#ifndef BZ_ARRAYSTENCIL_H #define BZ_ARRAYSTENCIL_H #ifndef BZ_ARRAY_H #error must be included via #endif #include BZ_NAMESPACE(blitz) // NEEDS_WORK: currently stencilExtent returns int(1). What if the // stencil contains calls to math functions, or divisions, etc.? // Should at least return a number of the appropriate type. Probably // return a sequence of quasi-random floating point numbers. /* * These macros make it easier for users to declare stencil objects. * The syntax is: * * BZ_DECLARE_STENCILN(stencilname, Array1, Array2, ..., ArrayN) * // stencil operations go here * BZ_END_STENCIL */ #define BZ_DECLARE_STENCIL2(name,A,B) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3, T4, T5, T6, T7, T8, T9, T10, T11) \ { #define BZ_END_STENCIL } }; #define BZ_STENCIL_END } }; #define BZ_DECLARE_STENCIL3(name,A,B,C) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4, T5, T6, T7, T8, T9, \ T10, T11) \ { #define BZ_DECLARE_STENCIL4(name,A,B,C,D) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5, T6, T7, \ T8, T9, T10, T11) \ { #define BZ_DECLARE_STENCIL5(name,A,B,C,D,E) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6, T7, T8, \ T9, T10, T11) \ { #define BZ_DECLARE_STENCIL6(name,A,B,C,D,E,F) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6& F, \ T7, T8, T9, T10, T11) \ { #define BZ_DECLARE_STENCIL7(name,A,B,C,D,E,F,G) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6& F, T7& G, \ T8, T9, T10, T11) \ { #define BZ_DECLARE_STENCIL8(name,A,B,C,D,E,F,G,H) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6& F, T7& G, \ T8& H, T9, T10, T11) \ { #define BZ_DECLARE_STENCIL9(name,A,B,C,D,E,F,G,H,I) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6& F, T7& G, \ T8& H, T9& I, T10, T11) \ { #define BZ_DECLARE_STENCIL10(name,A,B,C,D,E,F,G,H,I,J) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6& F, T7& G, \ T8& H, T9& I, T10& J, T11) \ { #define BZ_DECLARE_STENCIL11(name,A,B,C,D,E,F,G,H,I,J,K) \ struct name { \ template \ static inline void apply(T1& A, T2& B, T3& C, T4& D, T5& E, T6& F, T7& G, \ T8& H, T9& I, T10& J, T11& K) \ { /* * dummyArray is used to provide "dummy" padding parameters to applyStencil(), * so that any number of arrays (up to 11) can be given as arguments. */ template class dummy; struct dummyArray { typedef dummy T_iterator; const dummyArray& shape() const { return *this; } }; _bz_global dummyArray _dummyArray; /* * This dummy class pretends to be a scalar of type T, or an array iterator * of type T, but really does nothing. */ template class dummy { public: dummy() { } dummy(T value) : value_(value) { } dummy(const dummyArray&) { } operator T() const { return value_; }; template void operator=(T2) { } _bz_typename multicomponent_traits::T_element operator[](int i) const { return value_[i]; } void loadStride(int) { } void moveTo(int) { } void moveTo(int,int) { } void moveTo(int,int,int) { } void moveTo(int,int,int,int) { } void advance() { } T shift(int,int) { return T(); } private: T value_; }; /* * The stencilExtent object is passed to stencil objects to find out * the spatial extent of the stencil. It pretends it's an array, * but really it's just recording the locations of the array reads * via operator(). */ template class stencilExtent { public: typedef P_numtype T_numtype; stencilExtent() { min_ = 0; max_ = 0; } dummy operator()(int i) { update(0, i); return dummy(1); } dummy operator()(int i, int j) { update(0, i); update(1, j); return dummy(1); } dummy operator()(int i, int j, int k) { update(0, i); update(1, j); update(2, k); return dummy(1); } dummy shift(int offset, int dim) { update(dim, offset); return dummy(1); } dummy<_bz_typename multicomponent_traits::T_element> operator[](int) { return dummy<_bz_typename multicomponent_traits::T_element> (1); } void update(int rank, int offset) { if (offset < min_[rank]) min_[rank] = offset; if (offset > max_[rank]) max_[rank] = offset; } template void combine(const stencilExtent& x) { for (int i=0; i < N_rank; ++i) { min_[i] = ::min(min_[i], x.min(i)); max_[i] = ::max(max_[i], x.max(i)); } } template void combine(const dummy&) { } int min(int i) const { return min_[i]; } int max(int i) const { return max_[i]; } const TinyVector& min() const { return min_; } const TinyVector& max() const { return max_; } template void operator=(T) { } // NEEDS_WORK: other operators template void operator+=(T) { } template void operator-=(T) { } template void operator*=(T) { } template void operator/=(T) { } operator T_numtype() { return T_numtype(1); } T_numtype operator*() { return T_numtype(1); } private: _bz_mutable TinyVector min_, max_; }; /* * stencilExtent_traits gives a stencilExtent object for arrays, * and a dummy object for dummy arrays. */ template struct stencilExtent_traits { typedef dummy T_stencilExtent; }; template struct stencilExtent_traits > { typedef stencilExtent T_stencilExtent; }; /* * Specialization of areShapesConformable(), originally * defined in */ template inline _bz_bool areShapesConformable(const T_shape1&, const dummyArray&) { return _bz_true; } BZ_NAMESPACE_END #include #endif // BZ_ARRAYSTENCIL_H