 
|---|
| 839 | T_update::update(data[i+3], expr.fastRead(i+3)); | 
|---|
| 840 | } | 
|---|
| 841 | #endif  // BZ_ARRAY_FAST_TRAVERSAL_UNROLL | 
|---|
| 842 | } | 
|---|
| 843 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 844 | else { | 
|---|
| 845 | for (int i=0; i < ubound; i += commonStride) | 
|---|
| 846 | T_update::update(data[i], expr.fastRead(i)); | 
|---|
| 847 | } | 
|---|
| 848 | #endif // BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 849 |  | 
|---|
| 850 | iter.advance(lastLength * commonStride); | 
|---|
| 851 | expr.advance(lastLength * commonStride); | 
|---|
| 852 | #else   // ! BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 853 | while (iter.data() != last) | 
|---|
| 854 | { | 
|---|
| 855 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 856 | iter.advance(commonStride); | 
|---|
| 857 | expr.advance(commonStride); | 
|---|
| 858 | } | 
|---|
| 859 | #endif  // BZ_USE_FAST_READ_ARRAY_EXPR | 
|---|
| 860 |  | 
|---|
| 861 | } | 
|---|
| 862 | else { | 
|---|
| 863 | // No common stride | 
|---|
| 864 |  | 
|---|
| 865 | T_numtype* _bz_restrict last = const_cast<T_numtype*>(iter.data()) | 
|---|
| 866 | + lastLength * stride(maxRank); | 
|---|
| 867 |  | 
|---|
| 868 | while (iter.data() != last) | 
|---|
| 869 | { | 
|---|
| 870 | T_update::update(*const_cast<T_numtype*>(iter.data()), *expr); | 
|---|
| 871 | iter.advance(); | 
|---|
| 872 | expr.advance(); | 
|---|
| 873 | } | 
|---|
| 874 | } | 
|---|
| 875 | } | 
|---|
| 876 |  | 
|---|
| 877 | return *this; | 
|---|
| 878 | } | 
|---|
| 879 | #endif // BZ_HAVE_STD | 
|---|
| 880 |  | 
|---|
| 881 | #ifdef BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 882 |  | 
|---|
| 883 | #ifdef BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 884 |  | 
|---|
| 885 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 886 | inline Array<T_numtype, N_rank>& | 
|---|
| 887 | Array<T_numtype, N_rank>::evaluateWithTiled2DTraversal(_bz_ArrayExpr<T_expr> | 
|---|
| 888 | expr, T_update) | 
|---|
| 889 | { | 
|---|
| 890 | const int minorRank = ordering(0); | 
|---|
| 891 | const int majorRank = ordering(1); | 
|---|
| 892 |  | 
|---|
| 893 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 894 | iter.push(0); | 
|---|
| 895 | expr.push(0); | 
|---|
| 896 |  | 
|---|
| 897 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 898 | int count = 0; | 
|---|
| 899 | #endif | 
|---|
| 900 |  | 
|---|
| 901 | _bz_bool useUnitStride = iter.isUnitStride(minorRank) | 
|---|
| 902 | && expr.isUnitStride(minorRank); | 
|---|
| 903 |  | 
|---|
| 904 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 905 | int commonStride = expr.suggestStride(minorRank); | 
|---|
| 906 | if (iter.suggestStride(minorRank) > commonStride) | 
|---|
| 907 | commonStride = iter.suggestStride(minorRank); | 
|---|
| 908 | bool useCommonStride = iter.isStride(minorRank,commonStride) | 
|---|
| 909 | && expr.isStride(minorRank,commonStride); | 
|---|
| 910 | #else | 
|---|
| 911 | int commonStride = 1; | 
|---|
| 912 | bool useCommonStride = _bz_false; | 
|---|
| 913 | #endif | 
|---|
| 914 |  | 
|---|
| 915 | // Determine if a common major stride exists | 
|---|
| 916 | int commonMajorStride = expr.suggestStride(majorRank); | 
|---|
| 917 | if (iter.suggestStride(majorRank) > commonMajorStride) | 
|---|
| 918 | commonMajorStride = iter.suggestStride(majorRank); | 
|---|
| 919 | bool haveCommonMajorStride = iter.isStride(majorRank,commonMajorStride) | 
|---|
