1 | #ifndef BZ_ARRAY_INDIRECT_H
|
---|
2 | #define BZ_ARRAY_INDIRECT_H
|
---|
3 |
|
---|
4 | #include <blitz/array/asexpr.h>
|
---|
5 | #include <blitz/array/cartesian.h>
|
---|
6 |
|
---|
7 | BZ_NAMESPACE(blitz)
|
---|
8 |
|
---|
9 | template<class T_array, class T_index>
|
---|
10 | class IndirectArray {
|
---|
11 |
|
---|
12 | public:
|
---|
13 | IndirectArray(T_array& array, T_index& index)
|
---|
14 | : array_(array), index_(index)
|
---|
15 | { }
|
---|
16 |
|
---|
17 | template<class T_expr>
|
---|
18 | void operator=(T_expr expr);
|
---|
19 |
|
---|
20 | protected:
|
---|
21 | T_array& array_;
|
---|
22 | T_index& index_;
|
---|
23 | };
|
---|
24 |
|
---|
25 | // Forward declarations
|
---|
26 | template<class T_array, class T_arrayiter, class T_subdomain, class T_expr>
|
---|
27 | inline void applyOverSubdomain(const T_array& array, T_arrayiter& arrayIter,
|
---|
28 | T_subdomain subdomain, T_expr expr);
|
---|
29 | template<class T_array, class T_arrayiter, int N_rank, class T_expr>
|
---|
30 | inline void applyOverSubdomain(const T_array& array, T_arrayiter& arrayIter,
|
---|
31 | RectDomain<N_rank> subdomain,
|
---|
32 | T_expr expr);
|
---|
33 |
|
---|
34 | template<class T_array, class T_index> template<class T_rhs>
|
---|
35 | void IndirectArray<T_array, T_index>::operator=(T_rhs rhs)
|
---|
36 | {
|
---|
37 | typedef _bz_typename asExpr<T_rhs>::T_expr T_expr;
|
---|
38 | T_expr expr(rhs);
|
---|
39 |
|
---|
40 | _bz_typename T_array::T_iterator arrayIter(array_);
|
---|
41 |
|
---|
42 | _bz_typename T_index::iterator iter = index_.begin(),
|
---|
43 | end = index_.end();
|
---|
44 |
|
---|
45 | for (; iter != end; ++iter)
|
---|
46 | {
|
---|
47 | _bz_typename T_index::value_type subdomain = *iter;
|
---|
48 | applyOverSubdomain(array_, arrayIter, subdomain, expr);
|
---|
49 | }
|
---|
50 | }
|
---|
51 |
|
---|
52 | template<class T_array, class T_arrayiter, class T_subdomain, class T_expr>
|
---|
53 | inline void applyOverSubdomain(const T_array& array, T_arrayiter& arrayIter,
|
---|
54 | T_subdomain subdomain, T_expr expr)
|
---|
55 | {
|
---|
56 | BZPRECHECK(array.isInRange(subdomain),
|
---|
57 | "In indirection using an STL container of TinyVector<int,"
|
---|
58 | << array.rank() << ">, one of the" << endl << "positions is out of"
|
---|
59 | " range: " << endl << subdomain << endl
|
---|
60 | << "Array lower bounds: " << array.lbound() << endl
|
---|
61 | << "Array upper bounds: " << array.ubound() << endl)
|
---|
62 |
|
---|
63 | arrayIter.moveTo(subdomain);
|
---|
64 | expr.moveTo(subdomain);
|
---|
65 |
|
---|
66 | *const_cast<_bz_typename T_arrayiter::T_numtype*>(arrayIter.data()) = *expr;
|
---|
67 | }
|
---|
68 |
|
---|
69 | // Specialization for RectDomain<N>
|
---|
70 | template<class T_array, class T_arrayiter, int N_rank, class T_expr>
|
---|
71 | inline void applyOverSubdomain(const T_array& array, T_arrayiter& arrayIter,
|
---|
72 | RectDomain<N_rank> subdomain,
|
---|
73 | T_expr expr)
|
---|
74 | {
|
---|
75 | typedef _bz_typename T_array::T_numtype T_numtype;
|
---|
76 |
|
---|
77 | // Assume that the RectDomain<N_rank> is a 1-D strip.
|
---|
78 | // Find the dimension in which the strip is oriented. This
|
---|
79 | // variable is static so that we cache the value; likely to be
|
---|
80 | // the same for all strips within a container.
|
---|
81 |
|
---|
82 | static int stripDim = 0;
|
---|
83 |
|
---|
84 | if (subdomain.lbound(stripDim) == subdomain.ubound(stripDim))
|
---|
85 | {
|
---|
86 | // Cached value was wrong, find the correct value of stripDim
|
---|
87 | for (stripDim=0; stripDim < N_rank; ++stripDim)
|
---|
88 | if (subdomain.lbound(stripDim) != subdomain.ubound(stripDim))
|
---|
89 | break;
|
---|
90 |
|
---|
91 | // Handle case where the strip is just a single point
|
---|
92 | if (stripDim == N_rank)
|
---|
93 | stripDim = 0;
|
---|
94 | }
|
---|
95 |
|
---|
96 | #ifdef BZ_DEBUG
|
---|
97 | // Check that this is in fact a 1D strip
|
---|
98 | for (int i=0; i < N_rank; ++i)
|
---|
99 | if ((i != stripDim) && (subdomain.lbound(i) != subdomain.ubound(i)))
|
---|
100 | BZPRECHECK(0, "In indirection using an STL container of RectDomain<"
|
---|
101 | << N_rank << ">, one of" << endl << "the RectDomain objects was not"
|
---|
102 | " a one-dimensional strip:" << endl << "RectDomain<" << N_rank
|
---|
103 | << ">::lbound() = " << subdomain.lbound() << endl
|
---|
104 | << "RectDomain<" << N_rank << ">::ubound() = " << subdomain.ubound())
|
---|
105 | #endif
|
---|
106 |
|
---|
107 | // Check that the start and end position are in range
|
---|
108 | BZPRECHECK(array.isInRange(subdomain.lbound()),
|
---|
109 | "In indirection using an STL container of RectDomain<"
|
---|
110 | << N_rank << ">, one of" << endl << "the RectDomain objects has a"
|
---|
111 | " lbound which is out of range:" << endl
|
---|
112 | << subdomain.lbound() << endl
|
---|
113 | << "Array lower bounds: " << array.lbound() << endl
|
---|
114 | << "Array upper bounds: " << array.ubound() << endl)
|
---|
115 |
|
---|
116 | BZPRECHECK(array.isInRange(subdomain.ubound()),
|
---|
117 | "In indirection using an STL container of RectDomain<"
|
---|
118 | << N_rank << ">, one of" << endl << "the RectDomain objects has a"
|
---|
119 | " ubound which is out of range:" << endl
|
---|
120 | << subdomain.lbound() << endl
|
---|
121 | << "Array lower bounds: " << array.lbound() << endl
|
---|
122 | << "Array upper bounds: " << array.ubound() << endl)
|
---|
123 |
|
---|
124 | // Position at the beginning of the strip
|
---|
125 | arrayIter.moveTo(subdomain.lbound());
|
---|
126 | expr.moveTo(subdomain.lbound());
|
---|
127 |
|
---|
128 | // Loop through the strip
|
---|
129 |
|
---|
130 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
131 |
|
---|
132 | _bz_bool useUnitStride = arrayIter.isUnitStride(stripDim)
|
---|
133 | && expr.isUnitStride(stripDim);
|
---|
134 |
|
---|
135 | int lbound = subdomain.lbound(stripDim);
|
---|
136 | int ubound = subdomain.ubound(stripDim);
|
---|
137 |
|
---|
138 | if (useUnitStride)
|
---|
139 | {
|
---|
140 | T_numtype* _bz_restrict data = const_cast<T_numtype*>(arrayIter.data());
|
---|
141 |
|
---|
142 | int length = ubound - lbound + 1;
|
---|
143 | for (int i=0; i < length; ++i)
|
---|
144 | data[i] = expr.fastRead(i);
|
---|
145 | }
|
---|
146 | else {
|
---|
147 | #endif
|
---|
148 |
|
---|
149 | arrayIter.loadStride(stripDim);
|
---|
150 | expr.loadStride(stripDim);
|
---|
151 |
|
---|
152 | for (int i=lbound; i <= ubound; ++i)
|
---|
153 | {
|
---|
154 | *const_cast<_bz_typename T_arrayiter::T_numtype*>(arrayIter.data())
|
---|
155 | = *expr;
|
---|
156 | expr.advance();
|
---|
157 | arrayIter.advance();
|
---|
158 | }
|
---|
159 |
|
---|
160 | #ifdef BZ_USE_FAST_READ_ARRAY_EXPR
|
---|
161 | }
|
---|
162 | #endif
|
---|
163 | }
|
---|
164 |
|
---|
165 | // Global functions for cartesian product of index sets
|
---|
166 | template<class T_container>
|
---|
167 | CartesianProduct<TinyVector<int,2>,T_container,2>
|
---|
168 | indexSet(const T_container& container0, const T_container& container1)
|
---|
169 | {
|
---|
170 | return CartesianProduct<TinyVector<int,2>,T_container,2>(
|
---|
171 | const_cast<T_container&>(container0),
|
---|
172 | const_cast<T_container&>(container1));
|
---|
173 | }
|
---|
174 |
|
---|
175 | template<class T_container>
|
---|
176 | CartesianProduct<TinyVector<int,3>,T_container,3>
|
---|
177 | indexSet(const T_container& container0, const T_container& container1,
|
---|
178 | const T_container& container2)
|
---|
179 | {
|
---|
180 | return CartesianProduct<TinyVector<int,3>,T_container,3>(
|
---|
181 | const_cast<T_container&>(container0),
|
---|
182 | const_cast<T_container&>(container1),
|
---|
183 | const_cast<T_container&>(container2));
|
---|
184 | }
|
---|
185 |
|
---|
186 | // Mixture of singletons and containers, e.g. A[indexSet(I,3,K)]
|
---|
187 |
|
---|
188 | // cp_findContainerType<T1,T2,T3,...,Tn>::T_container
|
---|
189 | // The set of parameters T1, T2, T3, ... Tn is a mixture of
|
---|
190 | // int and T_container. This traits class finds the container
|
---|
191 | // type, and sets T_container.