| 920 | && expr.isStride(majorRank,commonMajorStride); | 
|---|
| 921 |  | 
|---|
| 922 |  | 
|---|
| 923 | int maxi = length(majorRank); | 
|---|
| 924 | int maxj = length(minorRank); | 
|---|
| 925 |  | 
|---|
| 926 | const int tileHeight = 16, tileWidth = 3; | 
|---|
| 927 |  | 
|---|
| 928 | int bi, bj; | 
|---|
| 929 | for (bi=0; bi < maxi; bi += tileHeight) | 
|---|
| 930 | { | 
|---|
| 931 | int ni = bi + tileHeight; | 
|---|
| 932 | if (ni > maxi) | 
|---|
| 933 | ni = maxi; | 
|---|
| 934 |  | 
|---|
| 935 | // Move back to the beginning of the array | 
|---|
| 936 | iter.pop(0); | 
|---|
| 937 | expr.pop(0); | 
|---|
| 938 |  | 
|---|
| 939 | // Move to the start of this tile row | 
|---|
| 940 | iter.loadStride(majorRank); | 
|---|
| 941 | iter.advance(bi); | 
|---|
| 942 | expr.loadStride(majorRank); | 
|---|
| 943 | expr.advance(bi); | 
|---|
| 944 |  | 
|---|
| 945 | // Save this position | 
|---|
| 946 | iter.push(1); | 
|---|
| 947 | expr.push(1); | 
|---|
| 948 |  | 
|---|
| 949 | for (bj=0; bj < maxj; bj += tileWidth) | 
|---|
| 950 | { | 
|---|
| 951 | // Move to the beginning of the tile row | 
|---|
| 952 | iter.pop(1); | 
|---|
| 953 | expr.pop(1); | 
|---|
| 954 |  | 
|---|
| 955 | // Move to the top of the current tile (bi,bj) | 
|---|
| 956 | iter.loadStride(minorRank); | 
|---|
| 957 | iter.advance(bj); | 
|---|
| 958 | expr.loadStride(minorRank); | 
|---|
| 959 | expr.advance(bj); | 
|---|
| 960 |  | 
|---|
| 961 | if (bj + tileWidth <= maxj) | 
|---|
| 962 | { | 
|---|
| 963 | // Strip mining | 
|---|
| 964 |  | 
|---|
| 965 | if ((useUnitStride) && (haveCommonMajorStride)) | 
|---|
| 966 | { | 
|---|
| 967 | int offset = 0; | 
|---|
| 968 | T_numtype* _bz_restrict data = const_cast<T_numtype*> | 
|---|
| 969 | (iter.data()); | 
|---|
| 970 |  | 
|---|
| 971 | for (int i=bi; i < ni; ++i) | 
|---|
| 972 | { | 
|---|
| 973 | _bz_typename T_expr::T_numtype tmp1, tmp2, tmp3; | 
|---|
| 974 |  | 
|---|
| 975 | // Common subexpression elimination -- compilers | 
|---|
| 976 | // won't necessarily do this on their own. | 
|---|
| 977 | int t1 = offset+1; | 
|---|
| 978 | int t2 = offset+2; | 
|---|
| 979 |  | 
|---|
| 980 | tmp1 = expr.fastRead(offset); | 
|---|
| 981 | tmp2 = expr.fastRead(t1); | 
|---|
| 982 | tmp3 = expr.fastRead(t2); | 
|---|
| 983 |  | 
|---|
| 984 | T_update::update(data[0], tmp1); | 
|---|
| 985 | T_update::update(data[1], tmp2); | 
|---|
| 986 | T_update::update(data[2], tmp3); | 
|---|
| 987 |  | 
|---|
| 988 | offset += commonMajorStride; | 
|---|
| 989 | data += commonMajorStride; | 
|---|
| 990 |  | 
|---|
| 991 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 992 | count += 3; | 
|---|
| 993 | #endif | 
|---|
| 994 | } | 
|---|
| 995 | } | 
|---|
| 996 | else { | 
|---|
| 997 |  | 
|---|
| 998 | for (int i=bi; i < ni; ++i) | 
|---|
| 999 | { | 
|---|
| 1000 | iter.loadStride(minorRank); | 
|---|
| 1001 | expr.loadStride(minorRank); | 
|---|
| 1002 |  | 
|---|
| 1003 | // Loop through current row elements | 
|---|
| 1004 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1005 | *expr); | 
|---|
| 1006 | iter.advance(); | 
|---|
| 1007 | expr.advance(); | 
|---|
| 1008 |  | 
|---|
| 1009 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1010 | *expr); | 
|---|
| 1011 | iter.advance(); | 
|---|
| 1012 | expr.advance(); | 
|---|
| 1013 |  | 
|---|
| 1014 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1015 | *expr); | 
|---|
| 1016 | iter.advance(-2); | 
|---|
| 1017 | expr.advance(-2); | 
|---|
| 1018 |  | 
|---|
| 1019 | iter.loadStride(majorRank); | 
|---|
| 1020 | expr.loadStride(majorRank); | 
|---|
| 1021 | iter.advance(); | 
|---|
| 1022 | expr.advance(); | 
|---|
| 1023 |  | 
|---|
| 1024 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 1025 | count += 3; | 
|---|
| 1026 | #endif | 
|---|
| 1027 |  | 
|---|
| 1028 | } | 
|---|
| 1029 | } | 
|---|
| 1030 | } | 
|---|
| 1031 | else { | 
|---|
| 1032 |  | 
|---|
| 1033 | // This code handles partial tiles at the bottom of the | 
|---|
| 1034 | // array. | 
|---|
| 1035 |  | 
|---|
| 1036 | for (int j=bj; j < maxj; ++j) | 
|---|
| 1037 | { | 
|---|
| 1038 | iter.loadStride(majorRank); | 
|---|
| 1039 | expr.loadStride(majorRank); | 
|---|
| 1040 |  | 
|---|
| 1041 | for (int i=bi; i < ni; ++i) | 
|---|
| 1042 | { | 
|---|
| 1043 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1044 | *expr); | 
|---|
| 1045 | iter.advance(); | 
|---|
| 1046 | expr.advance(); | 
|---|
| 1047 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 1048 | ++count; | 
|---|
| 1049 | #endif | 
|---|
| 1050 |  | 
|---|
| 1051 | } | 
|---|
| 1052 |  | 
|---|
| 1053 | // Move back to the top of this column | 
|---|
| 1054 | iter.advance(bi-ni); | 
|---|
| 1055 | expr.advance(bi-ni); | 
|---|
| 1056 |  | 
|---|
| 1057 | // Move over to the next column | 
|---|
| 1058 | iter.loadStride(minorRank); | 
|---|
| 1059 | expr.loadStride(minorRank); | 
|---|
| 1060 |  | 
|---|
| 1061 | iter.advance(); | 
|---|
| 1062 | expr.advance(); | 
|---|
| 1063 | } | 
|---|
| 1064 | } | 
|---|
| 1065 | } | 
|---|
| 1066 | } | 
|---|
| 1067 |  | 
|---|
| 1068 | #ifdef BZ_2D_STENCIL_DEBUG | 
|---|
| 1069 | cout << "BZ_2D_STENCIL_DEBUG: count = " << count << endl; | 
|---|
| 1070 | #endif | 
|---|
| 1071 |  | 
|---|
| 1072 | return *this; | 
|---|
| 1073 | } | 
|---|
| 1074 |  | 
|---|
| 1075 | #endif // BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 1076 | #endif // BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 1077 |  | 
|---|
| 1078 |  | 
|---|
| 1079 |  | 
|---|
| 1080 | #ifndef BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 1081 |  | 
|---|
| 1082 | #ifdef BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 1083 |  | 
|---|
| 1084 | template<class T_numtype, int N_rank> template<class T_expr, class T_update> | 
|---|
| 1085 | inline Array<T_numtype, N_rank>& | 
|---|
| 1086 | Array<T_numtype, N_rank>::evaluateWithTiled2DTraversal(_bz_ArrayExpr<T_expr> | 
|---|
| 1087 | expr, T_update) | 
|---|
| 1088 | { | 
|---|
| 1089 | const int minorRank = ordering(0); | 
|---|
| 1090 | const int majorRank = ordering(1); | 
|---|
| 1091 |  | 
|---|
| 1092 | const int blockSize = 16; | 
|---|
| 1093 |  | 
|---|
| 1094 | ArrayIterator<T_numtype, N_rank> iter(*this); | 
|---|
| 1095 | iter.push(0); | 
|---|
| 1096 | expr.push(0); | 
|---|
| 1097 |  | 
|---|
| 1098 | _bz_bool useUnitStride = iter.isUnitStride(minorRank) | 
|---|
| 1099 | && expr.isUnitStride(minorRank); | 
|---|
| 1100 |  | 
|---|
| 1101 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 1102 | int commonStride = expr.suggestStride(minorRank); | 
|---|
| 1103 | if (iter.suggestStride(minorRank) > commonStride) | 
|---|
| 1104 | commonStride = iter.suggestStride(minorRank); | 
|---|
| 1105 | bool useCommonStride = iter.isStride(minorRank,commonStride) | 
|---|
| 1106 | && expr.isStride(minorRank,commonStride); | 
|---|
| 1107 | #else | 
|---|
| 1108 | int commonStride = 1; | 
|---|
| 1109 | bool useCommonStride = _bz_false; | 