|
---|
192 | //
|
---|
193 | // e.g. cp_findContainerType<int,int,list<int>,int>::T_container is list<int>
|
---|
194 | // cp_findContainerType<int,deque<int>,deque<int>>::T_container
|
---|
195 | // is deque<int>
|
---|
196 |
|
---|
197 | template<class T1, class T2, class T3=int, class T4=int>
|
---|
198 | struct cp_findContainerType {
|
---|
199 | typedef T1 T_container;
|
---|
200 | };
|
---|
201 |
|
---|
202 | template<class T2, class T3, class T4>
|
---|
203 | struct cp_findContainerType<int,T2,T3,T4> {
|
---|
204 | typedef _bz_typename cp_findContainerType<T2,T3,T4>::T_container T_container;
|
---|
205 | };
|
---|
206 |
|
---|
207 |
|
---|
208 | // The cp_traits class handles promotion of singleton integers to
|
---|
209 | // containers. It takes two template parameters:
|
---|
210 | // T = argument type
|
---|
211 | // T2 = container type
|
---|
212 | // If T is an integer, then a container of type T2 is created and the
|
---|
213 | // integer is inserted. This container is returned.
|
---|
214 | // Otherwise, T is assumed to be the same type as T2, and the original
|
---|
215 | // container is returned.
|
---|
216 |
|
---|
217 | template<class T, class T2>
|
---|
218 | struct cp_traits {
|
---|
219 | typedef T T_container;
|
---|
220 |
|
---|
221 | static const T_container& make(const T& x)
|
---|
222 | { return x; }
|
---|
223 | };
|
---|
224 |
|
---|
225 | template<class T2>
|
---|
226 | struct cp_traits<int,T2> {
|
---|
227 | typedef T2 T_container;
|
---|
228 |
|
---|
229 | static T2 make(int x)
|
---|
230 | {
|
---|
231 | T2 singleton;
|
---|
232 | singleton.push_back(x);
|
---|
233 | return singleton;
|
---|
234 | }
|
---|
235 | };
|
---|
236 |
|
---|
237 | // These versions of indexSet() allow mixtures of integer
|
---|
238 | // and container arguments. At least one integer must be
|
---|
239 | // specified.
|
---|
240 |
|
---|
241 | template<class T1, class T2>
|
---|
242 | CartesianProduct<TinyVector<int,2>, _bz_typename
|
---|
243 | cp_findContainerType<T1,T2>::T_container,2>
|
---|
244 | indexSet(const T1& c1, const T2& c2)
|
---|
245 | {
|
---|
246 | typedef _bz_typename cp_findContainerType<T1,T2>::T_container
|
---|
247 | T_container;
|
---|
248 |
|
---|
249 | return CartesianProduct<TinyVector<int,2>, T_container, 2>(
|
---|
250 | cp_traits<T1,T_container>::make(c1),
|
---|
251 | cp_traits<T2,T_container>::make(c2));
|
---|
252 | }
|
---|
253 |
|
---|
254 | template<class T1, class T2, class T3>
|
---|
255 | CartesianProduct<TinyVector<int,3>, _bz_typename
|
---|
256 | cp_findContainerType<T1,T2,T3>::T_container, 3>
|
---|
257 | indexSet(const T1& c1, const T2& c2, const T3& c3)
|
---|
258 | {
|
---|
259 | typedef _bz_typename cp_findContainerType<T1,T2,T3>::T_container
|
---|
260 | T_container;
|
---|
261 |
|
---|
262 | return CartesianProduct<TinyVector<int,3>, T_container, 3>(
|
---|
263 | cp_traits<T1,T_container>::make(c1),
|
---|
264 | cp_traits<T2,T_container>::make(c2),
|
---|
265 | cp_traits<T3,T_container>::make(c3));
|
---|
266 | }
|
---|
267 |
|
---|
268 | BZ_NAMESPACE_END
|
---|
269 |
|
---|
270 | #endif // BZ_ARRAY_INDIRECT_H
|
---|