|---|
| 1110 | #endif | 
|---|
| 1111 |  | 
|---|
| 1112 | int maxi = length(majorRank); | 
|---|
| 1113 | int maxj = length(minorRank); | 
|---|
| 1114 |  | 
|---|
| 1115 | int bi, bj; | 
|---|
| 1116 | for (bi=0; bi < maxi; bi += blockSize) | 
|---|
| 1117 | { | 
|---|
| 1118 | int ni = bi + blockSize; | 
|---|
| 1119 | if (ni > maxi) | 
|---|
| 1120 | ni = maxi; | 
|---|
| 1121 |  | 
|---|
| 1122 | for (bj=0; bj < maxj; bj += blockSize) | 
|---|
| 1123 | { | 
|---|
| 1124 | int nj = bj + blockSize; | 
|---|
| 1125 | if (nj > maxj) | 
|---|
| 1126 | nj = maxj; | 
|---|
| 1127 |  | 
|---|
| 1128 | // Move to the beginning of the array | 
|---|
| 1129 | iter.pop(0); | 
|---|
| 1130 | expr.pop(0); | 
|---|
| 1131 |  | 
|---|
| 1132 | // Move to the beginning of the tile (bi,bj) | 
|---|
| 1133 | iter.loadStride(majorRank); | 
|---|
| 1134 | iter.advance(bi); | 
|---|
| 1135 | iter.loadStride(minorRank); | 
|---|
| 1136 | iter.advance(bj); | 
|---|
| 1137 |  | 
|---|
| 1138 | expr.loadStride(majorRank); | 
|---|
| 1139 | expr.advance(bi); | 
|---|
| 1140 | expr.loadStride(minorRank); | 
|---|
| 1141 | expr.advance(bj); | 
|---|
| 1142 |  | 
|---|
| 1143 | // Loop through tile rows | 
|---|
| 1144 | for (int i=bi; i < ni; ++i) | 
|---|
| 1145 | { | 
|---|
| 1146 | // Save the beginning of this tile row | 
|---|
| 1147 | iter.push(1); | 
|---|
| 1148 | expr.push(1); | 
|---|
| 1149 |  | 
|---|
| 1150 | // Load the minor stride | 
|---|
| 1151 | iter.loadStride(minorRank); | 
|---|
| 1152 | expr.loadStride(minorRank); | 
|---|
| 1153 |  | 
|---|
| 1154 | if (useUnitStride) | 
|---|
| 1155 | { | 
|---|
| 1156 | T_numtype* _bz_restrict data = const_cast<T_numtype*> | 
|---|
| 1157 | (iter.data()); | 
|---|
| 1158 |  | 
|---|
| 1159 | int ubound = (nj-bj); | 
|---|
| 1160 | for (int j=0; j < ubound; ++j) | 
|---|
| 1161 | T_update::update(data[j], expr.fastRead(j)); | 
|---|
| 1162 | } | 
|---|
| 1163 | #ifdef BZ_ARRAY_EXPR_USE_COMMON_STRIDE | 
|---|
| 1164 | else if (useCommonStride) | 
|---|
| 1165 | { | 
|---|
| 1166 | int ubound = (nj-bj) * commonStride; | 
|---|
| 1167 | T_numtype* _bz_restrict data = const_cast<T_numtype*> | 
|---|
| 1168 | (iter.data()); | 
|---|
| 1169 |  | 
|---|
| 1170 | for (int j=0; j < ubound; j += commonStride) | 
|---|
| 1171 | T_update::update(data[j], expr.fastRead(j)); | 
|---|
| 1172 | } | 
|---|
| 1173 | #endif | 
|---|
| 1174 | else { | 
|---|
| 1175 | for (int j=bj; j < nj; ++j) | 
|---|
| 1176 | { | 
|---|
| 1177 | // Loop through current row elements | 
|---|
| 1178 | T_update::update(*const_cast<T_numtype*>(iter.data()), | 
|---|
| 1179 | *expr); | 
|---|
| 1180 | iter.advance(); | 
|---|
| 1181 | expr.advance(); | 
|---|
| 1182 | } | 
|---|
| 1183 | } | 
|---|
| 1184 |  | 
|---|
| 1185 | // Move back to the beginning of the tile row, then | 
|---|
| 1186 | // move to the next row | 
|---|
| 1187 | iter.pop(1); | 
|---|
| 1188 | iter.loadStride(majorRank); | 
|---|
| 1189 | iter.advance(1); | 
|---|
| 1190 |  | 
|---|
| 1191 | expr.pop(1); | 
|---|
| 1192 | expr.loadStride(majorRank); | 
|---|
| 1193 | expr.advance(1); | 
|---|
| 1194 | } | 
|---|
| 1195 | } | 
|---|
| 1196 | } | 
|---|
| 1197 |  | 
|---|
| 1198 | return *this; | 
|---|
| 1199 | } | 
|---|
| 1200 | #endif // BZ_ARRAY_2D_STENCIL_TILING | 
|---|
| 1201 | #endif // BZ_ARRAY_2D_NEW_STENCIL_TILING | 
|---|
| 1202 |  | 
|---|
| 1203 | BZ_NAMESPACE_END | 
|---|
| 1204 |  | 
|---|
| 1205 | #endif // BZ_ARRAYEVAL_CC | 
|---|
| 1206 |  | 
|---|